Explicitly check td_trim(td) for the direction of next io_u
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13#include "lib/axmap.h"
14#include "err.h"
15#include "lib/pow2.h"
16#include "minmax.h"
17
18struct io_completion_data {
19 int nr; /* input */
20
21 int error; /* output */
22 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
23 struct timeval time; /* output */
24};
25
26/*
27 * The ->io_axmap contains a map of blocks we have or have not done io
28 * to yet. Used to make sure we cover the entire range in a fair fashion.
29 */
30static bool random_map_free(struct fio_file *f, const uint64_t block)
31{
32 return !axmap_isset(f->io_axmap, block);
33}
34
35/*
36 * Mark a given offset as used in the map.
37 */
38static void mark_random_map(struct thread_data *td, struct io_u *io_u)
39{
40 unsigned int min_bs = td->o.rw_min_bs;
41 struct fio_file *f = io_u->file;
42 unsigned int nr_blocks;
43 uint64_t block;
44
45 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
46 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
47
48 if (!(io_u->flags & IO_U_F_BUSY_OK))
49 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
50
51 if ((nr_blocks * min_bs) < io_u->buflen)
52 io_u->buflen = nr_blocks * min_bs;
53}
54
55static uint64_t last_block(struct thread_data *td, struct fio_file *f,
56 enum fio_ddir ddir)
57{
58 uint64_t max_blocks;
59 uint64_t max_size;
60
61 assert(ddir_rw(ddir));
62
63 /*
64 * Hmm, should we make sure that ->io_size <= ->real_file_size?
65 */
66 max_size = f->io_size;
67 if (max_size > f->real_file_size)
68 max_size = f->real_file_size;
69
70 if (td->o.zone_range)
71 max_size = td->o.zone_range;
72
73 if (td->o.min_bs[ddir] > td->o.ba[ddir])
74 max_size -= td->o.min_bs[ddir] - td->o.ba[ddir];
75
76 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
77 if (!max_blocks)
78 return 0;
79
80 return max_blocks;
81}
82
83struct rand_off {
84 struct flist_head list;
85 uint64_t off;
86};
87
88static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
89 enum fio_ddir ddir, uint64_t *b,
90 uint64_t lastb)
91{
92 uint64_t r;
93
94 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
95 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64) {
96
97 r = __rand(&td->random_state);
98
99 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
100
101 *b = lastb * (r / (rand_max(&td->random_state) + 1.0));
102 } else {
103 uint64_t off = 0;
104
105 assert(fio_file_lfsr(f));
106
107 if (lfsr_next(&f->lfsr, &off))
108 return 1;
109
110 *b = off;
111 }
112
113 /*
114 * if we are not maintaining a random map, we are done.
115 */
116 if (!file_randommap(td, f))
117 goto ret;
118
119 /*
120 * calculate map offset and check if it's free
121 */
122 if (random_map_free(f, *b))
123 goto ret;
124
125 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
126 (unsigned long long) *b);
127
128 *b = axmap_next_free(f->io_axmap, *b);
129 if (*b == (uint64_t) -1ULL)
130 return 1;
131ret:
132 return 0;
133}
134
135static int __get_next_rand_offset_zipf(struct thread_data *td,
136 struct fio_file *f, enum fio_ddir ddir,
137 uint64_t *b)
138{
139 *b = zipf_next(&f->zipf);
140 return 0;
141}
142
143static int __get_next_rand_offset_pareto(struct thread_data *td,
144 struct fio_file *f, enum fio_ddir ddir,
145 uint64_t *b)
146{
147 *b = pareto_next(&f->zipf);
148 return 0;
149}
150
151static int __get_next_rand_offset_gauss(struct thread_data *td,
152 struct fio_file *f, enum fio_ddir ddir,
153 uint64_t *b)
154{
155 *b = gauss_next(&f->gauss);
156 return 0;
157}
158
159static int __get_next_rand_offset_zoned(struct thread_data *td,
160 struct fio_file *f, enum fio_ddir ddir,
161 uint64_t *b)
162{
163 unsigned int v, send, stotal;
164 uint64_t offset, lastb;
165 static int warned;
166 struct zone_split_index *zsi;
167
168 lastb = last_block(td, f, ddir);
169 if (!lastb)
170 return 1;
171
172 if (!td->o.zone_split_nr[ddir]) {
173bail:
174 return __get_next_rand_offset(td, f, ddir, b, lastb);
175 }
176
177 /*
178 * Generate a value, v, between 1 and 100, both inclusive
179 */
180 v = rand32_between(&td->zone_state, 1, 100);
181
182 zsi = &td->zone_state_index[ddir][v - 1];
183 stotal = zsi->size_perc_prev;
184 send = zsi->size_perc;
185
186 /*
187 * Should never happen
188 */
189 if (send == -1U) {
190 if (!warned) {
191 log_err("fio: bug in zoned generation\n");
192 warned = 1;
193 }
194 goto bail;
195 }
196
197 /*
198 * 'send' is some percentage below or equal to 100 that
199 * marks the end of the current IO range. 'stotal' marks
200 * the start, in percent.
201 */
202 if (stotal)
203 offset = stotal * lastb / 100ULL;
204 else
205 offset = 0;
206
207 lastb = lastb * (send - stotal) / 100ULL;
208
209 /*
210 * Generate index from 0..send-of-lastb
211 */
212 if (__get_next_rand_offset(td, f, ddir, b, lastb) == 1)
213 return 1;
214
215 /*
216 * Add our start offset, if any
217 */
218 if (offset)
219 *b += offset;
220
221 return 0;
222}
223
224static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
225{
226 struct rand_off *r1 = flist_entry(a, struct rand_off, list);
227 struct rand_off *r2 = flist_entry(b, struct rand_off, list);
228
229 return r1->off - r2->off;
230}
231
232static int get_off_from_method(struct thread_data *td, struct fio_file *f,
233 enum fio_ddir ddir, uint64_t *b)
234{
235 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM) {
236 uint64_t lastb;
237
238 lastb = last_block(td, f, ddir);
239 if (!lastb)
240 return 1;
241
242 return __get_next_rand_offset(td, f, ddir, b, lastb);
243 } else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
244 return __get_next_rand_offset_zipf(td, f, ddir, b);
245 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
246 return __get_next_rand_offset_pareto(td, f, ddir, b);
247 else if (td->o.random_distribution == FIO_RAND_DIST_GAUSS)
248 return __get_next_rand_offset_gauss(td, f, ddir, b);
249 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED)
250 return __get_next_rand_offset_zoned(td, f, ddir, b);
251
252 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
253 return 1;
254}
255
256/*
257 * Sort the reads for a verify phase in batches of verifysort_nr, if
258 * specified.
