Improve latency_target runs
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13#include "lib/axmap.h"
14#include "err.h"
15
16struct io_completion_data {
17 int nr; /* input */
18
19 int error; /* output */
20 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
21 struct timeval time; /* output */
22};
23
24/*
25 * The ->io_axmap contains a map of blocks we have or have not done io
26 * to yet. Used to make sure we cover the entire range in a fair fashion.
27 */
28static int random_map_free(struct fio_file *f, const uint64_t block)
29{
30 return !axmap_isset(f->io_axmap, block);
31}
32
33/*
34 * Mark a given offset as used in the map.
35 */
36static void mark_random_map(struct thread_data *td, struct io_u *io_u)
37{
38 unsigned int min_bs = td->o.rw_min_bs;
39 struct fio_file *f = io_u->file;
40 unsigned int nr_blocks;
41 uint64_t block;
42
43 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
44 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
45
46 if (!(io_u->flags & IO_U_F_BUSY_OK))
47 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
48
49 if ((nr_blocks * min_bs) < io_u->buflen)
50 io_u->buflen = nr_blocks * min_bs;
51}
52
53static uint64_t last_block(struct thread_data *td, struct fio_file *f,
54 enum fio_ddir ddir)
55{
56 uint64_t max_blocks;
57 uint64_t max_size;
58
59 assert(ddir_rw(ddir));
60
61 /*
62 * Hmm, should we make sure that ->io_size <= ->real_file_size?
63 */
64 max_size = f->io_size;
65 if (max_size > f->real_file_size)
66 max_size = f->real_file_size;
67
68 if (td->o.zone_range)
69 max_size = td->o.zone_range;
70
71 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
72 if (!max_blocks)
73 return 0;
74
75 return max_blocks;
76}
77
78struct rand_off {
79 struct flist_head list;
80 uint64_t off;
81};
82
83static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
84 enum fio_ddir ddir, uint64_t *b)
85{
86 uint64_t r, lastb;
87
88 lastb = last_block(td, f, ddir);
89 if (!lastb)
90 return 1;
91
92 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE) {
93 uint64_t rmax;
94
95 rmax = td->o.use_os_rand ? OS_RAND_MAX : FRAND_MAX;
96
97 if (td->o.use_os_rand) {
98 rmax = OS_RAND_MAX;
99 r = os_random_long(&td->random_state);
100 } else {
101 rmax = FRAND_MAX;
102 r = __rand(&td->__random_state);
103 }
104
105 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
106
107 *b = (lastb - 1) * (r / ((uint64_t) rmax + 1.0));
108 } else {
109 uint64_t off = 0;
110
111 if (lfsr_next(&f->lfsr, &off, lastb))
112 return 1;
113
114 *b = off;
115 }
116
117 /*
118 * if we are not maintaining a random map, we are done.
119 */
120 if (!file_randommap(td, f))
121 goto ret;
122
123 /*
124 * calculate map offset and check if it's free
125 */
126 if (random_map_free(f, *b))
127 goto ret;
128
129 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
130 (unsigned long long) *b);
131
132 *b = axmap_next_free(f->io_axmap, *b);
133 if (*b == (uint64_t) -1ULL)
134 return 1;
135ret:
136 return 0;
137}
138
139static int __get_next_rand_offset_zipf(struct thread_data *td,
140 struct fio_file *f, enum fio_ddir ddir,
141 uint64_t *b)
142{
143 *b = zipf_next(&f->zipf);
144 return 0;
145}
146
147static int __get_next_rand_offset_pareto(struct thread_data *td,
148 struct fio_file *f, enum fio_ddir ddir,
149 uint64_t *b)
150{
151 *b = pareto_next(&f->zipf);
152 return 0;
153}
154
155static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
156{
157 struct rand_off *r1 = flist_entry(a, struct rand_off, list);
158 struct rand_off *r2 = flist_entry(b, struct rand_off, list);
159
160 return r1->off - r2->off;
161}
162
163static int get_off_from_method(struct thread_data *td, struct fio_file *f,
164 enum fio_ddir ddir, uint64_t *b)
165{
166 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM)
167 return __get_next_rand_offset(td, f, ddir, b);
168 else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
169 return __get_next_rand_offset_zipf(td, f, ddir, b);
170 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
171 return __get_next_rand_offset_pareto(td, f, ddir, b);
172
173 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
174 return 1;
175}
176
177/*
178 * Sort the reads for a verify phase in batches of verifysort_nr, if
179 * specified.
180 */
181static inline int should_sort_io(struct thread_data *td)
182{
183 if (!td->o.verifysort_nr || !td->o.do_verify)
184 return 0;
185 if (!td_random(td))
186 return 0;
187 if (td->runstate != TD_VERIFYING)
188 return 0;
189 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE)
190 return 0;
191
192 return 1;
193}
194
195static int should_do_random(struct thread_data *td, enum fio_ddir ddir)
196{
197 unsigned int v;
198 unsigned long r;
199
200 if (td->o.perc_rand[ddir] == 100)
201 return 1;
202
203 if (td->o.use_os_rand) {
204 r = os_random_long(&td->seq_rand_state[ddir]);
205 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0)));
206 } else {
207 r = __rand(&td->__seq_rand_state[ddir]);
208 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
209 }
210
211 return v <= td->o.perc_rand[ddir];
212}
213
214static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
215 enum fio_ddir ddir, uint64_t *b)
216{
217 struct rand_off *r;
218 int i, ret = 1;
219
220 if (!should_sort_io(td))
221 return get_off_from_method(td, f, ddir, b);
222
223 if (!flist_empty(&td->next_rand_list)) {
224 struct rand_off *r;
225fetch:
226 r = flist_entry(td->next_rand_list.next, struct rand_off, list);
227 flist_del(&r->list);
228 *b = r->off;
229 free(r);
230 return 0;
231 }
232
233 for (i = 0; i < td->o.verifysort_nr; i++) {
234 r = malloc(sizeof(*r));
235
236 ret = get_off_from_method(td, f, ddir, &r->off);
237 if (ret) {
238 free(r);
239 break;
240 }
241
242 flist_add(&r->list, &td->next_rand_list);
243 }
244
245 if (ret && !i)
246 return ret;
247
248 assert(!flist_empty(&td->next_rand_list));
249 flist_sort(NULL, &td->next_rand_list, flist_cmp);
250 goto fetch;
251}
252
253static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
254 enum fio_ddir ddir, uint64_t *b)
255{
256 if (!get_next_rand_offset(td, f, ddir, b))
257 return 0;
258
259 if (td->o.time_based) {
260 fio_file_reset(td, f);
261 if (!get_next_rand_offset(td, f, ddir, b))
