Calloc() cleanup
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13#include "lib/axmap.h"
14
15struct io_completion_data {
16 int nr; /* input */
17
18 int error; /* output */
19 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
20 struct timeval time; /* output */
21};
22
23/*
24 * The ->io_axmap contains a map of blocks we have or have not done io
25 * to yet. Used to make sure we cover the entire range in a fair fashion.
26 */
27static int random_map_free(struct fio_file *f, const uint64_t block)
28{
29 return !axmap_isset(f->io_axmap, block);
30}
31
32/*
33 * Mark a given offset as used in the map.
34 */
35static void mark_random_map(struct thread_data *td, struct io_u *io_u)
36{
37 unsigned int min_bs = td->o.rw_min_bs;
38 struct fio_file *f = io_u->file;
39 unsigned int nr_blocks;
40 uint64_t block;
41
42 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
43 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
44
45 if (!(io_u->flags & IO_U_F_BUSY_OK))
46 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
47
48 if ((nr_blocks * min_bs) < io_u->buflen)
49 io_u->buflen = nr_blocks * min_bs;
50}
51
52static uint64_t last_block(struct thread_data *td, struct fio_file *f,
53 enum fio_ddir ddir)
54{
55 uint64_t max_blocks;
56 uint64_t max_size;
57
58 assert(ddir_rw(ddir));
59
60 /*
61 * Hmm, should we make sure that ->io_size <= ->real_file_size?
62 */
63 max_size = f->io_size;
64 if (max_size > f->real_file_size)
65 max_size = f->real_file_size;
66
67 if (td->o.zone_range)
68 max_size = td->o.zone_range;
69
70 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
71 if (!max_blocks)
72 return 0;
73
74 return max_blocks;
75}
76
77struct rand_off {
78 struct flist_head list;
79 uint64_t off;
80};
81
82static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
83 enum fio_ddir ddir, uint64_t *b)
84{
85 uint64_t r, lastb;
86
87 lastb = last_block(td, f, ddir);
88 if (!lastb)
89 return 1;
90
91 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE) {
92 uint64_t rmax;
93
94 rmax = td->o.use_os_rand ? OS_RAND_MAX : FRAND_MAX;
95
96 if (td->o.use_os_rand) {
97 rmax = OS_RAND_MAX;
98 r = os_random_long(&td->random_state);
99 } else {
100 rmax = FRAND_MAX;
101 r = __rand(&td->__random_state);
102 }
103
104 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
105
106 *b = (lastb - 1) * (r / ((uint64_t) rmax + 1.0));
107 } else {
108 uint64_t off = 0;
109
110 if (lfsr_next(&f->lfsr, &off, lastb))
111 return 1;
112
113 *b = off;
114 }
115
116 /*
117 * if we are not maintaining a random map, we are done.
118 */
119 if (!file_randommap(td, f))
120 goto ret;
121
122 /*
123 * calculate map offset and check if it's free
124 */
125 if (random_map_free(f, *b))
126 goto ret;
127
128 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
129 (unsigned long long) *b);
130
131 *b = axmap_next_free(f->io_axmap, *b);
132 if (*b == (uint64_t) -1ULL)
133 return 1;
134ret:
135 return 0;
136}
137
138static int __get_next_rand_offset_zipf(struct thread_data *td,
139 struct fio_file *f, enum fio_ddir ddir,
140 uint64_t *b)
141{
142 *b = zipf_next(&f->zipf);
143 return 0;
144}
145
146static int __get_next_rand_offset_pareto(struct thread_data *td,
147 struct fio_file *f, enum fio_ddir ddir,
148 uint64_t *b)
149{
150 *b = pareto_next(&f->zipf);
151 return 0;
152}
153
154static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
155{
156 struct rand_off *r1 = flist_entry(a, struct rand_off, list);
157 struct rand_off *r2 = flist_entry(b, struct rand_off, list);
158
159 return r1->off - r2->off;
160}
161
162static int get_off_from_method(struct thread_data *td, struct fio_file *f,
163 enum fio_ddir ddir, uint64_t *b)
164{
165 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM)
166 return __get_next_rand_offset(td, f, ddir, b);
167 else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
168 return __get_next_rand_offset_zipf(td, f, ddir, b);
169 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
170 return __get_next_rand_offset_pareto(td, f, ddir, b);
171
172 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
173 return 1;
174}
175
176/*
177 * Sort the reads for a verify phase in batches of verifysort_nr, if
178 * specified.