259 */
260static inline bool should_sort_io(struct thread_data *td)
261{
262 if (!td->o.verifysort_nr || !td->o.do_verify)
263 return false;
264 if (!td_random(td))
265 return false;
266 if (td->runstate != TD_VERIFYING)
267 return false;
268 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
269 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64)
270 return false;
271
272 return true;
273}
274
275static bool should_do_random(struct thread_data *td, enum fio_ddir ddir)
276{
277 unsigned int v;
278
279 if (td->o.perc_rand[ddir] == 100)
280 return true;
281
282 v = rand32_between(&td->seq_rand_state[ddir], 1, 100);
283
284 return v <= td->o.perc_rand[ddir];
285}
286
287static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
288 enum fio_ddir ddir, uint64_t *b)
289{
290 struct rand_off *r;
291 int i, ret = 1;
292
293 if (!should_sort_io(td))
294 return get_off_from_method(td, f, ddir, b);
295
296 if (!flist_empty(&td->next_rand_list)) {
297fetch:
298 r = flist_first_entry(&td->next_rand_list, struct rand_off, list);
299 flist_del(&r->list);
300 *b = r->off;
301 free(r);
302 return 0;
303 }
304
305 for (i = 0; i < td->o.verifysort_nr; i++) {
306 r = malloc(sizeof(*r));
307
308 ret = get_off_from_method(td, f, ddir, &r->off);
309 if (ret) {
310 free(r);
311 break;
312 }
313
314 flist_add(&r->list, &td->next_rand_list);
315 }
316
317 if (ret && !i)
318 return ret;
319
320 assert(!flist_empty(&td->next_rand_list));
321 flist_sort(NULL, &td->next_rand_list, flist_cmp);
322 goto fetch;
323}
324
325static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
326 enum fio_ddir ddir, uint64_t *b)
327{
328 if (!get_next_rand_offset(td, f, ddir, b))
329 return 0;
330
331 if (td->o.time_based ||
332 (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)) {
333 fio_file_reset(td, f);
334 if (!get_next_rand_offset(td, f, ddir, b))
335 return 0;
336 }
337
338 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
339 f->file_name, (unsigned long long) f->last_pos[ddir],
340 (unsigned long long) f->real_file_size);
341 return 1;
342}
343
344static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
345 enum fio_ddir ddir, uint64_t *offset)
346{
347 struct thread_options *o = &td->o;
348
349 assert(ddir_rw(ddir));
350
351 if (f->last_pos[ddir] >= f->io_size + get_start_offset(td, f) &&
352 o->time_based) {
353 struct thread_options *o = &td->o;
354 uint64_t io_size = f->io_size + (f->io_size % o->min_bs[ddir]);
355
356 if (io_size > f->last_pos[ddir])
357 f->last_pos[ddir] = 0;
358 else
359 f->last_pos[ddir] = f->last_pos[ddir] - io_size;
360 }
361
362 if (f->last_pos[ddir] < f->real_file_size) {
363 uint64_t pos;
364
365 if (f->last_pos[ddir] == f->file_offset && o->ddir_seq_add < 0) {
366 if (f->real_file_size > f->io_size)
367 f->last_pos[ddir] = f->io_size;
368 else
369 f->last_pos[ddir] = f->real_file_size;
370 }
371
372 pos = f->last_pos[ddir] - f->file_offset;
373 if (pos && o->ddir_seq_add) {
374 pos += o->ddir_seq_add;
375
376 /*
377 * If we reach beyond the end of the file
378 * with holed IO, wrap around to the
379 * beginning again. If we're doing backwards IO,
380 * wrap to the end.
381 */
382 if (pos >= f->real_file_size) {
383 if (o->ddir_seq_add > 0)
384 pos = f->file_offset;
385 else {
386 if (f->real_file_size > f->io_size)
387 pos = f->io_size;
388 else
389 pos = f->real_file_size;
390
391 pos += o->ddir_seq_add;
392 }
393 }
394 }
395
396 *offset = pos;
397 return 0;
398 }
399
400 return 1;
401}
402
403static int get_next_block(struct thread_data *td, struct io_u *io_u,
404 enum fio_ddir ddir, int rw_seq,
405 unsigned int *is_random)
406{
407 struct fio_file *f = io_u->file;
408 uint64_t b, offset;
409 int ret;
410
411 assert(ddir_rw(ddir));
412
413 b = offset = -1ULL;
414
415 if (rw_seq) {
416 if (td_random(td)) {
417 if (should_do_random(td, ddir)) {
418 ret = get_next_rand_block(td, f, ddir, &b);
419 *is_random = 1;
420 } else {
421 *is_random = 0;
422 io_u_set(td, io_u, IO_U_F_BUSY_OK);
423 ret = get_next_seq_offset(td, f, ddir, &offset);
424 if (ret)
425 ret = get_next_rand_block(td, f, ddir, &b);
426 }
427 } else {
428 *is_random = 0;
429 ret = get_next_seq_offset(td, f, ddir, &offset);
430 }
431 } else {
432 io_u_set(td, io_u, IO_U_F_BUSY_OK);
433 *is_random = 0;
434
435 if (td->o.rw_seq == RW_SEQ_SEQ) {
436 ret = get_next_seq_offset(td, f, ddir, &offset);
437 if (ret) {
438 ret = get_next_rand_block(td, f, ddir, &b);
439 *is_random = 0;
440 }
441 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
442 if (f->last_start[ddir] != -1ULL)
443 offset = f->last_start[ddir] - f->file_offset;
444 else
445 offset = 0;
446 ret = 0;
447 } else {
448 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
449 ret = 1;
450 }
451 }
452
453 if (!ret) {
454 if (offset != -1ULL)
455 io_u->offset = offset;
456 else if (b != -1ULL)
457 io_u->offset = b * td->o.ba[ddir];
458 else {
459 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
460 ret = 1;
461 }
462 }
463
464 return ret;
465}
466
467/*
468 * For random io, generate a random new block and see if it's used. Repeat
469 * until we find a free one. For sequential io, just return the end of
470 * the last io issued.
471 */
472static int __get_next_offset(struct thread_data *td, struct io_u *io_u,
473 unsigned int *is_random)
474{
475 struct fio_file *f = io_u->file;
476 enum fio_ddir ddir = io_u->ddir;
477 int rw_seq_hit = 0;
478
479 assert(ddir_rw(ddir));
480
481 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
482 rw_seq_hit = 1;
483 td->ddir_seq_nr = td->o.ddir_seq_nr;
484 }
485
486 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
487 return 1;
488
489 if (io_u->offset >= f->io_size) {
490 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
491 (unsigned long long) io_u->offset,
492 (unsigned long long) f->io_size);
493 return 1;
494 }
495
496 io_u->offset += f->file_offset;
497 if (io_u->offset >= f->real_file_size) {
498 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
499 (unsigned long long) io_u->offset,
500 (unsigned long long) f->real_file_size);
501 return 1;
502 }
503
504 return 0;
505}
506
507static int get_next_offset(struct thread_data *td, struct io_u *io_u,
508 unsigned int *is_random)
509{
510 if (td->flags & TD_F_PROFILE_OPS) {
511 struct prof_io_ops *ops = &td->prof_io_ops;
512
513 if (ops->fill_io_u_off)
514 return ops->fill_io_u_off(td, io_u, is_random);
515 }
516
517 return __get_next_offset(td, io_u, is_random);
518}
519
520static inline bool io_u_fits(struct thread_data *td, struct io_u *io_u,
521 unsigned int buflen)
522{
523 struct fio_file *f = io_u->file;
524
525 return io_u->offset + buflen <= f->io_size + get_start_offset(td, f);
526}
527
528static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u,
529 unsigned int is_random)
530{
531 int ddir = io_u->ddir;
532 unsigned int buflen = 0;
533 unsigned int minbs, maxbs;
534 uint64_t frand_max, r;
535
536 assert(ddir_rw(ddir));
537
538 if (td->o.bs_is_seq_rand)
539 ddir = is_random ? DDIR_WRITE: DDIR_READ;
540
541 minbs = td->o.min_bs[ddir];
542 maxbs = td->o.max_bs[ddir];
543
544 if (minbs == maxbs)
545 return minbs;
546
547 /*
548 * If we can't satisfy the min block size from here, then fail
549 */
550 if (!io_u_fits(td, io_u, minbs))
551 return 0;
552
553 frand_max = rand_max(&td->bsrange_state);
554 do {
555 r = __rand(&td->bsrange_state);
556
557 if (!td->o.bssplit_nr[ddir]) {
558 buflen = 1 + (unsigned int) ((double) maxbs *
559 (r / (frand_max + 1.0)));
560 if (buflen < minbs)
561 buflen = minbs;
562 } else {
563 long long perc = 0;
564 unsigned int i;
565
566 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
567 struct bssplit *bsp = &td->o.bssplit[ddir][i];
568
569 buflen = bsp->bs;
570 perc += bsp->perc;
571 if (!perc)
572 break;
573 if ((r / perc <= frand_max / 100ULL) &&
574 io_u_fits(td, io_u, buflen))
575 break;
576 }
577 }
578
579 if (!td->o.bs_unaligned && is_power_of_2(minbs))
580 buflen &= ~(minbs - 1);
581
582 } while (!io_u_fits(td, io_u, buflen));
583
584 return buflen;
585}
586
587static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u,
588 unsigned int is_random)
589{
590 if (td->flags & TD_F_PROFILE_OPS) {
591 struct prof_io_ops *ops = &td->prof_io_ops;
592
593 if (ops->fill_io_u_size)
594 return ops->fill_io_u_size(td, io_u, is_random);
595 }
596
597 return __get_next_buflen(td, io_u, is_random);
598}
599
600static void set_rwmix_bytes(struct thread_data *td)
601{
602 unsigned int diff;
603
604 /*
605 * we do time or byte based switch. this is needed because
606 * buffered writes may issue a lot quicker than they complete,
607 * whereas reads do not.