262 return 0;
263 }
264
265 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
266 f->file_name, (unsigned long long) f->last_pos,
267 (unsigned long long) f->real_file_size);
268 return 1;
269}
270
271static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
272 enum fio_ddir ddir, uint64_t *offset)
273{
274 assert(ddir_rw(ddir));
275
276 if (f->last_pos >= f->io_size + get_start_offset(td) && td->o.time_based)
277 f->last_pos = f->last_pos - f->io_size;
278
279 if (f->last_pos < f->real_file_size) {
280 uint64_t pos;
281
282 if (f->last_pos == f->file_offset && td->o.ddir_seq_add < 0)
283 f->last_pos = f->real_file_size;
284
285 pos = f->last_pos - f->file_offset;
286 if (pos)
287 pos += td->o.ddir_seq_add;
288
289 *offset = pos;
290 return 0;
291 }
292
293 return 1;
294}
295
296static int get_next_block(struct thread_data *td, struct io_u *io_u,
297 enum fio_ddir ddir, int rw_seq,
298 unsigned int *is_random)
299{
300 struct fio_file *f = io_u->file;
301 uint64_t b, offset;
302 int ret;
303
304 assert(ddir_rw(ddir));
305
306 b = offset = -1ULL;
307
308 if (rw_seq) {
309 if (td_random(td)) {
310 if (should_do_random(td, ddir)) {
311 ret = get_next_rand_block(td, f, ddir, &b);
312 *is_random = 1;
313 } else {
314 *is_random = 0;
315 io_u->flags |= IO_U_F_BUSY_OK;
316 ret = get_next_seq_offset(td, f, ddir, &offset);
317 if (ret)
318 ret = get_next_rand_block(td, f, ddir, &b);
319 }
320 } else {
321 *is_random = 0;
322 ret = get_next_seq_offset(td, f, ddir, &offset);
323 }
324 } else {
325 io_u->flags |= IO_U_F_BUSY_OK;
326 *is_random = 0;
327
328 if (td->o.rw_seq == RW_SEQ_SEQ) {
329 ret = get_next_seq_offset(td, f, ddir, &offset);
330 if (ret) {
331 ret = get_next_rand_block(td, f, ddir, &b);
332 *is_random = 0;
333 }
334 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
335 if (f->last_start != -1ULL)
336 offset = f->last_start - f->file_offset;
337 else
338 offset = 0;
339 ret = 0;
340 } else {
341 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
342 ret = 1;
343 }
344 }
345
346 if (!ret) {
347 if (offset != -1ULL)
348 io_u->offset = offset;
349 else if (b != -1ULL)
350 io_u->offset = b * td->o.ba[ddir];
351 else {
352 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
353 ret = 1;
354 }
355 }
356
357 return ret;
358}
359
360/*
361 * For random io, generate a random new block and see if it's used. Repeat
362 * until we find a free one. For sequential io, just return the end of
363 * the last io issued.
364 */
365static int __get_next_offset(struct thread_data *td, struct io_u *io_u,
366 unsigned int *is_random)
367{
368 struct fio_file *f = io_u->file;
369 enum fio_ddir ddir = io_u->ddir;
370 int rw_seq_hit = 0;
371
372 assert(ddir_rw(ddir));
373
374 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
375 rw_seq_hit = 1;
376 td->ddir_seq_nr = td->o.ddir_seq_nr;
377 }
378
379 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
380 return 1;
381
382 if (io_u->offset >= f->io_size) {
383 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
384 (unsigned long long) io_u->offset,
385 (unsigned long long) f->io_size);
386 return 1;
387 }
388
389 io_u->offset += f->file_offset;
390 if (io_u->offset >= f->real_file_size) {
391 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
392 (unsigned long long) io_u->offset,
393 (unsigned long long) f->real_file_size);
394 return 1;
395 }
396
397 return 0;
398}
399
400static int get_next_offset(struct thread_data *td, struct io_u *io_u,
401 unsigned int *is_random)
402{
403 if (td->flags & TD_F_PROFILE_OPS) {
404 struct prof_io_ops *ops = &td->prof_io_ops;
405
406 if (ops->fill_io_u_off)
407 return ops->fill_io_u_off(td, io_u, is_random);
408 }
409
410 return __get_next_offset(td, io_u, is_random);
411}
412
413static inline int io_u_fits(struct thread_data *td, struct io_u *io_u,
414 unsigned int buflen)
415{
416 struct fio_file *f = io_u->file;
417
418 return io_u->offset + buflen <= f->io_size + get_start_offset(td);
419}
420
421static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u,
422 unsigned int is_random)
423{
424 int ddir = io_u->ddir;
425 unsigned int buflen = 0;
426 unsigned int minbs, maxbs;
427 unsigned long r, rand_max;
428
429 assert(ddir_rw(io_u->ddir));
430
431 if (td->o.bs_is_seq_rand)
432 ddir = is_random ? DDIR_WRITE: DDIR_READ;
433 else
434 ddir = io_u->ddir;
435
436 minbs = td->o.min_bs[ddir];
437 maxbs = td->o.max_bs[ddir];
438
439 if (minbs == maxbs)
440 return minbs;
441
442 /*
443 * If we can't satisfy the min block size from here, then fail
444 */
445 if (!io_u_fits(td, io_u, minbs))
446 return 0;
447
448 if (td->o.use_os_rand)
449 rand_max = OS_RAND_MAX;
450 else
451 rand_max = FRAND_MAX;
452
453 do {
454 if (td->o.use_os_rand)
455 r = os_random_long(&td->bsrange_state);
456 else
457 r = __rand(&td->__bsrange_state);
458
459 if (!td->o.bssplit_nr[ddir]) {
460 buflen = 1 + (unsigned int) ((double) maxbs *
461 (r / (rand_max + 1.0)));
462 if (buflen < minbs)
463 buflen = minbs;
464 } else {
465 long perc = 0;
466 unsigned int i;
467
468 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
469 struct bssplit *bsp = &td->o.bssplit[ddir][i];
470
471 buflen = bsp->bs;
472 perc += bsp->perc;
473 if ((r <= ((rand_max / 100L) * perc)) &&
474 io_u_fits(td, io_u, buflen))
475 break;
476 }
477 }
478
479 if (td->o.do_verify && td->o.verify != VERIFY_NONE)
480 buflen = (buflen + td->o.verify_interval - 1) &
481 ~(td->o.verify_interval - 1);
482
483 if (!td->o.bs_unaligned && is_power_of_2(minbs))
484 buflen = (buflen + minbs - 1) & ~(minbs - 1);
485
486 } while (!io_u_fits(td, io_u, buflen));
487
488 return buflen;
489}
490
491static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u,
492 unsigned int is_random)
493{
494 if (td->flags & TD_F_PROFILE_OPS) {
495 struct prof_io_ops *ops = &td->prof_io_ops;
496
497 if (ops->fill_io_u_size)
498 return ops->fill_io_u_size(td, io_u, is_random);
499 }
500
501 return __get_next_buflen(td, io_u, is_random);
502}
503
504static void set_rwmix_bytes(struct thread_data *td)
505{
506 unsigned int diff;
507
508 /*
509 * we do time or byte based switch. this is needed because
510 * buffered writes may issue a lot quicker than they complete,
511 * whereas reads do not.