179 */
180static inline int should_sort_io(struct thread_data *td)
181{
182 if (!td->o.verifysort_nr || !td->o.do_verify)
183 return 0;
184 if (!td_random(td))
185 return 0;
186 if (td->runstate != TD_VERIFYING)
187 return 0;
188 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE)
189 return 0;
190
191 return 1;
192}
193
194static int should_do_random(struct thread_data *td, enum fio_ddir ddir)
195{
196 unsigned int v;
197 unsigned long r;
198
199 if (td->o.perc_rand[ddir] == 100)
200 return 1;
201
202 if (td->o.use_os_rand) {
203 r = os_random_long(&td->seq_rand_state[ddir]);
204 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0)));
205 } else {
206 r = __rand(&td->__seq_rand_state[ddir]);
207 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
208 }
209
210 return v <= td->o.perc_rand[ddir];
211}
212
213static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
214 enum fio_ddir ddir, uint64_t *b)
215{
216 struct rand_off *r;
217 int i, ret = 1;
218
219 if (!should_sort_io(td))
220 return get_off_from_method(td, f, ddir, b);
221
222 if (!flist_empty(&td->next_rand_list)) {
223 struct rand_off *r;
224fetch:
225 r = flist_entry(td->next_rand_list.next, struct rand_off, list);
226 flist_del(&r->list);
227 *b = r->off;
228 free(r);
229 return 0;
230 }
231
232 for (i = 0; i < td->o.verifysort_nr; i++) {
233 r = malloc(sizeof(*r));
234
235 ret = get_off_from_method(td, f, ddir, &r->off);
236 if (ret) {
237 free(r);
238 break;
239 }
240
241 flist_add(&r->list, &td->next_rand_list);
242 }
243
244 if (ret && !i)
245 return ret;
246
247 assert(!flist_empty(&td->next_rand_list));
248 flist_sort(NULL, &td->next_rand_list, flist_cmp);
249 goto fetch;
250}
251
252static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
253 enum fio_ddir ddir, uint64_t *b)
254{
255 if (!get_next_rand_offset(td, f, ddir, b))
256 return 0;
257
258 if (td->o.time_based) {
259 fio_file_reset(td, f);
260 if (!get_next_rand_offset(td, f, ddir, b))
261 return 0;
262 }
263
264 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
265 f->file_name, (unsigned long long) f->last_pos,
266 (unsigned long long) f->real_file_size);
267 return 1;
268}
269
270static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
271 enum fio_ddir ddir, uint64_t *offset)
272{
273 assert(ddir_rw(ddir));
274
275 if (f->last_pos >= f->io_size + get_start_offset(td) && td->o.time_based)
276 f->last_pos = f->last_pos - f->io_size;
277
278 if (f->last_pos < f->real_file_size) {
279 uint64_t pos;
280
281 if (f->last_pos == f->file_offset && td->o.ddir_seq_add < 0)
282 f->last_pos = f->real_file_size;
283
284 pos = f->last_pos - f->file_offset;
285 if (pos)
286 pos += td->o.ddir_seq_add;
287
288 *offset = pos;
289 return 0;
290 }
291
292 return 1;
293}
294
295static int get_next_block(struct thread_data *td, struct io_u *io_u,
296 enum fio_ddir ddir, int rw_seq,
297 unsigned int *is_random)
298{
299 struct fio_file *f = io_u->file;
300 uint64_t b, offset;
301 int ret;
302
303 assert(ddir_rw(ddir));
304
305 b = offset = -1ULL;
306
307 if (rw_seq) {
308 if (td_random(td)) {
309 if (should_do_random(td, ddir)) {
310 ret = get_next_rand_block(td, f, ddir, &b);
311 *is_random = 1;
312 } else {
313 *is_random = 0;
314 io_u->flags |= IO_U_F_BUSY_OK;
315 ret = get_next_seq_offset(td, f, ddir, &offset);
316 if (ret)
317 ret = get_next_rand_block(td, f, ddir, &b);
318 }
319 } else {
320 *is_random = 0;
321 ret = get_next_seq_offset(td, f, ddir, &offset);
322 }
323 } else {
324 io_u->flags |= IO_U_F_BUSY_OK;
325 *is_random = 0;
326
327 if (td->o.rw_seq == RW_SEQ_SEQ) {
328 ret = get_next_seq_offset(td, f, ddir, &offset);
329 if (ret) {
330 ret = get_next_rand_block(td, f, ddir, &b);
331 *is_random = 0;
332 }
333 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
334 if (f->last_start != -1ULL)
335 offset = f->last_start - f->file_offset;
336 else
337 offset = 0;
338 ret = 0;
339 } else {
340 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
341 ret = 1;
342 }
343 }
344
345 if (!ret) {
346 if (offset != -1ULL)
347 io_u->offset = offset;
348 else if (b != -1ULL)
349 io_u->offset = b * td->o.ba[ddir];
350 else {
351 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
352 ret = 1;
353 }
354 }
355
356 return ret;
357}
358
359/*
360 * For random io, generate a random new block and see if it's used. Repeat
361 * until we find a free one. For sequential io, just return the end of
362 * the last io issued.
363 */
364static int __get_next_offset(struct thread_data *td, struct io_u *io_u,
365 unsigned int *is_random)
366{
367 struct fio_file *f = io_u->file;
368 enum fio_ddir ddir = io_u->ddir;
369 int rw_seq_hit = 0;
370
371 assert(ddir_rw(ddir));
372
373 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
374 rw_seq_hit = 1;
375 td->ddir_seq_nr = td->o.ddir_seq_nr;
376 }
377
378 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
379 return 1;
380
381 if (io_u->offset >= f->io_size) {
382 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
383 (unsigned long long) io_u->offset,
384 (unsigned long long) f->io_size);
385 return 1;
386 }
387
388 io_u->offset += f->file_offset;
389 if (io_u->offset >= f->real_file_size) {
390 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
391 (unsigned long long) io_u->offset,
392 (unsigned long long) f->real_file_size);
393 return 1;
394 }
395
396 return 0;
397}
398
399static int get_next_offset(struct thread_data *td, struct io_u *io_u,
400 unsigned int *is_random)
401{
402 if (td->flags & TD_F_PROFILE_OPS) {
403 struct prof_io_ops *ops = &td->prof_io_ops;
404
405 if (ops->fill_io_u_off)
406 return ops->fill_io_u_off(td, io_u, is_random);
407 }
408
409 return __get_next_offset(td, io_u, is_random);
410}
411
412static inline int io_u_fits(struct thread_data *td, struct io_u *io_u,
413 unsigned int buflen)