608 */
609 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
610 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
611}
612
613static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
614{
615 unsigned int v;
616
617 v = rand32_between(&td->rwmix_state, 1, 100);
618
619 if (v <= td->o.rwmix[DDIR_READ])
620 return DDIR_READ;
621
622 return DDIR_WRITE;
623}
624
625int io_u_quiesce(struct thread_data *td)
626{
627 int completed = 0;
628
629 /*
630 * We are going to sleep, ensure that we flush anything pending as
631 * not to skew our latency numbers.
632 *
633 * Changed to only monitor 'in flight' requests here instead of the
634 * td->cur_depth, b/c td->cur_depth does not accurately represent
635 * io's that have been actually submitted to an async engine,
636 * and cur_depth is meaningless for sync engines.
637 */
638 if (td->io_u_queued || td->cur_depth) {
639 int fio_unused ret;
640
641 ret = td_io_commit(td);
642 }
643
644 while (td->io_u_in_flight) {
645 int fio_unused ret;
646
647 ret = io_u_queued_complete(td, 1);
648 if (ret > 0)
649 completed += ret;
650 }
651
652 if (td->flags & TD_F_REGROW_LOGS)
653 regrow_logs(td);
654
655 return completed;
656}
657
658static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
659{
660 enum fio_ddir odir = ddir ^ 1;
661 long usec;
662 uint64_t now;
663
664 assert(ddir_rw(ddir));
665 now = utime_since_now(&td->start);
666
667 /*
668 * if rate_next_io_time is in the past, need to catch up to rate
669 */
670 if (td->rate_next_io_time[ddir] <= now)
671 return ddir;
672
673 /*
674 * We are ahead of rate in this direction. See if we
675 * should switch.
676 */
677 if (td_rw(td) && td->o.rwmix[odir]) {
678 /*
679 * Other direction is behind rate, switch
680 */
681 if (td->rate_next_io_time[odir] <= now)
682 return odir;
683
684 /*
685 * Both directions are ahead of rate. sleep the min
686 * switch if necissary
687 */
688 if (td->rate_next_io_time[ddir] <=
689 td->rate_next_io_time[odir]) {
690 usec = td->rate_next_io_time[ddir] - now;
691 } else {
692 usec = td->rate_next_io_time[odir] - now;
693 ddir = odir;
694 }
695 } else
696 usec = td->rate_next_io_time[ddir] - now;
697
698 if (td->o.io_submit_mode == IO_MODE_INLINE)
699 io_u_quiesce(td);
700
701 usec = usec_sleep(td, usec);
702
703 return ddir;
704}
705
706/*
707 * Return the data direction for the next io_u. If the job is a
708 * mixed read/write workload, check the rwmix cycle and switch if
709 * necessary.
710 */
711static enum fio_ddir get_rw_ddir(struct thread_data *td)
712{
713 enum fio_ddir ddir;
714
715 /*
716 * see if it's time to fsync
717 */
718 if (td->o.fsync_blocks &&
719 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
720 td->io_issues[DDIR_WRITE] && should_fsync(td))
721 return DDIR_SYNC;
722
723 /*
724 * see if it's time to fdatasync
725 */
726 if (td->o.fdatasync_blocks &&
727 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) &&
728 td->io_issues[DDIR_WRITE] && should_fsync(td))
729 return DDIR_DATASYNC;
730
731 /*
732 * see if it's time to sync_file_range
733 */
734 if (td->sync_file_range_nr &&
735 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) &&
736 td->io_issues[DDIR_WRITE] && should_fsync(td))
737 return DDIR_SYNC_FILE_RANGE;
738
739 if (td_rw(td)) {
740 /*
741 * Check if it's time to seed a new data direction.
742 */
743 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
744 /*
745 * Put a top limit on how many bytes we do for
746 * one data direction, to avoid overflowing the
747 * ranges too much
748 */
749 ddir = get_rand_ddir(td);
750
751 if (ddir != td->rwmix_ddir)
752 set_rwmix_bytes(td);
753
754 td->rwmix_ddir = ddir;
755 }
756 ddir = td->rwmix_ddir;
757 } else if (td_read(td))
758 ddir = DDIR_READ;
759 else if (td_write(td))
760 ddir = DDIR_WRITE;
761 else if (td_trim(td))
762 ddir = DDIR_TRIM;
763 else
764 ddir = DDIR_INVAL;
765
766 td->rwmix_ddir = rate_ddir(td, ddir);
767 return td->rwmix_ddir;
768}
769
770static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
771{
772 enum fio_ddir ddir = get_rw_ddir(td);
773
774 if (td_trimwrite(td)) {
775 struct fio_file *f = io_u->file;
776 if (f->last_pos[DDIR_WRITE] == f->last_pos[DDIR_TRIM])
777 ddir = DDIR_TRIM;
778 else
779 ddir = DDIR_WRITE;
780 }
781
782 io_u->ddir = io_u->acct_ddir = ddir;
783
784 if (io_u->ddir == DDIR_WRITE && td_ioengine_flagged(td, FIO_BARRIER) &&
785 td->o.barrier_blocks &&
786 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
787 td->io_issues[DDIR_WRITE])
788 io_u_set(td, io_u, IO_U_F_BARRIER);
789}
790
791void put_file_log(struct thread_data *td, struct fio_file *f)
792{
793 unsigned int ret = put_file(td, f);
794
795 if (ret)
796 td_verror(td, ret, "file close");
797}
798
799void put_io_u(struct thread_data *td, struct io_u *io_u)
800{
801 if (td->parent)
802 td = td->parent;
803
804 td_io_u_lock(td);
805
806 if (io_u->file && !(io_u->flags & IO_U_F_NO_FILE_PUT))
807 put_file_log(td, io_u->file);
808
809 io_u->file = NULL;
810 io_u_set(td, io_u, IO_U_F_FREE);
811
812 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) {
813 td->cur_depth--;
814 assert(!(td->flags & TD_F_CHILD));
815 }
816 io_u_qpush(&td->io_u_freelist, io_u);
817 td_io_u_unlock(td);
818 td_io_u_free_notify(td);
819}
820
821void clear_io_u(struct thread_data *td, struct io_u *io_u)
822{
823 io_u_clear(td, io_u, IO_U_F_FLIGHT);
824 put_io_u(td, io_u);
825}
826
827void requeue_io_u(struct thread_data *td, struct io_u **io_u)
828{
829 struct io_u *__io_u = *io_u;
830 enum fio_ddir ddir = acct_ddir(__io_u);
831
832 dprint(FD_IO, "requeue %p\n", __io_u);
833
834 if (td->parent)
835 td = td->parent;
836
837 td_io_u_lock(td);
838
839 io_u_set(td, __io_u, IO_U_F_FREE);
840 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
841 td->io_issues[ddir]--;
842
843 io_u_clear(td, __io_u, IO_U_F_FLIGHT);
844 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) {
845 td->cur_depth--;
846 assert(!(td->flags & TD_F_CHILD));
847 }
848
849 io_u_rpush(&td->io_u_requeues, __io_u);
850 td_io_u_unlock(td);
851 td_io_u_free_notify(td);
852 *io_u = NULL;
853}
854
855static int fill_io_u(struct thread_data *td, struct io_u *io_u)
856{
857 unsigned int is_random;
858
859 if (td_ioengine_flagged(td, FIO_NOIO))
860 goto out;
861
862 set_rw_ddir(td, io_u);
863
864 /*
865 * fsync() or fdatasync() or trim etc, we are done
866 */
867 if (!ddir_rw(io_u->ddir))
868 goto out;
869
870 /*
871 * See if it's time to switch to a new zone
872 */
873 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
874 struct fio_file *f = io_u->file;
875
876 td->zone_bytes = 0;
877 f->file_offset += td->o.zone_range + td->o.zone_skip;
878
879 /*
880 * Wrap from the beginning, if we exceed the file size
881 */
882 if (f->file_offset >= f->real_file_size)
883 f->file_offset = f->real_file_size - f->file_offset;
884 f->last_pos[io_u->ddir] = f->file_offset;
885 td->io_skip_bytes += td->o.zone_skip;
886 }
887
888 /*
889 * No log, let the seq/rand engine retrieve the next buflen and
890 * position.