512 */
513 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
514 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
515}
516
517static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
518{
519 unsigned int v;
520 unsigned long r;
521
522 if (td->o.use_os_rand) {
523 r = os_random_long(&td->rwmix_state);
524 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0)));
525 } else {
526 r = __rand(&td->__rwmix_state);
527 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
528 }
529
530 if (v <= td->o.rwmix[DDIR_READ])
531 return DDIR_READ;
532
533 return DDIR_WRITE;
534}
535
536void io_u_quiesce(struct thread_data *td)
537{
538 /*
539 * We are going to sleep, ensure that we flush anything pending as
540 * not to skew our latency numbers.
541 *
542 * Changed to only monitor 'in flight' requests here instead of the
543 * td->cur_depth, b/c td->cur_depth does not accurately represent
544 * io's that have been actually submitted to an async engine,
545 * and cur_depth is meaningless for sync engines.
546 */
547 while (td->io_u_in_flight) {
548 int fio_unused ret;
549
550 ret = io_u_queued_complete(td, 1, NULL);
551 }
552}
553
554static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
555{
556 enum fio_ddir odir = ddir ^ 1;
557 struct timeval t;
558 long usec;
559
560 assert(ddir_rw(ddir));
561
562 if (td->rate_pending_usleep[ddir] <= 0)
563 return ddir;
564
565 /*
566 * We have too much pending sleep in this direction. See if we
567 * should switch.
568 */
569 if (td_rw(td) && td->o.rwmix[odir]) {
570 /*
571 * Other direction does not have too much pending, switch
572 */
573 if (td->rate_pending_usleep[odir] < 100000)
574 return odir;
575
576 /*
577 * Both directions have pending sleep. Sleep the minimum time
578 * and deduct from both.
579 */
580 if (td->rate_pending_usleep[ddir] <=
581 td->rate_pending_usleep[odir]) {
582 usec = td->rate_pending_usleep[ddir];
583 } else {
584 usec = td->rate_pending_usleep[odir];
585 ddir = odir;
586 }
587 } else
588 usec = td->rate_pending_usleep[ddir];
589
590 io_u_quiesce(td);
591
592 fio_gettime(&t, NULL);
593 usec_sleep(td, usec);
594 usec = utime_since_now(&t);
595
596 td->rate_pending_usleep[ddir] -= usec;
597
598 odir = ddir ^ 1;
599 if (td_rw(td) && __should_check_rate(td, odir))
600 td->rate_pending_usleep[odir] -= usec;
601
602 if (ddir_trim(ddir))
603 return ddir;
604
605 return ddir;
606}
607
608/*
609 * Return the data direction for the next io_u. If the job is a
610 * mixed read/write workload, check the rwmix cycle and switch if
611 * necessary.
612 */
613static enum fio_ddir get_rw_ddir(struct thread_data *td)
614{
615 enum fio_ddir ddir;
616
617 /*
618 * see if it's time to fsync
619 */
620 if (td->o.fsync_blocks &&
621 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
622 td->io_issues[DDIR_WRITE] && should_fsync(td))
623 return DDIR_SYNC;
624
625 /*
626 * see if it's time to fdatasync
627 */
628 if (td->o.fdatasync_blocks &&
629 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) &&
630 td->io_issues[DDIR_WRITE] && should_fsync(td))
631 return DDIR_DATASYNC;
632
633 /*
634 * see if it's time to sync_file_range
635 */
636 if (td->sync_file_range_nr &&
637 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) &&
638 td->io_issues[DDIR_WRITE] && should_fsync(td))
639 return DDIR_SYNC_FILE_RANGE;
640
641 if (td_rw(td)) {
642 /*
643 * Check if it's time to seed a new data direction.
644 */
645 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
646 /*
647 * Put a top limit on how many bytes we do for
648 * one data direction, to avoid overflowing the
649 * ranges too much
650 */
651 ddir = get_rand_ddir(td);
652
653 if (ddir != td->rwmix_ddir)
654 set_rwmix_bytes(td);
655
656 td->rwmix_ddir = ddir;
657 }
658 ddir = td->rwmix_ddir;
659 } else if (td_read(td))
660 ddir = DDIR_READ;
661 else if (td_write(td))
662 ddir = DDIR_WRITE;
663 else
664 ddir = DDIR_TRIM;
665
666 td->rwmix_ddir = rate_ddir(td, ddir);
667 return td->rwmix_ddir;
668}
669
670static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
671{
672 io_u->ddir = io_u->acct_ddir = get_rw_ddir(td);
673
674 if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) &&
675 td->o.barrier_blocks &&
676 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
677 td->io_issues[DDIR_WRITE])
678 io_u->flags |= IO_U_F_BARRIER;
679}
680
681void put_file_log(struct thread_data *td, struct fio_file *f)
682{
683 int ret = put_file(td, f);
684
685 if (ret)
686 td_verror(td, ret, "file close");
687}
688
689void put_io_u(struct thread_data *td, struct io_u *io_u)
690{
691 td_io_u_lock(td);
692
693 if (io_u->file && !(io_u->flags & IO_U_F_FREE_DEF))
694 put_file_log(td, io_u->file);
695 io_u->file = NULL;
696 io_u->flags &= ~IO_U_F_FREE_DEF;
697 io_u->flags |= IO_U_F_FREE;
698
699 if (io_u->flags & IO_U_F_IN_CUR_DEPTH)
700 td->cur_depth--;
701 io_u_qpush(&td->io_u_freelist, io_u);
702 td_io_u_unlock(td);
703 td_io_u_free_notify(td);
704}
705
706void clear_io_u(struct thread_data *td, struct io_u *io_u)
707{
708 io_u->flags &= ~IO_U_F_FLIGHT;
709 put_io_u(td, io_u);
710}
711
712void requeue_io_u(struct thread_data *td, struct io_u **io_u)
713{
714 struct io_u *__io_u = *io_u;
715 enum fio_ddir ddir = acct_ddir(__io_u);
716
717 dprint(FD_IO, "requeue %p\n", __io_u);
718
719 td_io_u_lock(td);
720
721 __io_u->flags |= IO_U_F_FREE;
722 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
723 td->io_issues[ddir]--;
724
725 __io_u->flags &= ~IO_U_F_FLIGHT;
726 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH)
727 td->cur_depth--;
728
729 io_u_rpush(&td->io_u_requeues, __io_u);
730 td_io_u_unlock(td);
731 *io_u = NULL;
732}
733
734static int fill_io_u(struct thread_data *td, struct io_u *io_u)
735{
736 unsigned int is_random;
737
738 if (td->io_ops->flags & FIO_NOIO)
739 goto out;
740
741 set_rw_ddir(td, io_u);
742
743 /*
744 * fsync() or fdatasync() or trim etc, we are done
745 */
746 if (!ddir_rw(io_u->ddir))
747 goto out;
748
749 /*
750 * See if it's time to switch to a new zone
751 */
752 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
753 td->zone_bytes = 0;
754 io_u->file->file_offset += td->o.zone_range + td->o.zone_skip;
755 io_u->file->last_pos = io_u->file->file_offset;
756 td->io_skip_bytes += td->o.zone_skip;
757 }
758
759 /*
760 * No log, let the seq/rand engine retrieve the next buflen and
761 * position.