414{
415 struct fio_file *f = io_u->file;
416
417 return io_u->offset + buflen <= f->io_size + get_start_offset(td);
418}
419
420static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u,
421 unsigned int is_random)
422{
423 int ddir = io_u->ddir;
424 unsigned int buflen = 0;
425 unsigned int minbs, maxbs;
426 unsigned long r, rand_max;
427
428 assert(ddir_rw(io_u->ddir));
429
430 if (td->o.bs_is_seq_rand)
431 ddir = is_random ? DDIR_WRITE: DDIR_READ;
432 else
433 ddir = io_u->ddir;
434
435 minbs = td->o.min_bs[ddir];
436 maxbs = td->o.max_bs[ddir];
437
438 if (minbs == maxbs)
439 return minbs;
440
441 /*
442 * If we can't satisfy the min block size from here, then fail
443 */
444 if (!io_u_fits(td, io_u, minbs))
445 return 0;
446
447 if (td->o.use_os_rand)
448 rand_max = OS_RAND_MAX;
449 else
450 rand_max = FRAND_MAX;
451
452 do {
453 if (td->o.use_os_rand)
454 r = os_random_long(&td->bsrange_state);
455 else
456 r = __rand(&td->__bsrange_state);
457
458 if (!td->o.bssplit_nr[ddir]) {
459 buflen = 1 + (unsigned int) ((double) maxbs *
460 (r / (rand_max + 1.0)));
461 if (buflen < minbs)
462 buflen = minbs;
463 } else {
464 long perc = 0;
465 unsigned int i;
466
467 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
468 struct bssplit *bsp = &td->o.bssplit[ddir][i];
469
470 buflen = bsp->bs;
471 perc += bsp->perc;
472 if ((r <= ((rand_max / 100L) * perc)) &&
473 io_u_fits(td, io_u, buflen))
474 break;
475 }
476 }
477
478 if (td->o.do_verify && td->o.verify != VERIFY_NONE)
479 buflen = (buflen + td->o.verify_interval - 1) &
480 ~(td->o.verify_interval - 1);
481
482 if (!td->o.bs_unaligned && is_power_of_2(minbs))
483 buflen = (buflen + minbs - 1) & ~(minbs - 1);
484
485 } while (!io_u_fits(td, io_u, buflen));
486
487 return buflen;
488}
489
490static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u,
491 unsigned int is_random)
492{
493 if (td->flags & TD_F_PROFILE_OPS) {
494 struct prof_io_ops *ops = &td->prof_io_ops;
495
496 if (ops->fill_io_u_size)
497 return ops->fill_io_u_size(td, io_u, is_random);
498 }
499
500 return __get_next_buflen(td, io_u, is_random);
501}
502
503static void set_rwmix_bytes(struct thread_data *td)
504{
505 unsigned int diff;
506
507 /*
508 * we do time or byte based switch. this is needed because
509 * buffered writes may issue a lot quicker than they complete,
510 * whereas reads do not.
511 */
512 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
513 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
514}
515
516static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
517{
518 unsigned int v;
519 unsigned long r;
520
521 if (td->o.use_os_rand) {
522 r = os_random_long(&td->rwmix_state);
523 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0)));
524 } else {
525 r = __rand(&td->__rwmix_state);
526 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
527 }
528
529 if (v <= td->o.rwmix[DDIR_READ])
530 return DDIR_READ;
531
532 return DDIR_WRITE;
533}
534
535void io_u_quiesce(struct thread_data *td)
536{
537 /*
538 * We are going to sleep, ensure that we flush anything pending as
539 * not to skew our latency numbers.
540 *
541 * Changed to only monitor 'in flight' requests here instead of the
542 * td->cur_depth, b/c td->cur_depth does not accurately represent
543 * io's that have been actually submitted to an async engine,
544 * and cur_depth is meaningless for sync engines.
545 */
546 while (td->io_u_in_flight) {
547 int fio_unused ret;
548
549 ret = io_u_queued_complete(td, 1, NULL);
550 }
551}
552
553static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
554{
555 enum fio_ddir odir = ddir ^ 1;
556 struct timeval t;
557 long usec;
558
559 assert(ddir_rw(ddir));
560
561 if (td->rate_pending_usleep[ddir] <= 0)
562 return ddir;
563
564 /*
565 * We have too much pending sleep in this direction. See if we
566 * should switch.
567 */
568 if (td_rw(td) && td->o.rwmix[odir]) {
569 /*
570 * Other direction does not have too much pending, switch
571 */
572 if (td->rate_pending_usleep[odir] < 100000)
573 return odir;
574
575 /*
576 * Both directions have pending sleep. Sleep the minimum time
577 * and deduct from both.
578 */
579 if (td->rate_pending_usleep[ddir] <=
580 td->rate_pending_usleep[odir]) {
581 usec = td->rate_pending_usleep[ddir];
582 } else {
583 usec = td->rate_pending_usleep[odir];
584 ddir = odir;
585 }
586 } else
587 usec = td->rate_pending_usleep[ddir];
588
589 io_u_quiesce(td);
590
591 fio_gettime(&t, NULL);
592 usec_sleep(td, usec);
593 usec = utime_since_now(&t);
594
595 td->rate_pending_usleep[ddir] -= usec;
596
597 odir = ddir ^ 1;
598 if (td_rw(td) && __should_check_rate(td, odir))
599 td->rate_pending_usleep[odir] -= usec;
600
601 if (ddir_trim(ddir))
602 return ddir;
603
604 return ddir;
605}
606
607/*
608 * Return the data direction for the next io_u. If the job is a
609 * mixed read/write workload, check the rwmix cycle and switch if
610 * necessary.
611 */
612static enum fio_ddir get_rw_ddir(struct thread_data *td)
613{
614 enum fio_ddir ddir;
615
616 /*
617 * see if it's time to fsync
618 */
619 if (td->o.fsync_blocks &&
620 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
621 td->io_issues[DDIR_WRITE] && should_fsync(td))
622 return DDIR_SYNC;
623
624 /*
625 * see if it's time to fdatasync
626 */
627 if (td->o.fdatasync_blocks &&
628 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) &&
629 td->io_issues[DDIR_WRITE] && should_fsync(td))
630 return DDIR_DATASYNC;
631
632 /*
633 * see if it's time to sync_file_range
634 */
635 if (td->sync_file_range_nr &&
636 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) &&
637 td->io_issues[DDIR_WRITE] && should_fsync(td))
638 return DDIR_SYNC_FILE_RANGE;
639
640 if (td_rw(td)) {
641 /*
642 * Check if it's time to seed a new data direction.