891 */
892 if (get_next_offset(td, io_u, &is_random)) {
893 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
894 return 1;
895 }
896
897 io_u->buflen = get_next_buflen(td, io_u, is_random);
898 if (!io_u->buflen) {
899 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
900 return 1;
901 }
902
903 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
904 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
905 dprint(FD_IO, " off=%llu/%lu > %llu\n",
906 (unsigned long long) io_u->offset, io_u->buflen,
907 (unsigned long long) io_u->file->real_file_size);
908 return 1;
909 }
910
911 /*
912 * mark entry before potentially trimming io_u
913 */
914 if (td_random(td) && file_randommap(td, io_u->file))
915 mark_random_map(td, io_u);
916
917out:
918 dprint_io_u(io_u, "fill_io_u");
919 td->zone_bytes += io_u->buflen;
920 return 0;
921}
922
923static void __io_u_mark_map(unsigned int *map, unsigned int nr)
924{
925 int idx = 0;
926
927 switch (nr) {
928 default:
929 idx = 6;
930 break;
931 case 33 ... 64:
932 idx = 5;
933 break;
934 case 17 ... 32:
935 idx = 4;
936 break;
937 case 9 ... 16:
938 idx = 3;
939 break;
940 case 5 ... 8:
941 idx = 2;
942 break;
943 case 1 ... 4:
944 idx = 1;
945 case 0:
946 break;
947 }
948
949 map[idx]++;
950}
951
952void io_u_mark_submit(struct thread_data *td, unsigned int nr)
953{
954 __io_u_mark_map(td->ts.io_u_submit, nr);
955 td->ts.total_submit++;
956}
957
958void io_u_mark_complete(struct thread_data *td, unsigned int nr)
959{
960 __io_u_mark_map(td->ts.io_u_complete, nr);
961 td->ts.total_complete++;
962}
963
964void io_u_mark_depth(struct thread_data *td, unsigned int nr)
965{
966 int idx = 0;
967
968 switch (td->cur_depth) {
969 default:
970 idx = 6;
971 break;
972 case 32 ... 63:
973 idx = 5;
974 break;
975 case 16 ... 31:
976 idx = 4;
977 break;
978 case 8 ... 15:
979 idx = 3;
980 break;
981 case 4 ... 7:
982 idx = 2;
983 break;
984 case 2 ... 3:
985 idx = 1;
986 case 1:
987 break;
988 }
989
990 td->ts.io_u_map[idx] += nr;
991}
992
993static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
994{
995 int idx = 0;
996
997 assert(usec < 1000);
998
999 switch (usec) {
1000 case 750 ... 999:
1001 idx = 9;
1002 break;
1003 case 500 ... 749:
1004 idx = 8;
1005 break;
1006 case 250 ... 499:
1007 idx = 7;
1008 break;
1009 case 100 ... 249:
1010 idx = 6;
1011 break;
1012 case 50 ... 99:
1013 idx = 5;
1014 break;
1015 case 20 ... 49:
1016 idx = 4;
1017 break;
1018 case 10 ... 19:
1019 idx = 3;
1020 break;
1021 case 4 ... 9:
1022 idx = 2;
1023 break;
1024 case 2 ... 3:
1025 idx = 1;
1026 case 0 ... 1:
1027 break;
1028 }
1029
1030 assert(idx < FIO_IO_U_LAT_U_NR);
1031 td->ts.io_u_lat_u[idx]++;
1032}
1033
1034static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
1035{
1036 int idx = 0;
1037
1038 switch (msec) {
1039 default:
1040 idx = 11;
1041 break;
1042 case 1000 ... 1999:
1043 idx = 10;
1044 break;
1045 case 750 ... 999:
1046 idx = 9;
1047 break;
1048 case 500 ... 749:
1049 idx = 8;
1050 break;
1051 case 250 ... 499:
1052 idx = 7;
1053 break;
1054 case 100 ... 249:
1055 idx = 6;
1056 break;
1057 case 50 ... 99:
1058 idx = 5;
1059 break;
1060 case 20 ... 49:
1061 idx = 4;
1062 break;
1063 case 10 ... 19:
1064 idx = 3;
1065 break;
1066 case 4 ... 9:
1067 idx = 2;
1068 break;
1069 case 2 ... 3:
1070 idx = 1;
1071 case 0 ... 1:
1072 break;
1073 }
1074
1075 assert(idx < FIO_IO_U_LAT_M_NR);
1076 td->ts.io_u_lat_m[idx]++;
1077}
1078
1079static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
1080{
1081 if (usec < 1000)
1082 io_u_mark_lat_usec(td, usec);
1083 else
1084 io_u_mark_lat_msec(td, usec / 1000);
1085}
1086
1087static unsigned int __get_next_fileno_rand(struct thread_data *td)
1088{
1089 unsigned long fileno;
1090
1091 if (td->o.file_service_type == FIO_FSERVICE_RANDOM) {
1092 uint64_t frand_max = rand_max(&td->next_file_state);
1093 unsigned long r;
1094
1095 r = __rand(&td->next_file_state);
1096 return (unsigned int) ((double) td->o.nr_files
1097 * (r / (frand_max + 1.0)));
1098 }
1099
1100 if (td->o.file_service_type == FIO_FSERVICE_ZIPF)
1101 fileno = zipf_next(&td->next_file_zipf);
1102 else if (td->o.file_service_type == FIO_FSERVICE_PARETO)
1103 fileno = pareto_next(&td->next_file_zipf);
1104 else if (td->o.file_service_type == FIO_FSERVICE_GAUSS)
1105 fileno = gauss_next(&td->next_file_gauss);
1106 else {
1107 log_err("fio: bad file service type: %d\n", td->o.file_service_type);
1108 assert(0);
1109 return 0;
1110 }
1111
1112 return fileno >> FIO_FSERVICE_SHIFT;
1113}
1114
1115/*
1116 * Get next file to service by choosing one at random
1117 */
1118static struct fio_file *get_next_file_rand(struct thread_data *td,
1119 enum fio_file_flags goodf,
1120 enum fio_file_flags badf)
1121{
1122 struct fio_file *f;
1123 int fno;
1124
1125 do {
1126 int opened = 0;
1127
1128 fno = __get_next_fileno_rand(td);
1129
1130 f = td->files[fno];
1131 if (fio_file_done(f))
1132 continue;
1133
1134 if (!fio_file_open(f)) {
1135 int err;
1136
1137 if (td->nr_open_files >= td->o.open_files)
1138 return ERR_PTR(-EBUSY);
1139
1140 err = td_io_open_file(td, f);
1141 if (err)
1142 continue;
1143 opened = 1;
1144 }
1145
1146 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
1147 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
1148 return f;
1149 }
1150 if (opened)
1151 td_io_close_file(td, f);
1152 } while (1);
1153}
1154
1155/*
1156 * Get next file to service by doing round robin between all available ones
1157 */
1158static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
1159 int badf)
1160{
1161 unsigned int old_next_file = td->next_file;