762 */
763 if (get_next_offset(td, io_u, &is_random)) {
764 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
765 return 1;
766 }
767
768 io_u->buflen = get_next_buflen(td, io_u, is_random);
769 if (!io_u->buflen) {
770 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
771 return 1;
772 }
773
774 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
775 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
776 dprint(FD_IO, " off=%llu/%lu > %llu\n",
777 (unsigned long long) io_u->offset, io_u->buflen,
778 (unsigned long long) io_u->file->real_file_size);
779 return 1;
780 }
781
782 /*
783 * mark entry before potentially trimming io_u
784 */
785 if (td_random(td) && file_randommap(td, io_u->file))
786 mark_random_map(td, io_u);
787
788out:
789 dprint_io_u(io_u, "fill_io_u");
790 td->zone_bytes += io_u->buflen;
791 return 0;
792}
793
794static void __io_u_mark_map(unsigned int *map, unsigned int nr)
795{
796 int idx = 0;
797
798 switch (nr) {
799 default:
800 idx = 6;
801 break;
802 case 33 ... 64:
803 idx = 5;
804 break;
805 case 17 ... 32:
806 idx = 4;
807 break;
808 case 9 ... 16:
809 idx = 3;
810 break;
811 case 5 ... 8:
812 idx = 2;
813 break;
814 case 1 ... 4:
815 idx = 1;
816 case 0:
817 break;
818 }
819
820 map[idx]++;
821}
822
823void io_u_mark_submit(struct thread_data *td, unsigned int nr)
824{
825 __io_u_mark_map(td->ts.io_u_submit, nr);
826 td->ts.total_submit++;
827}
828
829void io_u_mark_complete(struct thread_data *td, unsigned int nr)
830{
831 __io_u_mark_map(td->ts.io_u_complete, nr);
832 td->ts.total_complete++;
833}
834
835void io_u_mark_depth(struct thread_data *td, unsigned int nr)
836{
837 int idx = 0;
838
839 switch (td->cur_depth) {
840 default:
841 idx = 6;
842 break;
843 case 32 ... 63:
844 idx = 5;
845 break;
846 case 16 ... 31:
847 idx = 4;
848 break;
849 case 8 ... 15:
850 idx = 3;
851 break;
852 case 4 ... 7:
853 idx = 2;
854 break;
855 case 2 ... 3:
856 idx = 1;
857 case 1:
858 break;
859 }
860
861 td->ts.io_u_map[idx] += nr;
862}
863
864static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
865{
866 int idx = 0;
867
868 assert(usec < 1000);
869
870 switch (usec) {
871 case 750 ... 999:
872 idx = 9;
873 break;
874 case 500 ... 749:
875 idx = 8;
876 break;
877 case 250 ... 499:
878 idx = 7;
879 break;
880 case 100 ... 249:
881 idx = 6;
882 break;
883 case 50 ... 99:
884 idx = 5;
885 break;
886 case 20 ... 49:
887 idx = 4;
888 break;
889 case 10 ... 19:
890 idx = 3;
891 break;
892 case 4 ... 9:
893 idx = 2;
894 break;
895 case 2 ... 3:
896 idx = 1;
897 case 0 ... 1:
898 break;
899 }
900
901 assert(idx < FIO_IO_U_LAT_U_NR);
902 td->ts.io_u_lat_u[idx]++;
903}
904
905static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
906{
907 int idx = 0;
908
909 switch (msec) {
910 default:
911 idx = 11;
912 break;
913 case 1000 ... 1999:
914 idx = 10;
915 break;
916 case 750 ... 999:
917 idx = 9;
918 break;
919 case 500 ... 749:
920 idx = 8;
921 break;
922 case 250 ... 499:
923 idx = 7;
924 break;
925 case 100 ... 249:
926 idx = 6;
927 break;
928 case 50 ... 99:
929 idx = 5;
930 break;
931 case 20 ... 49:
932 idx = 4;
933 break;
934 case 10 ... 19:
935 idx = 3;
936 break;
937 case 4 ... 9:
938 idx = 2;
939 break;
940 case 2 ... 3:
941 idx = 1;
942 case 0 ... 1:
943 break;
944 }
945
946 assert(idx < FIO_IO_U_LAT_M_NR);
947 td->ts.io_u_lat_m[idx]++;
948}
949
950static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
951{
952 if (usec < 1000)
953 io_u_mark_lat_usec(td, usec);
954 else
955 io_u_mark_lat_msec(td, usec / 1000);
956}
957
958/*
959 * Get next file to service by choosing one at random
960 */
961static struct fio_file *get_next_file_rand(struct thread_data *td,
962 enum fio_file_flags goodf,
963 enum fio_file_flags badf)
964{
965 struct fio_file *f;
966 int fno;
967
968 do {
969 int opened = 0;
970 unsigned long r;
971
972 if (td->o.use_os_rand) {
973 r = os_random_long(&td->next_file_state);
974 fno = (unsigned int) ((double) td->o.nr_files
975 * (r / (OS_RAND_MAX + 1.0)));
976 } else {
977 r = __rand(&td->__next_file_state);
978 fno = (unsigned int) ((double) td->o.nr_files
979 * (r / (FRAND_MAX + 1.0)));
980 }
981
982 f = td->files[fno];
983 if (fio_file_done(f))
984 continue;
985
986 if (!fio_file_open(f)) {
987 int err;
988
989 if (td->nr_open_files >= td->o.open_files)
990 return ERR_PTR(-EBUSY);
991
992 err = td_io_open_file(td, f);
993 if (err)
994 continue;
995 opened = 1;
996 }
997
998 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
999 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
1000 return f;
1001 }
1002 if (opened)
1003 td_io_close_file(td, f);
1004 } while (1);
1005}
1006
1007/*
1008 * Get next file to service by doing round robin between all available ones
1009 */
1010static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
1011 int badf)
1012{
1013 unsigned int old_next_file = td->next_file;
1014 struct fio_file *f;
1015
1016 do {
1017 int opened = 0;
1018
1019 f = td->files[td->next_file];
1020
1021 td->next_file++;
1022 if (td->next_file >= td->o.nr_files)
1023 td->next_file = 0;
1024
1025 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