643 */
644 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
645 /*
646 * Put a top limit on how many bytes we do for
647 * one data direction, to avoid overflowing the
648 * ranges too much
649 */
650 ddir = get_rand_ddir(td);
651
652 if (ddir != td->rwmix_ddir)
653 set_rwmix_bytes(td);
654
655 td->rwmix_ddir = ddir;
656 }
657 ddir = td->rwmix_ddir;
658 } else if (td_read(td))
659 ddir = DDIR_READ;
660 else if (td_write(td))
661 ddir = DDIR_WRITE;
662 else
663 ddir = DDIR_TRIM;
664
665 td->rwmix_ddir = rate_ddir(td, ddir);
666 return td->rwmix_ddir;
667}
668
669static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
670{
671 io_u->ddir = io_u->acct_ddir = get_rw_ddir(td);
672
673 if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) &&
674 td->o.barrier_blocks &&
675 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
676 td->io_issues[DDIR_WRITE])
677 io_u->flags |= IO_U_F_BARRIER;
678}
679
680void put_file_log(struct thread_data *td, struct fio_file *f)
681{
682 int ret = put_file(td, f);
683
684 if (ret)
685 td_verror(td, ret, "file close");
686}
687
688void put_io_u(struct thread_data *td, struct io_u *io_u)
689{
690 td_io_u_lock(td);
691
692 if (io_u->file && !(io_u->flags & IO_U_F_FREE_DEF))
693 put_file_log(td, io_u->file);
694 io_u->file = NULL;
695 io_u->flags &= ~IO_U_F_FREE_DEF;
696 io_u->flags |= IO_U_F_FREE;
697
698 if (io_u->flags & IO_U_F_IN_CUR_DEPTH)
699 td->cur_depth--;
700 io_u_qpush(&td->io_u_freelist, io_u);
701 td_io_u_unlock(td);
702 td_io_u_free_notify(td);
703}
704
705void clear_io_u(struct thread_data *td, struct io_u *io_u)
706{
707 io_u->flags &= ~IO_U_F_FLIGHT;
708 put_io_u(td, io_u);
709}
710
711void requeue_io_u(struct thread_data *td, struct io_u **io_u)
712{
713 struct io_u *__io_u = *io_u;
714 enum fio_ddir ddir = acct_ddir(__io_u);
715
716 dprint(FD_IO, "requeue %p\n", __io_u);
717
718 td_io_u_lock(td);
719
720 __io_u->flags |= IO_U_F_FREE;
721 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
722 td->io_issues[ddir]--;
723
724 __io_u->flags &= ~IO_U_F_FLIGHT;
725 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH)
726 td->cur_depth--;
727
728 io_u_rpush(&td->io_u_requeues, __io_u);
729 td_io_u_unlock(td);
730 *io_u = NULL;
731}
732
733static int fill_io_u(struct thread_data *td, struct io_u *io_u)
734{
735 unsigned int is_random;
736
737 if (td->io_ops->flags & FIO_NOIO)
738 goto out;
739
740 set_rw_ddir(td, io_u);
741
742 /*
743 * fsync() or fdatasync() or trim etc, we are done
744 */
745 if (!ddir_rw(io_u->ddir))
746 goto out;
747
748 /*
749 * See if it's time to switch to a new zone
750 */
751 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
752 td->zone_bytes = 0;
753 io_u->file->file_offset += td->o.zone_range + td->o.zone_skip;
754 io_u->file->last_pos = io_u->file->file_offset;
755 td->io_skip_bytes += td->o.zone_skip;
756 }
757
758 /*
759 * No log, let the seq/rand engine retrieve the next buflen and
760 * position.
761 */
762 if (get_next_offset(td, io_u, &is_random)) {
763 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
764 return 1;
765 }
766
767 io_u->buflen = get_next_buflen(td, io_u, is_random);
768 if (!io_u->buflen) {
769 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
770 return 1;
771 }
772
773 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
774 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
775 dprint(FD_IO, " off=%llu/%lu > %llu\n",
776 (unsigned long long) io_u->offset, io_u->buflen,
777 (unsigned long long) io_u->file->real_file_size);
778 return 1;
779 }
780
781 /*
782 * mark entry before potentially trimming io_u
783 */
784 if (td_random(td) && file_randommap(td, io_u->file))
785 mark_random_map(td, io_u);
786
787out:
788 dprint_io_u(io_u, "fill_io_u");
789 td->zone_bytes += io_u->buflen;
790 return 0;
791}
792
793static void __io_u_mark_map(unsigned int *map, unsigned int nr)
794{
795 int idx = 0;
796
797 switch (nr) {
798 default:
799 idx = 6;
800 break;
801 case 33 ... 64:
802 idx = 5;
803 break;
804 case 17 ... 32:
805 idx = 4;
806 break;
807 case 9 ... 16:
808 idx = 3;
809 break;
810 case 5 ... 8:
811 idx = 2;
812 break;
813 case 1 ... 4:
814 idx = 1;
815 case 0:
816 break;
817 }
818
819 map[idx]++;
820}
821
822void io_u_mark_submit(struct thread_data *td, unsigned int nr)
823{
824 __io_u_mark_map(td->ts.io_u_submit, nr);
825 td->ts.total_submit++;
826}
827
828void io_u_mark_complete(struct thread_data *td, unsigned int nr)
829{
830 __io_u_mark_map(td->ts.io_u_complete, nr);
831 td->ts.total_complete++;
832}
833
834void io_u_mark_depth(struct thread_data *td, unsigned int nr)
835{
836 int idx = 0;
837
838 switch (td->cur_depth) {
839 default:
840 idx = 6;
841 break;
842 case 32 ... 63:
843 idx = 5;
844 break;
845 case 16 ... 31:
846 idx = 4;
847 break;
848 case 8 ... 15:
849 idx = 3;
850 break;
851 case 4 ... 7:
852 idx = 2;
853 break;
854 case 2 ... 3:
855 idx = 1;