1162 struct fio_file *f;
1163
1164 do {
1165 int opened = 0;
1166
1167 f = td->files[td->next_file];
1168
1169 td->next_file++;
1170 if (td->next_file >= td->o.nr_files)
1171 td->next_file = 0;
1172
1173 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
1174 if (fio_file_done(f)) {
1175 f = NULL;
1176 continue;
1177 }
1178
1179 if (!fio_file_open(f)) {
1180 int err;
1181
1182 if (td->nr_open_files >= td->o.open_files)
1183 return ERR_PTR(-EBUSY);
1184
1185 err = td_io_open_file(td, f);
1186 if (err) {
1187 dprint(FD_FILE, "error %d on open of %s\n",
1188 err, f->file_name);
1189 f = NULL;
1190 continue;
1191 }
1192 opened = 1;
1193 }
1194
1195 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1196 f->flags);
1197 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1198 break;
1199
1200 if (opened)
1201 td_io_close_file(td, f);
1202
1203 f = NULL;
1204 } while (td->next_file != old_next_file);
1205
1206 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1207 return f;
1208}
1209
1210static struct fio_file *__get_next_file(struct thread_data *td)
1211{
1212 struct fio_file *f;
1213
1214 assert(td->o.nr_files <= td->files_index);
1215
1216 if (td->nr_done_files >= td->o.nr_files) {
1217 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1218 " nr_files=%d\n", td->nr_open_files,
1219 td->nr_done_files,
1220 td->o.nr_files);
1221 return NULL;
1222 }
1223
1224 f = td->file_service_file;
1225 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1226 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1227 goto out;
1228 if (td->file_service_left--)
1229 goto out;
1230 }
1231
1232 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1233 td->o.file_service_type == FIO_FSERVICE_SEQ)
1234 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1235 else
1236 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1237
1238 if (IS_ERR(f))
1239 return f;
1240
1241 td->file_service_file = f;
1242 td->file_service_left = td->file_service_nr - 1;
1243out:
1244 if (f)
1245 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1246 else
1247 dprint(FD_FILE, "get_next_file: NULL\n");
1248 return f;
1249}
1250
1251static struct fio_file *get_next_file(struct thread_data *td)
1252{
1253 if (td->flags & TD_F_PROFILE_OPS) {
1254 struct prof_io_ops *ops = &td->prof_io_ops;
1255
1256 if (ops->get_next_file)
1257 return ops->get_next_file(td);
1258 }
1259
1260 return __get_next_file(td);
1261}
1262
1263static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
1264{
1265 struct fio_file *f;
1266
1267 do {
1268 f = get_next_file(td);
1269 if (IS_ERR_OR_NULL(f))
1270 return PTR_ERR(f);
1271
1272 io_u->file = f;
1273 get_file(f);
1274
1275 if (!fill_io_u(td, io_u))
1276 break;
1277
1278 put_file_log(td, f);
1279 td_io_close_file(td, f);
1280 io_u->file = NULL;
1281 if (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)
1282 fio_file_reset(td, f);
1283 else {
1284 fio_file_set_done(f);
1285 td->nr_done_files++;
1286 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1287 td->nr_done_files, td->o.nr_files);
1288 }
1289 } while (1);
1290
1291 return 0;
1292}
1293
1294static void lat_fatal(struct thread_data *td, struct io_completion_data *icd,
1295 unsigned long tusec, unsigned long max_usec)
1296{
1297 if (!td->error)
1298 log_err("fio: latency of %lu usec exceeds specified max (%lu usec)\n", tusec, max_usec);
1299 td_verror(td, ETIMEDOUT, "max latency exceeded");
1300 icd->error = ETIMEDOUT;
1301}
1302
1303static void lat_new_cycle(struct thread_data *td)
1304{
1305 fio_gettime(&td->latency_ts, NULL);
1306 td->latency_ios = ddir_rw_sum(td->io_blocks);
1307 td->latency_failed = 0;
1308}
1309
1310/*
1311 * We had an IO outside the latency target. Reduce the queue depth. If we
1312 * are at QD=1, then it's time to give up.
1313 */
1314static bool __lat_target_failed(struct thread_data *td)
1315{
1316 if (td->latency_qd == 1)
1317 return true;
1318
1319 td->latency_qd_high = td->latency_qd;
1320
1321 if (td->latency_qd == td->latency_qd_low)
1322 td->latency_qd_low--;
1323
1324 td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
1325
1326 dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1327
1328 /*
1329 * When we ramp QD down, quiesce existing IO to prevent
1330 * a storm of ramp downs due to pending higher depth.
1331 */
1332 io_u_quiesce(td);
1333 lat_new_cycle(td);
1334 return false;
1335}
1336
1337static bool lat_target_failed(struct thread_data *td)
1338{
1339 if (td->o.latency_percentile.u.f == 100.0)
1340 return __lat_target_failed(td);
1341
1342 td->latency_failed++;
1343 return false;
1344}
1345
1346void lat_target_init(struct thread_data *td)
1347{
1348 td->latency_end_run = 0;
1349
1350 if (td->o.latency_target) {
1351 dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
1352 fio_gettime(&td->latency_ts, NULL);
1353 td->latency_qd = 1;
1354 td->latency_qd_high = td->o.iodepth;
1355 td->latency_qd_low = 1;
1356 td->latency_ios = ddir_rw_sum(td->io_blocks);
1357 } else
1358 td->latency_qd = td->o.iodepth;
1359}
1360
1361void lat_target_reset(struct thread_data *td)
1362{
1363 if (!td->latency_end_run)
1364 lat_target_init(td);
1365}
1366
1367static void lat_target_success(struct thread_data *td)
1368{
1369 const unsigned int qd = td->latency_qd;
1370 struct thread_options *o = &td->o;
1371
1372 td->latency_qd_low = td->latency_qd;
1373
1374 /*
1375 * If we haven't failed yet, we double up to a failing value instead
1376 * of bisecting from highest possible queue depth. If we have set
1377 * a limit other than td->o.iodepth, bisect between that.