1026 if (fio_file_done(f)) {
1027 f = NULL;
1028 continue;
1029 }
1030
1031 if (!fio_file_open(f)) {
1032 int err;
1033
1034 if (td->nr_open_files >= td->o.open_files)
1035 return ERR_PTR(-EBUSY);
1036
1037 err = td_io_open_file(td, f);
1038 if (err) {
1039 dprint(FD_FILE, "error %d on open of %s\n",
1040 err, f->file_name);
1041 f = NULL;
1042 continue;
1043 }
1044 opened = 1;
1045 }
1046
1047 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1048 f->flags);
1049 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1050 break;
1051
1052 if (opened)
1053 td_io_close_file(td, f);
1054
1055 f = NULL;
1056 } while (td->next_file != old_next_file);
1057
1058 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1059 return f;
1060}
1061
1062static struct fio_file *__get_next_file(struct thread_data *td)
1063{
1064 struct fio_file *f;
1065
1066 assert(td->o.nr_files <= td->files_index);
1067
1068 if (td->nr_done_files >= td->o.nr_files) {
1069 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1070 " nr_files=%d\n", td->nr_open_files,
1071 td->nr_done_files,
1072 td->o.nr_files);
1073 return NULL;
1074 }
1075
1076 f = td->file_service_file;
1077 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1078 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1079 goto out;
1080 if (td->file_service_left--)
1081 goto out;
1082 }
1083
1084 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1085 td->o.file_service_type == FIO_FSERVICE_SEQ)
1086 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1087 else
1088 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1089
1090 if (IS_ERR(f))
1091 return f;
1092
1093 td->file_service_file = f;
1094 td->file_service_left = td->file_service_nr - 1;
1095out:
1096 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1097 return f;
1098}
1099
1100static struct fio_file *get_next_file(struct thread_data *td)
1101{
1102 if (!(td->flags & TD_F_PROFILE_OPS)) {
1103 struct prof_io_ops *ops = &td->prof_io_ops;
1104
1105 if (ops->get_next_file)
1106 return ops->get_next_file(td);
1107 }
1108
1109 return __get_next_file(td);
1110}
1111
1112static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
1113{
1114 struct fio_file *f;
1115
1116 do {
1117 f = get_next_file(td);
1118 if (IS_ERR_OR_NULL(f))
1119 return PTR_ERR(f);
1120
1121 io_u->file = f;
1122 get_file(f);
1123
1124 if (!fill_io_u(td, io_u))
1125 break;
1126
1127 put_file_log(td, f);
1128 td_io_close_file(td, f);
1129 io_u->file = NULL;
1130 fio_file_set_done(f);
1131 td->nr_done_files++;
1132 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1133 td->nr_done_files, td->o.nr_files);
1134 } while (1);
1135
1136 return 0;
1137}
1138
1139static void lat_fatal(struct thread_data *td, struct io_completion_data *icd,
1140 unsigned long tusec, unsigned long max_usec)
1141{
1142 if (!td->error)
1143 log_err("fio: latency of %lu usec exceeds specified max (%lu usec)\n", tusec, max_usec);
1144 td_verror(td, ETIMEDOUT, "max latency exceeded");
1145 icd->error = ETIMEDOUT;
1146}
1147
1148static void lat_new_cycle(struct thread_data *td)
1149{
1150 fio_gettime(&td->latency_ts, NULL);
1151 td->latency_ios = ddir_rw_sum(td->io_blocks);
1152 td->latency_failed = 0;
1153}
1154
1155/*
1156 * We had an IO outside the latency target. Reduce the queue depth. If we
1157 * are at QD=1, then it's time to give up.
1158 */
1159static int __lat_target_failed(struct thread_data *td)
1160{
1161 if (td->latency_qd == 1)
1162 return 1;
1163
1164 td->latency_qd_high = td->latency_qd;
1165
1166 if (td->latency_qd == td->latency_qd_low)
1167 td->latency_qd_low--;
1168
1169 td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
1170
1171 dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1172
1173 /*
1174 * When we ramp QD down, quiesce existing IO to prevent
1175 * a storm of ramp downs due to pending higher depth.
1176 */
1177 io_u_quiesce(td);
1178 lat_new_cycle(td);
1179 return 0;
1180}
1181
1182static int lat_target_failed(struct thread_data *td)
1183{
1184 if (td->o.latency_percentile.u.f == 100.0)
1185 return __lat_target_failed(td);
1186
1187 td->latency_failed++;
1188 return 0;
1189}
1190
1191void lat_target_init(struct thread_data *td)
1192{
1193 td->latency_end_run = 0;
1194
1195 if (td->o.latency_target) {
1196 dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
1197 fio_gettime(&td->latency_ts, NULL);
1198 td->latency_qd = 1;
1199 td->latency_qd_high = td->o.iodepth;
1200 td->latency_qd_low = 1;
1201 td->latency_ios = ddir_rw_sum(td->io_blocks);
1202 } else
1203 td->latency_qd = td->o.iodepth;
1204}
1205
1206void lat_target_reset(struct thread_data *td)
1207{
1208 if (!td->latency_end_run)
1209 lat_target_init(td);
1210}
1211
1212static void lat_target_success(struct thread_data *td)
1213{
1214 const unsigned int qd = td->latency_qd;
1215 struct thread_options *o = &td->o;
1216
1217 td->latency_qd_low = td->latency_qd;
1218
1219 /*
1220 * If we haven't failed yet, we double up to a failing value instead
1221 * of bisecting from highest possible queue depth. If we have set
1222 * a limit other than td->o.iodepth, bisect between that.