856 case 1:
857 break;
858 }
859
860 td->ts.io_u_map[idx] += nr;
861}
862
863static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
864{
865 int idx = 0;
866
867 assert(usec < 1000);
868
869 switch (usec) {
870 case 750 ... 999:
871 idx = 9;
872 break;
873 case 500 ... 749:
874 idx = 8;
875 break;
876 case 250 ... 499:
877 idx = 7;
878 break;
879 case 100 ... 249:
880 idx = 6;
881 break;
882 case 50 ... 99:
883 idx = 5;
884 break;
885 case 20 ... 49:
886 idx = 4;
887 break;
888 case 10 ... 19:
889 idx = 3;
890 break;
891 case 4 ... 9:
892 idx = 2;
893 break;
894 case 2 ... 3:
895 idx = 1;
896 case 0 ... 1:
897 break;
898 }
899
900 assert(idx < FIO_IO_U_LAT_U_NR);
901 td->ts.io_u_lat_u[idx]++;
902}
903
904static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
905{
906 int idx = 0;
907
908 switch (msec) {
909 default:
910 idx = 11;
911 break;
912 case 1000 ... 1999:
913 idx = 10;
914 break;
915 case 750 ... 999:
916 idx = 9;
917 break;
918 case 500 ... 749:
919 idx = 8;
920 break;
921 case 250 ... 499:
922 idx = 7;
923 break;
924 case 100 ... 249:
925 idx = 6;
926 break;
927 case 50 ... 99:
928 idx = 5;
929 break;
930 case 20 ... 49:
931 idx = 4;
932 break;
933 case 10 ... 19:
934 idx = 3;
935 break;
936 case 4 ... 9:
937 idx = 2;
938 break;
939 case 2 ... 3:
940 idx = 1;
941 case 0 ... 1:
942 break;
943 }
944
945 assert(idx < FIO_IO_U_LAT_M_NR);
946 td->ts.io_u_lat_m[idx]++;
947}
948
949static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
950{
951 if (usec < 1000)
952 io_u_mark_lat_usec(td, usec);
953 else
954 io_u_mark_lat_msec(td, usec / 1000);
955}
956
957/*
958 * Get next file to service by choosing one at random
959 */
960static struct fio_file *get_next_file_rand(struct thread_data *td,
961 enum fio_file_flags goodf,
962 enum fio_file_flags badf)
963{
964 struct fio_file *f;
965 int fno;
966
967 do {
968 int opened = 0;
969 unsigned long r;
970
971 if (td->o.use_os_rand) {
972 r = os_random_long(&td->next_file_state);
973 fno = (unsigned int) ((double) td->o.nr_files
974 * (r / (OS_RAND_MAX + 1.0)));
975 } else {
976 r = __rand(&td->__next_file_state);
977 fno = (unsigned int) ((double) td->o.nr_files
978 * (r / (FRAND_MAX + 1.0)));
979 }
980
981 f = td->files[fno];
982 if (fio_file_done(f))
983 continue;
984
985 if (!fio_file_open(f)) {
986 int err;
987
988 err = td_io_open_file(td, f);
989 if (err)
990 continue;
991 opened = 1;
992 }
993
994 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
995 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
996 return f;
997 }
998 if (opened)
999 td_io_close_file(td, f);
1000 } while (1);
1001}
1002
1003/*
1004 * Get next file to service by doing round robin between all available ones
1005 */
1006static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
1007 int badf)
1008{
1009 unsigned int old_next_file = td->next_file;
1010 struct fio_file *f;
1011
1012 do {
1013 int opened = 0;
1014
1015 f = td->files[td->next_file];
1016
1017 td->next_file++;
1018 if (td->next_file >= td->o.nr_files)
1019 td->next_file = 0;
1020
1021 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
1022 if (fio_file_done(f)) {
1023 f = NULL;
1024 continue;
1025 }
1026
1027 if (!fio_file_open(f)) {
1028 int err;
1029
1030 err = td_io_open_file(td, f);
1031 if (err) {
1032 dprint(FD_FILE, "error %d on open of %s\n",
1033 err, f->file_name);
1034 f = NULL;
1035 continue;
1036 }
1037 opened = 1;
1038 }
1039
1040 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1041 f->flags);
1042 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1043 break;
1044
1045 if (opened)
1046 td_io_close_file(td, f);
1047
1048 f = NULL;
1049 } while (td->next_file != old_next_file);
1050
1051 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1052 return f;
1053}
1054
1055static struct fio_file *__get_next_file(struct thread_data *td)
1056{
1057 struct fio_file *f;
1058
1059 assert(td->o.nr_files <= td->files_index);
1060
1061 if (td->nr_done_files >= td->o.nr_files) {
1062 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1063 " nr_files=%d\n", td->nr_open_files,
1064 td->nr_done_files,
1065 td->o.nr_files);
1066 return NULL;
1067 }
1068
1069 f = td->file_service_file;
1070 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1071 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1072 goto out;
1073 if (td->file_service_left--)
1074 goto out;
1075 }
1076
1077 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1078 td->o.file_service_type == FIO_FSERVICE_SEQ)
1079 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1080 else
1081 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1082
1083 td->file_service_file = f;
1084 td->file_service_left = td->file_service_nr - 1;
1085out:
1086 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1087 return f;
1088}
1089
1090static struct fio_file *get_next_file(struct thread_data *td)
1091{