1378 */
1379 if (td->latency_qd_high != o->iodepth)
1380 td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
1381 else
1382 td->latency_qd *= 2;
1383
1384 if (td->latency_qd > o->iodepth)
1385 td->latency_qd = o->iodepth;
1386
1387 dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1388
1389 /*
1390 * Same as last one, we are done. Let it run a latency cycle, so
1391 * we get only the results from the targeted depth.
1392 */
1393 if (td->latency_qd == qd) {
1394 if (td->latency_end_run) {
1395 dprint(FD_RATE, "We are done\n");
1396 td->done = 1;
1397 } else {
1398 dprint(FD_RATE, "Quiesce and final run\n");
1399 io_u_quiesce(td);
1400 td->latency_end_run = 1;
1401 reset_all_stats(td);
1402 reset_io_stats(td);
1403 }
1404 }
1405
1406 lat_new_cycle(td);
1407}
1408
1409/*
1410 * Check if we can bump the queue depth
1411 */
1412void lat_target_check(struct thread_data *td)
1413{
1414 uint64_t usec_window;
1415 uint64_t ios;
1416 double success_ios;
1417
1418 usec_window = utime_since_now(&td->latency_ts);
1419 if (usec_window < td->o.latency_window)
1420 return;
1421
1422 ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
1423 success_ios = (double) (ios - td->latency_failed) / (double) ios;
1424 success_ios *= 100.0;
1425
1426 dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
1427
1428 if (success_ios >= td->o.latency_percentile.u.f)
1429 lat_target_success(td);
1430 else
1431 __lat_target_failed(td);
1432}
1433
1434/*
1435 * If latency target is enabled, we might be ramping up or down and not
1436 * using the full queue depth available.
1437 */
1438bool queue_full(const struct thread_data *td)
1439{
1440 const int qempty = io_u_qempty(&td->io_u_freelist);
1441
1442 if (qempty)
1443 return true;
1444 if (!td->o.latency_target)
1445 return false;
1446
1447 return td->cur_depth >= td->latency_qd;
1448}
1449
1450struct io_u *__get_io_u(struct thread_data *td)
1451{
1452 struct io_u *io_u = NULL;
1453
1454 if (td->stop_io)
1455 return NULL;
1456
1457 td_io_u_lock(td);
1458
1459again:
1460 if (!io_u_rempty(&td->io_u_requeues))
1461 io_u = io_u_rpop(&td->io_u_requeues);
1462 else if (!queue_full(td)) {
1463 io_u = io_u_qpop(&td->io_u_freelist);
1464
1465 io_u->file = NULL;
1466 io_u->buflen = 0;
1467 io_u->resid = 0;
1468 io_u->end_io = NULL;
1469 }
1470
1471 if (io_u) {
1472 assert(io_u->flags & IO_U_F_FREE);
1473 io_u_clear(td, io_u, IO_U_F_FREE | IO_U_F_NO_FILE_PUT |
1474 IO_U_F_TRIMMED | IO_U_F_BARRIER |
1475 IO_U_F_VER_LIST);
1476
1477 io_u->error = 0;
1478 io_u->acct_ddir = -1;
1479 td->cur_depth++;
1480 assert(!(td->flags & TD_F_CHILD));
1481 io_u_set(td, io_u, IO_U_F_IN_CUR_DEPTH);
1482 io_u->ipo = NULL;
1483 } else if (td_async_processing(td)) {
1484 /*
1485 * We ran out, wait for async verify threads to finish and
1486 * return one
1487 */
1488 assert(!(td->flags & TD_F_CHILD));
1489 assert(!pthread_cond_wait(&td->free_cond, &td->io_u_lock));
1490 goto again;
1491 }
1492
1493 td_io_u_unlock(td);
1494 return io_u;
1495}
1496
1497static bool check_get_trim(struct thread_data *td, struct io_u *io_u)
1498{
1499 if (!(td->flags & TD_F_TRIM_BACKLOG))
1500 return false;
1501
1502 if (td->trim_entries) {
1503 int get_trim = 0;
1504
1505 if (td->trim_batch) {
1506 td->trim_batch--;
1507 get_trim = 1;
1508 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1509 td->last_ddir != DDIR_READ) {
1510 td->trim_batch = td->o.trim_batch;
1511 if (!td->trim_batch)
1512 td->trim_batch = td->o.trim_backlog;
1513 get_trim = 1;
1514 }
1515
1516 if (get_trim && get_next_trim(td, io_u))
1517 return true;
1518 }
1519
1520 return false;
1521}
1522
1523static bool check_get_verify(struct thread_data *td, struct io_u *io_u)
1524{
1525 if (!(td->flags & TD_F_VER_BACKLOG))
1526 return false;
1527
1528 if (td->io_hist_len) {
1529 int get_verify = 0;
1530
1531 if (td->verify_batch)
1532 get_verify = 1;
1533 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1534 td->last_ddir != DDIR_READ) {
1535 td->verify_batch = td->o.verify_batch;
1536 if (!td->verify_batch)
1537 td->verify_batch = td->o.verify_backlog;
1538 get_verify = 1;
1539 }
1540
1541 if (get_verify && !get_next_verify(td, io_u)) {
1542 td->verify_batch--;
1543 return true;
1544 }
1545 }
1546
1547 return false;
1548}
1549
1550/*
1551 * Fill offset and start time into the buffer content, to prevent too
1552 * easy compressible data for simple de-dupe attempts. Do this for every
1553 * 512b block in the range, since that should be the smallest block size
1554 * we can expect from a device.
1555 */
1556static void small_content_scramble(struct io_u *io_u)
1557{
1558 unsigned int i, nr_blocks = io_u->buflen / 512;
1559 uint64_t boffset;
1560 unsigned int offset;
1561 void *p, *end;
1562
1563 if (!nr_blocks)
1564 return;
1565
1566 p = io_u->xfer_buf;
1567 boffset = io_u->offset;
1568 io_u->buf_filled_len = 0;
1569
1570 for (i = 0; i < nr_blocks; i++) {
1571 /*
1572 * Fill the byte offset into a "random" start offset of
1573 * the buffer, given by the product of the usec time
1574 * and the actual offset.
1575 */
1576 offset = (io_u->start_time.tv_usec ^ boffset) & 511;
1577 offset &= ~(sizeof(uint64_t) - 1);
1578 if (offset >= 512 - sizeof(uint64_t))
1579 offset -= sizeof(uint64_t);
1580 memcpy(p + offset, &boffset, sizeof(boffset));
1581
1582 end = p + 512 - sizeof(io_u->start_time);
1583 memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
1584 p += 512;
1585 boffset += 512;
1586 }
1587}
1588
1589/*
1590 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1591 * etc. The returned io_u is fully ready to be prepped and submitted.
1592 */
1593struct io_u *get_io_u(struct thread_data *td)
1594{
1595 struct fio_file *f;
1596 struct io_u *io_u;
1597 int do_scramble = 0;
1598 long ret = 0;
1599
1600 io_u = __get_io_u(td);
1601 if (!io_u) {
1602 dprint(FD_IO, "__get_io_u failed\n");
1603 return NULL;
1604 }
1605
1606 if (check_get_verify(td, io_u))
1607 goto out;
1608 if (check_get_trim(td, io_u))
1609 goto out;
1610
1611 /*
1612 * from a requeue, io_u already setup
1613 */
1614 if (io_u->file)
1615 goto out;
1616
1617 /*
1618 * If using an iolog, grab next piece if any available.