1223 */
1224 if (td->latency_qd_high != o->iodepth)
1225 td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
1226 else
1227 td->latency_qd *= 2;
1228
1229 if (td->latency_qd > o->iodepth)
1230 td->latency_qd = o->iodepth;
1231
1232 dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1233
1234 /*
1235 * Same as last one, we are done. Let it run a latency cycle, so
1236 * we get only the results from the targeted depth.
1237 */
1238 if (td->latency_qd == qd) {
1239 if (td->latency_end_run) {
1240 dprint(FD_RATE, "We are done\n");
1241 td->done = 1;
1242 } else {
1243 dprint(FD_RATE, "Quiesce and final run\n");
1244 io_u_quiesce(td);
1245 td->latency_end_run = 1;
1246 reset_all_stats(td);
1247 reset_io_stats(td);
1248 }
1249 }
1250
1251 lat_new_cycle(td);
1252}
1253
1254/*
1255 * Check if we can bump the queue depth
1256 */
1257void lat_target_check(struct thread_data *td)
1258{
1259 uint64_t usec_window;
1260 uint64_t ios;
1261 double success_ios;
1262
1263 usec_window = utime_since_now(&td->latency_ts);
1264 if (usec_window < td->o.latency_window)
1265 return;
1266
1267 ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
1268 success_ios = (double) (ios - td->latency_failed) / (double) ios;
1269 success_ios *= 100.0;
1270
1271 dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
1272
1273 if (success_ios >= td->o.latency_percentile.u.f)
1274 lat_target_success(td);
1275 else
1276 __lat_target_failed(td);
1277}
1278
1279/*
1280 * If latency target is enabled, we might be ramping up or down and not
1281 * using the full queue depth available.
1282 */
1283int queue_full(struct thread_data *td)
1284{
1285 const int qempty = io_u_qempty(&td->io_u_freelist);
1286
1287 if (qempty)
1288 return 1;
1289 if (!td->o.latency_target)
1290 return 0;
1291
1292 return td->cur_depth >= td->latency_qd;
1293}
1294
1295struct io_u *__get_io_u(struct thread_data *td)
1296{
1297 struct io_u *io_u;
1298
1299 td_io_u_lock(td);
1300
1301again:
1302 if (!io_u_rempty(&td->io_u_requeues))
1303 io_u = io_u_rpop(&td->io_u_requeues);
1304 else if (!queue_full(td)) {
1305 io_u = io_u_qpop(&td->io_u_freelist);
1306
1307 io_u->buflen = 0;
1308 io_u->resid = 0;
1309 io_u->file = NULL;
1310 io_u->end_io = NULL;
1311 }
1312
1313 if (io_u) {
1314 assert(io_u->flags & IO_U_F_FREE);
1315 io_u->flags &= ~(IO_U_F_FREE | IO_U_F_FREE_DEF);
1316 io_u->flags &= ~(IO_U_F_TRIMMED | IO_U_F_BARRIER);
1317 io_u->flags &= ~IO_U_F_VER_LIST;
1318
1319 io_u->error = 0;
1320 io_u->acct_ddir = -1;
1321 td->cur_depth++;
1322 io_u->flags |= IO_U_F_IN_CUR_DEPTH;
1323 io_u->ipo = NULL;
1324 } else if (td->o.verify_async) {
1325 /*
1326 * We ran out, wait for async verify threads to finish and
1327 * return one
1328 */
1329 pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1330 goto again;
1331 }
1332
1333 td_io_u_unlock(td);
1334 return io_u;
1335}
1336
1337static int check_get_trim(struct thread_data *td, struct io_u *io_u)
1338{
1339 if (!(td->flags & TD_F_TRIM_BACKLOG))
1340 return 0;
1341
1342 if (td->trim_entries) {
1343 int get_trim = 0;
1344
1345 if (td->trim_batch) {
1346 td->trim_batch--;
1347 get_trim = 1;
1348 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1349 td->last_ddir != DDIR_READ) {
1350 td->trim_batch = td->o.trim_batch;
1351 if (!td->trim_batch)
1352 td->trim_batch = td->o.trim_backlog;
1353 get_trim = 1;
1354 }
1355
1356 if (get_trim && !get_next_trim(td, io_u))
1357 return 1;
1358 }
1359
1360 return 0;
1361}
1362
1363static int check_get_verify(struct thread_data *td, struct io_u *io_u)
1364{
1365 if (!(td->flags & TD_F_VER_BACKLOG))
1366 return 0;
1367
1368 if (td->io_hist_len) {
1369 int get_verify = 0;
1370
1371 if (td->verify_batch)
1372 get_verify = 1;
1373 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1374 td->last_ddir != DDIR_READ) {
1375 td->verify_batch = td->o.verify_batch;
1376 if (!td->verify_batch)
1377 td->verify_batch = td->o.verify_backlog;
1378 get_verify = 1;
1379 }
1380
1381 if (get_verify && !get_next_verify(td, io_u)) {
1382 td->verify_batch--;
1383 return 1;
1384 }
1385 }
1386
1387 return 0;
1388}
1389
1390/*
1391 * Fill offset and start time into the buffer content, to prevent too
1392 * easy compressible data for simple de-dupe attempts. Do this for every
1393 * 512b block in the range, since that should be the smallest block size
1394 * we can expect from a device.
1395 */
1396static void small_content_scramble(struct io_u *io_u)
1397{
1398 unsigned int i, nr_blocks = io_u->buflen / 512;
1399 uint64_t boffset;
1400 unsigned int offset;
1401 void *p, *end;
1402
1403 if (!nr_blocks)
1404 return;
1405
1406 p = io_u->xfer_buf;
1407 boffset = io_u->offset;
1408 io_u->buf_filled_len = 0;
1409
1410 for (i = 0; i < nr_blocks; i++) {
1411 /*
1412 * Fill the byte offset into a "random" start offset of
1413 * the buffer, given by the product of the usec time
1414 * and the actual offset.
1415 */
1416 offset = (io_u->start_time.tv_usec ^ boffset) & 511;
1417 offset &= ~(sizeof(uint64_t) - 1);
1418 if (offset >= 512 - sizeof(uint64_t))
1419 offset -= sizeof(uint64_t);
1420 memcpy(p + offset, &boffset, sizeof(boffset));
1421
1422 end = p + 512 - sizeof(io_u->start_time);
1423 memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
1424 p += 512;
1425 boffset += 512;
1426 }
1427}
1428
1429/*
1430 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1431 * etc. The returned io_u is fully ready to be prepped and submitted.