1092 if (!(td->flags & TD_F_PROFILE_OPS)) {
1093 struct prof_io_ops *ops = &td->prof_io_ops;
1094
1095 if (ops->get_next_file)
1096 return ops->get_next_file(td);
1097 }
1098
1099 return __get_next_file(td);
1100}
1101
1102static int set_io_u_file(struct thread_data *td, struct io_u *io_u)
1103{
1104 struct fio_file *f;
1105
1106 do {
1107 f = get_next_file(td);
1108 if (!f)
1109 return 1;
1110
1111 io_u->file = f;
1112 get_file(f);
1113
1114 if (!fill_io_u(td, io_u))
1115 break;
1116
1117 put_file_log(td, f);
1118 td_io_close_file(td, f);
1119 io_u->file = NULL;
1120 fio_file_set_done(f);
1121 td->nr_done_files++;
1122 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1123 td->nr_done_files, td->o.nr_files);
1124 } while (1);
1125
1126 return 0;
1127}
1128
1129
1130struct io_u *__get_io_u(struct thread_data *td)
1131{
1132 struct io_u *io_u;
1133
1134 td_io_u_lock(td);
1135
1136again:
1137 if (!io_u_rempty(&td->io_u_requeues))
1138 io_u = io_u_rpop(&td->io_u_requeues);
1139 else if (!io_u_qempty(&td->io_u_freelist)) {
1140 io_u = io_u_qpop(&td->io_u_freelist);
1141
1142 io_u->buflen = 0;
1143 io_u->resid = 0;
1144 io_u->file = NULL;
1145 io_u->end_io = NULL;
1146 }
1147
1148 if (io_u) {
1149 assert(io_u->flags & IO_U_F_FREE);
1150 io_u->flags &= ~(IO_U_F_FREE | IO_U_F_FREE_DEF);
1151 io_u->flags &= ~(IO_U_F_TRIMMED | IO_U_F_BARRIER);
1152 io_u->flags &= ~IO_U_F_VER_LIST;
1153
1154 io_u->error = 0;
1155 io_u->acct_ddir = -1;
1156 td->cur_depth++;
1157 io_u->flags |= IO_U_F_IN_CUR_DEPTH;
1158 } else if (td->o.verify_async) {
1159 /*
1160 * We ran out, wait for async verify threads to finish and
1161 * return one
1162 */
1163 pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1164 goto again;
1165 }
1166
1167 td_io_u_unlock(td);
1168 return io_u;
1169}
1170
1171static int check_get_trim(struct thread_data *td, struct io_u *io_u)
1172{
1173 if (!(td->flags & TD_F_TRIM_BACKLOG))
1174 return 0;
1175
1176 if (td->trim_entries) {
1177 int get_trim = 0;
1178
1179 if (td->trim_batch) {
1180 td->trim_batch--;
1181 get_trim = 1;
1182 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1183 td->last_ddir != DDIR_READ) {
1184 td->trim_batch = td->o.trim_batch;
1185 if (!td->trim_batch)
1186 td->trim_batch = td->o.trim_backlog;
1187 get_trim = 1;
1188 }
1189
1190 if (get_trim && !get_next_trim(td, io_u))
1191 return 1;
1192 }
1193
1194 return 0;
1195}
1196
1197static int check_get_verify(struct thread_data *td, struct io_u *io_u)
1198{
1199 if (!(td->flags & TD_F_VER_BACKLOG))
1200 return 0;
1201
1202 if (td->io_hist_len) {
1203 int get_verify = 0;
1204
1205 if (td->verify_batch)
1206 get_verify = 1;
1207 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1208 td->last_ddir != DDIR_READ) {
1209 td->verify_batch = td->o.verify_batch;
1210 if (!td->verify_batch)
1211 td->verify_batch = td->o.verify_backlog;
1212 get_verify = 1;
1213 }
1214
1215 if (get_verify && !get_next_verify(td, io_u)) {
1216 td->verify_batch--;
1217 return 1;
1218 }
1219 }
1220
1221 return 0;
1222}
1223
1224/*
1225 * Fill offset and start time into the buffer content, to prevent too
1226 * easy compressible data for simple de-dupe attempts. Do this for every
1227 * 512b block in the range, since that should be the smallest block size
1228 * we can expect from a device.
1229 */
1230static void small_content_scramble(struct io_u *io_u)
1231{
1232 unsigned int i, nr_blocks = io_u->buflen / 512;
1233 uint64_t boffset;
1234 unsigned int offset;
1235 void *p, *end;
1236
1237 if (!nr_blocks)
1238 return;
1239
1240 p = io_u->xfer_buf;
1241 boffset = io_u->offset;
1242 io_u->buf_filled_len = 0;
1243
1244 for (i = 0; i < nr_blocks; i++) {
1245 /*
1246 * Fill the byte offset into a "random" start offset of
1247 * the buffer, given by the product of the usec time
1248 * and the actual offset.
1249 */
1250 offset = (io_u->start_time.tv_usec ^ boffset) & 511;
1251 offset &= ~(sizeof(uint64_t) - 1);
1252 if (offset >= 512 - sizeof(uint64_t))
1253 offset -= sizeof(uint64_t);
1254 memcpy(p + offset, &boffset, sizeof(boffset));
1255
1256 end = p + 512 - sizeof(io_u->start_time);
1257 memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
1258 p += 512;
1259 boffset += 512;
1260 }
1261}
1262
1263/*
1264 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1265 * etc. The returned io_u is fully ready to be prepped and submitted.
1266 */
1267struct io_u *get_io_u(struct thread_data *td)
1268{
1269 struct fio_file *f;
1270 struct io_u *io_u;
1271 int do_scramble = 0;
1272
1273 io_u = __get_io_u(td);
1274 if (!io_u) {
1275 dprint(FD_IO, "__get_io_u failed\n");
1276 return NULL;
1277 }
1278
1279 if (check_get_verify(td, io_u))
1280 goto out;
1281 if (check_get_trim(td, io_u))
1282 goto out;
1283
1284 /*
1285 * from a requeue, io_u already setup
1286 */
1287 if (io_u->file)
1288 goto out;
1289
1290 /*
1291 * If using an iolog, grab next piece if any available.