1619 */
1620 if (td->flags & TD_F_READ_IOLOG) {
1621 if (read_iolog_get(td, io_u))
1622 goto err_put;
1623 } else if (set_io_u_file(td, io_u)) {
1624 ret = -EBUSY;
1625 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1626 goto err_put;
1627 }
1628
1629 f = io_u->file;
1630 if (!f) {
1631 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1632 goto err_put;
1633 }
1634
1635 assert(fio_file_open(f));
1636
1637 if (ddir_rw(io_u->ddir)) {
1638 if (!io_u->buflen && !td_ioengine_flagged(td, FIO_NOIO)) {
1639 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1640 goto err_put;
1641 }
1642
1643 f->last_start[io_u->ddir] = io_u->offset;
1644 f->last_pos[io_u->ddir] = io_u->offset + io_u->buflen;
1645
1646 if (io_u->ddir == DDIR_WRITE) {
1647 if (td->flags & TD_F_REFILL_BUFFERS) {
1648 io_u_fill_buffer(td, io_u,
1649 td->o.min_bs[DDIR_WRITE],
1650 io_u->buflen);
1651 } else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) &&
1652 !(td->flags & TD_F_COMPRESS))
1653 do_scramble = 1;
1654 if (td->flags & TD_F_VER_NONE) {
1655 populate_verify_io_u(td, io_u);
1656 do_scramble = 0;
1657 }
1658 } else if (io_u->ddir == DDIR_READ) {
1659 /*
1660 * Reset the buf_filled parameters so next time if the
1661 * buffer is used for writes it is refilled.
1662 */
1663 io_u->buf_filled_len = 0;
1664 }
1665 }
1666
1667 /*
1668 * Set io data pointers.
1669 */
1670 io_u->xfer_buf = io_u->buf;
1671 io_u->xfer_buflen = io_u->buflen;
1672
1673out:
1674 assert(io_u->file);
1675 if (!td_io_prep(td, io_u)) {
1676 if (!td->o.disable_lat)
1677 fio_gettime(&io_u->start_time, NULL);
1678 if (do_scramble)
1679 small_content_scramble(io_u);
1680 return io_u;
1681 }
1682err_put:
1683 dprint(FD_IO, "get_io_u failed\n");
1684 put_io_u(td, io_u);
1685 return ERR_PTR(ret);
1686}
1687
1688static void __io_u_log_error(struct thread_data *td, struct io_u *io_u)
1689{
1690 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1691
1692 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1693 return;
1694
1695 log_err("fio: io_u error%s%s: %s: %s offset=%llu, buflen=%lu\n",
1696 io_u->file ? " on file " : "",
1697 io_u->file ? io_u->file->file_name : "",
1698 strerror(io_u->error),
1699 io_ddir_name(io_u->ddir),
1700 io_u->offset, io_u->xfer_buflen);
1701
1702 if (td->io_ops->errdetails) {
1703 char *err = td->io_ops->errdetails(io_u);
1704
1705 log_err("fio: %s\n", err);
1706 free(err);
1707 }
1708
1709 if (!td->error)
1710 td_verror(td, io_u->error, "io_u error");
1711}
1712
1713void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1714{
1715 __io_u_log_error(td, io_u);
1716 if (td->parent)
1717 __io_u_log_error(td->parent, io_u);
1718}
1719
1720static inline bool gtod_reduce(struct thread_data *td)
1721{
1722 return (td->o.disable_clat && td->o.disable_slat && td->o.disable_bw)
1723 || td->o.gtod_reduce;
1724}
1725
1726static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1727 struct io_completion_data *icd,
1728 const enum fio_ddir idx, unsigned int bytes)
1729{
1730 const int no_reduce = !gtod_reduce(td);
1731 unsigned long lusec = 0;
1732
1733 if (td->parent)
1734 td = td->parent;
1735
1736 if (no_reduce)
1737 lusec = utime_since(&io_u->issue_time, &icd->time);
1738
1739 if (!td->o.disable_lat) {
1740 unsigned long tusec;
1741
1742 tusec = utime_since(&io_u->start_time, &icd->time);
1743 add_lat_sample(td, idx, tusec, bytes, io_u->offset);
1744
1745 if (td->flags & TD_F_PROFILE_OPS) {
1746 struct prof_io_ops *ops = &td->prof_io_ops;
1747
1748 if (ops->io_u_lat)
1749 icd->error = ops->io_u_lat(td, tusec);
1750 }
1751
1752 if (td->o.max_latency && tusec > td->o.max_latency)
1753 lat_fatal(td, icd, tusec, td->o.max_latency);
1754 if (td->o.latency_target && tusec > td->o.latency_target) {
1755 if (lat_target_failed(td))
1756 lat_fatal(td, icd, tusec, td->o.latency_target);
1757 }
1758 }
1759
1760 if (ddir_rw(idx)) {
1761 if (!td->o.disable_clat) {
1762 add_clat_sample(td, idx, lusec, bytes, io_u->offset);
1763 io_u_mark_latency(td, lusec);
1764 }
1765
1766 if (!td->o.disable_bw && per_unit_log(td->bw_log))
1767 add_bw_sample(td, io_u, bytes, lusec);
1768
1769 if (no_reduce && per_unit_log(td->iops_log))
1770 add_iops_sample(td, io_u, bytes);
1771 }
1772
1773 if (td->ts.nr_block_infos && io_u->ddir == DDIR_TRIM) {
1774 uint32_t *info = io_u_block_info(td, io_u);
1775 if (BLOCK_INFO_STATE(*info) < BLOCK_STATE_TRIM_FAILURE) {
1776 if (io_u->ddir == DDIR_TRIM) {
1777 *info = BLOCK_INFO(BLOCK_STATE_TRIMMED,
1778 BLOCK_INFO_TRIMS(*info) + 1);
1779 } else if (io_u->ddir == DDIR_WRITE) {
1780 *info = BLOCK_INFO_SET_STATE(BLOCK_STATE_WRITTEN,
1781 *info);
1782 }
1783 }
1784 }
1785}
1786
1787static void file_log_write_comp(const struct thread_data *td, struct fio_file *f,
1788 uint64_t offset, unsigned int bytes)
1789{
1790 int idx;
1791
1792 if (!f)
1793 return;
1794
1795 if (f->first_write == -1ULL || offset < f->first_write)
1796 f->first_write = offset;
1797 if (f->last_write == -1ULL || ((offset + bytes) > f->last_write))
1798 f->last_write = offset + bytes;
1799
1800 if (!f->last_write_comp)
1801 return;
1802
1803 idx = f->last_write_idx++;
1804 f->last_write_comp[idx] = offset;
1805 if (f->last_write_idx == td->o.iodepth)
1806 f->last_write_idx = 0;
1807}
1808
1809static void io_completed(struct thread_data *td, struct io_u **io_u_ptr,
1810 struct io_completion_data *icd)
1811{
1812 struct io_u *io_u = *io_u_ptr;
1813 enum fio_ddir ddir = io_u->ddir;
1814 struct fio_file *f = io_u->file;
1815
1816 dprint_io_u(io_u, "io complete");
1817
1818 assert(io_u->flags & IO_U_F_FLIGHT);
1819 io_u_clear(td, io_u, IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1820
1821 /*
1822 * Mark IO ok to verify
1823 */
1824 if (io_u->ipo) {
1825 /*
1826 * Remove errored entry from the verification list
1827 */
1828 if (io_u->error)
1829 unlog_io_piece(td, io_u);
1830 else {
1831 io_u->ipo->flags &= ~IP_F_IN_FLIGHT;
1832 write_barrier();
1833 }
1834 }
1835
1836 if (ddir_sync(ddir)) {
1837 td->last_was_sync = 1;
1838 if (f) {
1839 f->first_write = -1ULL;
1840 f->last_write = -1ULL;
1841 }
1842 return;
1843 }
1844
1845 td->last_was_sync = 0;
1846 td->last_ddir = ddir;
1847
1848 if (!io_u->error && ddir_rw(ddir)) {
1849 unsigned int bytes = io_u->buflen - io_u->resid;
1850 int ret;
1851
1852 td->io_blocks[ddir]++;
1853 td->this_io_blocks[ddir]++;
1854 td->io_bytes[ddir] += bytes;
1855
1856 if (!(io_u->flags & IO_U_F_VER_LIST))
1857 td->this_io_bytes[ddir] += bytes;
1858
1859 if (ddir == DDIR_WRITE)
1860 file_log_write_comp(td, f, io_u->offset, bytes);
1861
1862 if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1863 td->runstate == TD_VERIFYING))
1864 account_io_completion(td, io_u, icd, ddir, bytes);
1865
1866 icd->bytes_done[ddir] += bytes;
1867
1868 if (io_u->end_io) {
1869 ret = io_u->end_io(td, io_u_ptr);
1870 io_u = *io_u_ptr;
1871 if (ret && !icd->error)
1872 icd->error = ret;
1873 }
1874 } else if (io_u->error) {
1875 icd->error = io_u->error;
1876 io_u_log_error(td, io_u);
1877 }
1878 if (icd->error) {
1879 enum error_type_bit eb = td_error_type(ddir, icd->error);
1880
1881 if (!td_non_fatal_error(td, eb, icd->error))
1882 return;
1883
1884 /*
1885 * If there is a non_fatal error, then add to the error count
1886 * and clear all the errors.