1432 */
1433struct io_u *get_io_u(struct thread_data *td)
1434{
1435 struct fio_file *f;
1436 struct io_u *io_u;
1437 int do_scramble = 0;
1438 long ret = 0;
1439
1440 io_u = __get_io_u(td);
1441 if (!io_u) {
1442 dprint(FD_IO, "__get_io_u failed\n");
1443 return NULL;
1444 }
1445
1446 if (check_get_verify(td, io_u))
1447 goto out;
1448 if (check_get_trim(td, io_u))
1449 goto out;
1450
1451 /*
1452 * from a requeue, io_u already setup
1453 */
1454 if (io_u->file)
1455 goto out;
1456
1457 /*
1458 * If using an iolog, grab next piece if any available.
1459 */
1460 if (td->flags & TD_F_READ_IOLOG) {
1461 if (read_iolog_get(td, io_u))
1462 goto err_put;
1463 } else if (set_io_u_file(td, io_u)) {
1464 ret = -EBUSY;
1465 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1466 goto err_put;
1467 }
1468
1469 f = io_u->file;
1470 if (!f) {
1471 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1472 goto err_put;
1473 }
1474
1475 assert(fio_file_open(f));
1476
1477 if (ddir_rw(io_u->ddir)) {
1478 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) {
1479 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1480 goto err_put;
1481 }
1482
1483 f->last_start = io_u->offset;
1484 f->last_pos = io_u->offset + io_u->buflen;
1485
1486 if (io_u->ddir == DDIR_WRITE) {
1487 if (td->flags & TD_F_REFILL_BUFFERS) {
1488 io_u_fill_buffer(td, io_u,
1489 io_u->xfer_buflen, io_u->xfer_buflen);
1490 } else if (td->flags & TD_F_SCRAMBLE_BUFFERS)
1491 do_scramble = 1;
1492 if (td->flags & TD_F_VER_NONE) {
1493 populate_verify_io_u(td, io_u);
1494 do_scramble = 0;
1495 }
1496 } else if (io_u->ddir == DDIR_READ) {
1497 /*
1498 * Reset the buf_filled parameters so next time if the
1499 * buffer is used for writes it is refilled.
1500 */
1501 io_u->buf_filled_len = 0;
1502 }
1503 }
1504
1505 /*
1506 * Set io data pointers.
1507 */
1508 io_u->xfer_buf = io_u->buf;
1509 io_u->xfer_buflen = io_u->buflen;
1510
1511out:
1512 assert(io_u->file);
1513 if (!td_io_prep(td, io_u)) {
1514 if (!td->o.disable_slat)
1515 fio_gettime(&io_u->start_time, NULL);
1516 if (do_scramble)
1517 small_content_scramble(io_u);
1518 return io_u;
1519 }
1520err_put:
1521 dprint(FD_IO, "get_io_u failed\n");
1522 put_io_u(td, io_u);
1523 return ERR_PTR(ret);
1524}
1525
1526void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1527{
1528 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1529 const char *msg[] = { "read", "write", "sync", "datasync",
1530 "sync_file_range", "wait", "trim" };
1531
1532 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1533 return;
1534
1535 log_err("fio: io_u error");
1536
1537 if (io_u->file)
1538 log_err(" on file %s", io_u->file->file_name);
1539
1540 log_err(": %s\n", strerror(io_u->error));
1541
1542 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir],
1543 io_u->offset, io_u->xfer_buflen);
1544
1545 if (!td->error)
1546 td_verror(td, io_u->error, "io_u error");
1547}
1548
1549static inline int gtod_reduce(struct thread_data *td)
1550{
1551 return td->o.disable_clat && td->o.disable_lat && td->o.disable_slat
1552 && td->o.disable_bw;
1553}
1554
1555static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1556 struct io_completion_data *icd,
1557 const enum fio_ddir idx, unsigned int bytes)
1558{
1559 unsigned long lusec = 0;
1560
1561 if (!gtod_reduce(td))
1562 lusec = utime_since(&io_u->issue_time, &icd->time);
1563
1564 if (!td->o.disable_lat) {
1565 unsigned long tusec;
1566
1567 tusec = utime_since(&io_u->start_time, &icd->time);
1568 add_lat_sample(td, idx, tusec, bytes);
1569
1570 if (td->flags & TD_F_PROFILE_OPS) {
1571 struct prof_io_ops *ops = &td->prof_io_ops;
1572
1573 if (ops->io_u_lat)
1574 icd->error = ops->io_u_lat(td, tusec);
1575 }
1576
1577 if (td->o.max_latency && tusec > td->o.max_latency)
1578 lat_fatal(td, icd, tusec, td->o.max_latency);
1579 if (td->o.latency_target && tusec > td->o.latency_target) {
1580 if (lat_target_failed(td))
1581 lat_fatal(td, icd, tusec, td->o.latency_target);
1582 }
1583 }
1584
1585 if (!td->o.disable_clat) {
1586 add_clat_sample(td, idx, lusec, bytes);
1587 io_u_mark_latency(td, lusec);
1588 }
1589
1590 if (!td->o.disable_bw)
1591 add_bw_sample(td, idx, bytes, &icd->time);
1592
1593 if (!gtod_reduce(td))
1594 add_iops_sample(td, idx, bytes, &icd->time);
1595
1596 if (td->o.number_ios && !--td->o.number_ios)
1597 td->done = 1;
1598}
1599
1600static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
1601{
1602 uint64_t secs, remainder, bps, bytes;
1603
1604 bytes = td->this_io_bytes[ddir];
1605 bps = td->rate_bps[ddir];
1606 secs = bytes / bps;
1607 remainder = bytes % bps;
1608 return remainder * 1000000 / bps + secs * 1000000;
1609}
1610
1611static void io_completed(struct thread_data *td, struct io_u *io_u,
1612 struct io_completion_data *icd)
1613{
1614 struct fio_file *f;
1615
1616 dprint_io_u(io_u, "io complete");
1617
1618 td_io_u_lock(td);
1619 assert(io_u->flags & IO_U_F_FLIGHT);
1620 io_u->flags &= ~(IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1621
1622 /*
1623 * Mark IO ok to verify
1624 */
1625 if (io_u->ipo) {
1626 io_u->ipo->flags &= ~IP_F_IN_FLIGHT;
1627 write_barrier();
1628 }
1629
1630 td_io_u_unlock(td);
1631
1632 if (ddir_sync(io_u->ddir)) {
1633 td->last_was_sync = 1;
1634 f = io_u->file;
1635 if (f) {
1636 f->first_write = -1ULL;
1637 f->last_write = -1ULL;
1638 }
1639 return;
1640 }
1641
1642 td->last_was_sync = 0;