1292 */
1293 if (td->flags & TD_F_READ_IOLOG) {
1294 if (read_iolog_get(td, io_u))
1295 goto err_put;
1296 } else if (set_io_u_file(td, io_u)) {
1297 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1298 goto err_put;
1299 }
1300
1301 f = io_u->file;
1302 assert(fio_file_open(f));
1303
1304 if (ddir_rw(io_u->ddir)) {
1305 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) {
1306 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1307 goto err_put;
1308 }
1309
1310 f->last_start = io_u->offset;
1311 f->last_pos = io_u->offset + io_u->buflen;
1312
1313 if (io_u->ddir == DDIR_WRITE) {
1314 if (td->flags & TD_F_REFILL_BUFFERS) {
1315 io_u_fill_buffer(td, io_u,
1316 io_u->xfer_buflen, io_u->xfer_buflen);
1317 } else if (td->flags & TD_F_SCRAMBLE_BUFFERS)
1318 do_scramble = 1;
1319 if (td->flags & TD_F_VER_NONE) {
1320 populate_verify_io_u(td, io_u);
1321 do_scramble = 0;
1322 }
1323 } else if (io_u->ddir == DDIR_READ) {
1324 /*
1325 * Reset the buf_filled parameters so next time if the
1326 * buffer is used for writes it is refilled.
1327 */
1328 io_u->buf_filled_len = 0;
1329 }
1330 }
1331
1332 /*
1333 * Set io data pointers.
1334 */
1335 io_u->xfer_buf = io_u->buf;
1336 io_u->xfer_buflen = io_u->buflen;
1337
1338out:
1339 assert(io_u->file);
1340 if (!td_io_prep(td, io_u)) {
1341 if (!td->o.disable_slat)
1342 fio_gettime(&io_u->start_time, NULL);
1343 if (do_scramble)
1344 small_content_scramble(io_u);
1345 return io_u;
1346 }
1347err_put:
1348 dprint(FD_IO, "get_io_u failed\n");
1349 put_io_u(td, io_u);
1350 return NULL;
1351}
1352
1353void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1354{
1355 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1356 const char *msg[] = { "read", "write", "sync", "datasync",
1357 "sync_file_range", "wait", "trim" };
1358
1359 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1360 return;
1361
1362 log_err("fio: io_u error");
1363
1364 if (io_u->file)
1365 log_err(" on file %s", io_u->file->file_name);
1366
1367 log_err(": %s\n", strerror(io_u->error));
1368
1369 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir],
1370 io_u->offset, io_u->xfer_buflen);
1371
1372 if (!td->error)
1373 td_verror(td, io_u->error, "io_u error");
1374}
1375
1376static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1377 struct io_completion_data *icd,
1378 const enum fio_ddir idx, unsigned int bytes)
1379{
1380 unsigned long lusec = 0;
1381
1382 if (!td->o.disable_clat || !td->o.disable_bw)
1383 lusec = utime_since(&io_u->issue_time, &icd->time);
1384
1385 if (!td->o.disable_lat) {
1386 unsigned long tusec;
1387
1388 tusec = utime_since(&io_u->start_time, &icd->time);
1389 add_lat_sample(td, idx, tusec, bytes);
1390
1391 if (td->flags & TD_F_PROFILE_OPS) {
1392 struct prof_io_ops *ops = &td->prof_io_ops;
1393
1394 if (ops->io_u_lat)
1395 icd->error = ops->io_u_lat(td, tusec);
1396 }
1397
1398 if (td->o.max_latency && tusec > td->o.max_latency) {
1399 if (!td->error)
1400 log_err("fio: latency of %lu usec exceeds specified max (%u usec)\n", tusec, td->o.max_latency);
1401 td_verror(td, ETIMEDOUT, "max latency exceeded");
1402 icd->error = ETIMEDOUT;
1403 }
1404 }
1405
1406 if (!td->o.disable_clat) {
1407 add_clat_sample(td, idx, lusec, bytes);
1408 io_u_mark_latency(td, lusec);
1409 }
1410
1411 if (!td->o.disable_bw)
1412 add_bw_sample(td, idx, bytes, &icd->time);
1413
1414 add_iops_sample(td, idx, bytes, &icd->time);
1415
1416 if (td->o.number_ios && !--td->o.number_ios)
1417 td->done = 1;
1418}
1419
1420static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
1421{
1422 uint64_t secs, remainder, bps, bytes;
1423
1424 bytes = td->this_io_bytes[ddir];
1425 bps = td->rate_bps[ddir];
1426 secs = bytes / bps;
1427 remainder = bytes % bps;
1428 return remainder * 1000000 / bps + secs * 1000000;
1429}
1430
1431static void io_completed(struct thread_data *td, struct io_u *io_u,
1432 struct io_completion_data *icd)
1433{
1434 struct fio_file *f;
1435
1436 dprint_io_u(io_u, "io complete");
1437
1438 td_io_u_lock(td);
1439 assert(io_u->flags & IO_U_F_FLIGHT);
1440 io_u->flags &= ~(IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1441 td_io_u_unlock(td);
1442
1443 if (ddir_sync(io_u->ddir)) {
1444 td->last_was_sync = 1;
1445 f = io_u->file;
1446 if (f) {
1447 f->first_write = -1ULL;
1448 f->last_write = -1ULL;
1449 }
1450 return;
1451 }
1452
1453 td->last_was_sync = 0;
1454 td->last_ddir = io_u->ddir;
1455
1456 if (!io_u->error && ddir_rw(io_u->ddir)) {
1457 unsigned int bytes = io_u->buflen - io_u->resid;
1458 const enum fio_ddir idx = io_u->ddir;
1459 const enum fio_ddir odx = io_u->ddir ^ 1;
1460 int ret;
1461
1462 td->io_blocks[idx]++;
1463 td->this_io_blocks[idx]++;
1464 td->io_bytes[idx] += bytes;
1465
1466 if (!(io_u->flags & IO_U_F_VER_LIST))
1467 td->this_io_bytes[idx] += bytes;
1468
1469 if (idx == DDIR_WRITE) {
1470 f = io_u->file;
1471 if (f) {
1472 if (f->first_write == -1ULL ||
1473 io_u->offset < f->first_write)