1887 */
1888 update_error_count(td, icd->error);
1889 td_clear_error(td);
1890 icd->error = 0;
1891 if (io_u)
1892 io_u->error = 0;
1893 }
1894}
1895
1896static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1897 int nr)
1898{
1899 int ddir;
1900
1901 if (!gtod_reduce(td))
1902 fio_gettime(&icd->time, NULL);
1903
1904 icd->nr = nr;
1905
1906 icd->error = 0;
1907 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
1908 icd->bytes_done[ddir] = 0;
1909}
1910
1911static void ios_completed(struct thread_data *td,
1912 struct io_completion_data *icd)
1913{
1914 struct io_u *io_u;
1915 int i;
1916
1917 for (i = 0; i < icd->nr; i++) {
1918 io_u = td->io_ops->event(td, i);
1919
1920 io_completed(td, &io_u, icd);
1921
1922 if (io_u)
1923 put_io_u(td, io_u);
1924 }
1925}
1926
1927/*
1928 * Complete a single io_u for the sync engines.
1929 */
1930int io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
1931{
1932 struct io_completion_data icd;
1933 int ddir;
1934
1935 init_icd(td, &icd, 1);
1936 io_completed(td, &io_u, &icd);
1937
1938 if (io_u)
1939 put_io_u(td, io_u);
1940
1941 if (icd.error) {
1942 td_verror(td, icd.error, "io_u_sync_complete");
1943 return -1;
1944 }
1945
1946 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
1947 td->bytes_done[ddir] += icd.bytes_done[ddir];
1948
1949 return 0;
1950}
1951
1952/*
1953 * Called to complete min_events number of io for the async engines.
1954 */
1955int io_u_queued_complete(struct thread_data *td, int min_evts)
1956{
1957 struct io_completion_data icd;
1958 struct timespec *tvp = NULL;
1959 int ret, ddir;
1960 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
1961
1962 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts);
1963
1964 if (!min_evts)
1965 tvp = &ts;
1966 else if (min_evts > td->cur_depth)
1967 min_evts = td->cur_depth;
1968
1969 /* No worries, td_io_getevents fixes min and max if they are
1970 * set incorrectly */
1971 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete_max, tvp);
1972 if (ret < 0) {
1973 td_verror(td, -ret, "td_io_getevents");
1974 return ret;
1975 } else if (!ret)
1976 return ret;
1977
1978 init_icd(td, &icd, ret);
1979 ios_completed(td, &icd);
1980 if (icd.error) {
1981 td_verror(td, icd.error, "io_u_queued_complete");
1982 return -1;
1983 }
1984
1985 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
1986 td->bytes_done[ddir] += icd.bytes_done[ddir];
1987
1988 return ret;
1989}
1990
1991/*
1992 * Call when io_u is really queued, to update the submission latency.
1993 */
1994void io_u_queued(struct thread_data *td, struct io_u *io_u)
1995{
1996 if (!td->o.disable_slat) {
1997 unsigned long slat_time;
1998
1999 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
2000
2001 if (td->parent)
2002 td = td->parent;
2003
2004 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen,
2005 io_u->offset);
2006 }
2007}
2008
2009/*
2010 * See if we should reuse the last seed, if dedupe is enabled
2011 */
2012static struct frand_state *get_buf_state(struct thread_data *td)
2013{
2014 unsigned int v;
2015
2016 if (!td->o.dedupe_percentage)
2017 return &td->buf_state;
2018 else if (td->o.dedupe_percentage == 100) {
2019 frand_copy(&td->buf_state_prev, &td->buf_state);
2020 return &td->buf_state;
2021 }
2022
2023 v = rand32_between(&td->dedupe_state, 1, 100);
2024
2025 if (v <= td->o.dedupe_percentage)
2026 return &td->buf_state_prev;
2027
2028 return &td->buf_state;
2029}
2030
2031static void save_buf_state(struct thread_data *td, struct frand_state *rs)
2032{
2033 if (td->o.dedupe_percentage == 100)
2034 frand_copy(rs, &td->buf_state_prev);
2035 else if (rs == &td->buf_state)
2036 frand_copy(&td->buf_state_prev, rs);
2037}
2038
2039void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write,
2040 unsigned int max_bs)
2041{
2042 struct thread_options *o = &td->o;
2043
2044 if (o->compress_percentage || o->dedupe_percentage) {
2045 unsigned int perc = td->o.compress_percentage;
2046 struct frand_state *rs;
2047 unsigned int left = max_bs;
2048 unsigned int this_write;
2049
2050 do {
2051 rs = get_buf_state(td);
2052
2053 min_write = min(min_write, left);
2054
2055 if (perc) {
2056 this_write = min_not_zero(min_write,
2057 td->o.compress_chunk);
2058
2059 fill_random_buf_percentage(rs, buf, perc,
2060 this_write, this_write,
2061 o->buffer_pattern,
2062 o->buffer_pattern_bytes);
2063 } else {
2064 fill_random_buf(rs, buf, min_write);
2065 this_write = min_write;
2066 }
2067
2068 buf += this_write;
2069 left -= this_write;
2070 save_buf_state(td, rs);
2071 } while (left);
2072 } else if (o->buffer_pattern_bytes)
2073 fill_buffer_pattern(td, buf, max_bs);
2074 else if (o->zero_buffers)
2075 memset(buf, 0, max_bs);
2076 else
2077 fill_random_buf(get_buf_state(td), buf, max_bs);
2078}
2079
2080/*
2081 * "randomly" fill the buffer contents
2082 */
2083void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
2084 unsigned int min_write, unsigned int max_bs)
2085{
2086 io_u->buf_filled_len = 0;
2087 fill_io_buffer(td, io_u->buf, min_write, max_bs);
2088}