1643 td->last_ddir = io_u->ddir;
1644
1645 if (!io_u->error && ddir_rw(io_u->ddir)) {
1646 unsigned int bytes = io_u->buflen - io_u->resid;
1647 const enum fio_ddir idx = io_u->ddir;
1648 const enum fio_ddir odx = io_u->ddir ^ 1;
1649 int ret;
1650
1651 td->io_blocks[idx]++;
1652 td->this_io_blocks[idx]++;
1653 td->io_bytes[idx] += bytes;
1654
1655 if (!(io_u->flags & IO_U_F_VER_LIST))
1656 td->this_io_bytes[idx] += bytes;
1657
1658 if (idx == DDIR_WRITE) {
1659 f = io_u->file;
1660 if (f) {
1661 if (f->first_write == -1ULL ||
1662 io_u->offset < f->first_write)
1663 f->first_write = io_u->offset;
1664 if (f->last_write == -1ULL ||
1665 ((io_u->offset + bytes) > f->last_write))
1666 f->last_write = io_u->offset + bytes;
1667 }
1668 }
1669
1670 if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1671 td->runstate == TD_VERIFYING)) {
1672 account_io_completion(td, io_u, icd, idx, bytes);
1673
1674 if (__should_check_rate(td, idx)) {
1675 td->rate_pending_usleep[idx] =
1676 (usec_for_io(td, idx) -
1677 utime_since_now(&td->start));
1678 }
1679 if (idx != DDIR_TRIM && __should_check_rate(td, odx))
1680 td->rate_pending_usleep[odx] =
1681 (usec_for_io(td, odx) -
1682 utime_since_now(&td->start));
1683 }
1684
1685 icd->bytes_done[idx] += bytes;
1686
1687 if (io_u->end_io) {
1688 ret = io_u->end_io(td, io_u);
1689 if (ret && !icd->error)
1690 icd->error = ret;
1691 }
1692 } else if (io_u->error) {
1693 icd->error = io_u->error;
1694 io_u_log_error(td, io_u);
1695 }
1696 if (icd->error) {
1697 enum error_type_bit eb = td_error_type(io_u->ddir, icd->error);
1698 if (!td_non_fatal_error(td, eb, icd->error))
1699 return;
1700 /*
1701 * If there is a non_fatal error, then add to the error count
1702 * and clear all the errors.
1703 */
1704 update_error_count(td, icd->error);
1705 td_clear_error(td);
1706 icd->error = 0;
1707 io_u->error = 0;
1708 }
1709}
1710
1711static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1712 int nr)
1713{
1714 int ddir;
1715
1716 if (!gtod_reduce(td))
1717 fio_gettime(&icd->time, NULL);
1718
1719 icd->nr = nr;
1720
1721 icd->error = 0;
1722 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1723 icd->bytes_done[ddir] = 0;
1724}
1725
1726static void ios_completed(struct thread_data *td,
1727 struct io_completion_data *icd)
1728{
1729 struct io_u *io_u;
1730 int i;
1731
1732 for (i = 0; i < icd->nr; i++) {
1733 io_u = td->io_ops->event(td, i);
1734
1735 io_completed(td, io_u, icd);
1736
1737 if (!(io_u->flags & IO_U_F_FREE_DEF))
1738 put_io_u(td, io_u);
1739 }
1740}
1741
1742/*
1743 * Complete a single io_u for the sync engines.
1744 */
1745int io_u_sync_complete(struct thread_data *td, struct io_u *io_u,
1746 uint64_t *bytes)
1747{
1748 struct io_completion_data icd;
1749
1750 init_icd(td, &icd, 1);
1751 io_completed(td, io_u, &icd);
1752
1753 if (!(io_u->flags & IO_U_F_FREE_DEF))
1754 put_io_u(td, io_u);
1755
1756 if (icd.error) {
1757 td_verror(td, icd.error, "io_u_sync_complete");
1758 return -1;
1759 }
1760
1761 if (bytes) {
1762 int ddir;
1763
1764 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1765 bytes[ddir] += icd.bytes_done[ddir];
1766 }
1767
1768 return 0;
1769}
1770
1771/*
1772 * Called to complete min_events number of io for the async engines.
1773 */
1774int io_u_queued_complete(struct thread_data *td, int min_evts,
1775 uint64_t *bytes)
1776{
1777 struct io_completion_data icd;
1778 struct timespec *tvp = NULL;
1779 int ret;
1780 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
1781
1782 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts);
1783
1784 if (!min_evts)
1785 tvp = &ts;
1786
1787 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp);
1788 if (ret < 0) {
1789 td_verror(td, -ret, "td_io_getevents");
1790 return ret;
1791 } else if (!ret)
1792 return ret;
1793
1794 init_icd(td, &icd, ret);
1795 ios_completed(td, &icd);
1796 if (icd.error) {
1797 td_verror(td, icd.error, "io_u_queued_complete");
1798 return -1;
1799 }
1800
1801 if (bytes) {
1802 int ddir;
1803
1804 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1805 bytes[ddir] += icd.bytes_done[ddir];
1806 }
1807
1808 return 0;
1809}
1810
1811/*
1812 * Call when io_u is really queued, to update the submission latency.
1813 */
1814void io_u_queued(struct thread_data *td, struct io_u *io_u)
1815{
1816 if (!td->o.disable_slat) {
1817 unsigned long slat_time;
1818
1819 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
1820 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen);
1821 }
1822}
1823
1824void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write,
1825 unsigned int max_bs)
1826{
1827 if (td->o.buffer_pattern_bytes)
1828 fill_buffer_pattern(td, buf, max_bs);
1829 else if (!td->o.zero_buffers) {
1830 unsigned int perc = td->o.compress_percentage;
1831
1832 if (perc) {
1833 unsigned int seg = min_write;
1834
1835 seg = min(min_write, td->o.compress_chunk);
1836 if (!seg)
1837 seg = min_write;
1838
1839 fill_random_buf_percentage(&td->buf_state, buf,
1840 perc, seg, max_bs);
1841 } else
1842 fill_random_buf(&td->buf_state, buf, max_bs);
1843 } else
1844 memset(buf, 0, max_bs);
1845}
1846
1847/*
1848 * "randomly" fill the buffer contents
1849 */
1850void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
1851 unsigned int min_write, unsigned int max_bs)
1852{
1853 io_u->buf_filled_len = 0;
1854 fill_io_buffer(td, io_u->buf, min_write, max_bs);
1855}