1474 f->first_write = io_u->offset;
1475 if (f->last_write == -1ULL ||
1476 ((io_u->offset + bytes) > f->last_write))
1477 f->last_write = io_u->offset + bytes;
1478 }
1479 }
1480
1481 if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1482 td->runstate == TD_VERIFYING)) {
1483 account_io_completion(td, io_u, icd, idx, bytes);
1484
1485 if (__should_check_rate(td, idx)) {
1486 td->rate_pending_usleep[idx] =
1487 (usec_for_io(td, idx) -
1488 utime_since_now(&td->start));
1489 }
1490 if (idx != DDIR_TRIM && __should_check_rate(td, odx))
1491 td->rate_pending_usleep[odx] =
1492 (usec_for_io(td, odx) -
1493 utime_since_now(&td->start));
1494 }
1495
1496 if (td_write(td) && idx == DDIR_WRITE &&
1497 td->o.do_verify &&
1498 td->o.verify != VERIFY_NONE &&
1499 !td->o.experimental_verify)
1500 log_io_piece(td, io_u);
1501
1502 icd->bytes_done[idx] += bytes;
1503
1504 if (io_u->end_io) {
1505 ret = io_u->end_io(td, io_u);
1506 if (ret && !icd->error)
1507 icd->error = ret;
1508 }
1509 } else if (io_u->error) {
1510 icd->error = io_u->error;
1511 io_u_log_error(td, io_u);
1512 }
1513 if (icd->error) {
1514 enum error_type_bit eb = td_error_type(io_u->ddir, icd->error);
1515 if (!td_non_fatal_error(td, eb, icd->error))
1516 return;
1517 /*
1518 * If there is a non_fatal error, then add to the error count
1519 * and clear all the errors.
1520 */
1521 update_error_count(td, icd->error);
1522 td_clear_error(td);
1523 icd->error = 0;
1524 io_u->error = 0;
1525 }
1526}
1527
1528static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1529 int nr)
1530{
1531 int ddir;
1532 if (!td->o.disable_clat || !td->o.disable_bw)
1533 fio_gettime(&icd->time, NULL);
1534
1535 icd->nr = nr;
1536
1537 icd->error = 0;
1538 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1539 icd->bytes_done[ddir] = 0;
1540}
1541
1542static void ios_completed(struct thread_data *td,
1543 struct io_completion_data *icd)
1544{
1545 struct io_u *io_u;
1546 int i;
1547
1548 for (i = 0; i < icd->nr; i++) {
1549 io_u = td->io_ops->event(td, i);
1550
1551 io_completed(td, io_u, icd);
1552
1553 if (!(io_u->flags & IO_U_F_FREE_DEF))
1554 put_io_u(td, io_u);
1555 }
1556}
1557
1558/*
1559 * Complete a single io_u for the sync engines.
1560 */
1561int io_u_sync_complete(struct thread_data *td, struct io_u *io_u,
1562 uint64_t *bytes)
1563{
1564 struct io_completion_data icd;
1565
1566 init_icd(td, &icd, 1);
1567 io_completed(td, io_u, &icd);
1568
1569 if (!(io_u->flags & IO_U_F_FREE_DEF))
1570 put_io_u(td, io_u);
1571
1572 if (icd.error) {
1573 td_verror(td, icd.error, "io_u_sync_complete");
1574 return -1;
1575 }
1576
1577 if (bytes) {
1578 int ddir;
1579
1580 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1581 bytes[ddir] += icd.bytes_done[ddir];
1582 }
1583
1584 return 0;
1585}
1586
1587/*
1588 * Called to complete min_events number of io for the async engines.
1589 */
1590int io_u_queued_complete(struct thread_data *td, int min_evts,
1591 uint64_t *bytes)
1592{
1593 struct io_completion_data icd;
1594 struct timespec *tvp = NULL;
1595 int ret;
1596 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
1597
1598 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts);
1599
1600 if (!min_evts)
1601 tvp = &ts;
1602
1603 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp);
1604 if (ret < 0) {
1605 td_verror(td, -ret, "td_io_getevents");
1606 return ret;
1607 } else if (!ret)
1608 return ret;
1609
1610 init_icd(td, &icd, ret);
1611 ios_completed(td, &icd);
1612 if (icd.error) {
1613 td_verror(td, icd.error, "io_u_queued_complete");
1614 return -1;
1615 }
1616
1617 if (bytes) {
1618 int ddir;
1619
1620 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1621 bytes[ddir] += icd.bytes_done[ddir];
1622 }
1623
1624 return 0;
1625}
1626
1627/*
1628 * Call when io_u is really queued, to update the submission latency.
1629 */
1630void io_u_queued(struct thread_data *td, struct io_u *io_u)
1631{
1632 if (!td->o.disable_slat) {
1633 unsigned long slat_time;
1634
1635 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
1636 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen);
1637 }
1638}
1639
1640void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write,
1641 unsigned int max_bs)
1642{
1643 if (!td->o.zero_buffers) {
1644 unsigned int perc = td->o.compress_percentage;
1645
1646 if (perc) {
1647 unsigned int seg = min_write;
1648
1649 seg = min(min_write, td->o.compress_chunk);
1650 if (!seg)
1651 seg = min_write;
1652
1653 fill_random_buf_percentage(&td->buf_state, buf,
1654 perc, seg, max_bs);
1655 } else
1656 fill_random_buf(&td->buf_state, buf, max_bs);
1657 } else
1658 memset(buf, 0, max_bs);
1659}
1660
1661/*
1662 * "randomly" fill the buffer contents
1663 */
1664void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
1665 unsigned int min_write, unsigned int max_bs)
1666{
1667 io_u->buf_filled_len = 0;
1668 fill_io_buffer(td, io_u->buf, min_write, max_bs);
1669}