Add support for normal/gaussian random distributions
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13#include "lib/axmap.h"
14#include "err.h"
15
16struct io_completion_data {
17 int nr; /* input */
18
19 int error; /* output */
20 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
21 struct timeval time; /* output */
22};
23
24/*
25 * The ->io_axmap contains a map of blocks we have or have not done io
26 * to yet. Used to make sure we cover the entire range in a fair fashion.
27 */
28static int random_map_free(struct fio_file *f, const uint64_t block)
29{
30 return !axmap_isset(f->io_axmap, block);
31}
32
33/*
34 * Mark a given offset as used in the map.
35 */
36static void mark_random_map(struct thread_data *td, struct io_u *io_u)
37{
38 unsigned int min_bs = td->o.rw_min_bs;
39 struct fio_file *f = io_u->file;
40 unsigned int nr_blocks;
41 uint64_t block;
42
43 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
44 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
45
46 if (!(io_u->flags & IO_U_F_BUSY_OK))
47 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
48
49 if ((nr_blocks * min_bs) < io_u->buflen)
50 io_u->buflen = nr_blocks * min_bs;
51}
52
53static uint64_t last_block(struct thread_data *td, struct fio_file *f,
54 enum fio_ddir ddir)
55{
56 uint64_t max_blocks;
57 uint64_t max_size;
58
59 assert(ddir_rw(ddir));
60
61 /*
62 * Hmm, should we make sure that ->io_size <= ->real_file_size?
63 */
64 max_size = f->io_size;
65 if (max_size > f->real_file_size)
66 max_size = f->real_file_size;
67
68 if (td->o.zone_range)
69 max_size = td->o.zone_range;
70
71 if (td->o.min_bs[ddir] > td->o.ba[ddir])
72 max_size -= td->o.min_bs[ddir] - td->o.ba[ddir];
73
74 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
75 if (!max_blocks)
76 return 0;
77
78 return max_blocks;
79}
80
81struct rand_off {
82 struct flist_head list;
83 uint64_t off;
84};
85
86static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
87 enum fio_ddir ddir, uint64_t *b)
88{
89 uint64_t r;
90
91 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE) {
92 uint64_t lastb;
93
94 lastb = last_block(td, f, ddir);
95 if (!lastb)
96 return 1;
97
98 r = __rand(&td->random_state);
99
100 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
101
102 *b = lastb * (r / ((uint64_t) FRAND_MAX + 1.0));
103 } else {
104 uint64_t off = 0;
105
106 assert(fio_file_lfsr(f));
107
108 if (lfsr_next(&f->lfsr, &off))
109 return 1;
110
111 *b = off;
112 }
113
114 /*
115 * if we are not maintaining a random map, we are done.
116 */
117 if (!file_randommap(td, f))
118 goto ret;
119
120 /*
121 * calculate map offset and check if it's free
122 */
123 if (random_map_free(f, *b))
124 goto ret;
125
126 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
127 (unsigned long long) *b);
128
129 *b = axmap_next_free(f->io_axmap, *b);
130 if (*b == (uint64_t) -1ULL)
131 return 1;
132ret:
133 return 0;
134}
135
136static int __get_next_rand_offset_zipf(struct thread_data *td,
137 struct fio_file *f, enum fio_ddir ddir,
138 uint64_t *b)
139{
140 *b = zipf_next(&f->zipf);
141 return 0;
142}
143
144static int __get_next_rand_offset_pareto(struct thread_data *td,
145 struct fio_file *f, enum fio_ddir ddir,
146 uint64_t *b)
147{
148 *b = pareto_next(&f->zipf);
149 return 0;
150}
151
152static int __get_next_rand_offset_gauss(struct thread_data *td,
153 struct fio_file *f, enum fio_ddir ddir,
154 uint64_t *b)
155{
156 *b = gauss_next(&f->gauss);
157 return 0;
158}
159
160
161static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
162{
163 struct rand_off *r1 = flist_entry(a, struct rand_off, list);
164 struct rand_off *r2 = flist_entry(b, struct rand_off, list);
165
166 return r1->off - r2->off;
167}
168
169static int get_off_from_method(struct thread_data *td, struct fio_file *f,
170 enum fio_ddir ddir, uint64_t *b)
171{
172 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM)
173 return __get_next_rand_offset(td, f, ddir, b);
174 else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
175 return __get_next_rand_offset_zipf(td, f, ddir, b);
176 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
177 return __get_next_rand_offset_pareto(td, f, ddir, b);
178 else if (td->o.random_distribution == FIO_RAND_DIST_GAUSS)
179 return __get_next_rand_offset_gauss(td, f, ddir, b);
180
181 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
182 return 1;
183}
184
185/*
186 * Sort the reads for a verify phase in batches of verifysort_nr, if
187 * specified.
188 */
189static inline int should_sort_io(struct thread_data *td)
190{
191 if (!td->o.verifysort_nr || !td->o.do_verify)
192 return 0;
193 if (!td_random(td))
194 return 0;
195 if (td->runstate != TD_VERIFYING)
196 return 0;
197 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE)
198 return 0;
199
200 return 1;
201}
202
203static int should_do_random(struct thread_data *td, enum fio_ddir ddir)
204{
205 unsigned int v;
206 unsigned long r;
207
208 if (td->o.perc_rand[ddir] == 100)
209 return 1;
210
211 r = __rand(&td->seq_rand_state[ddir]);
212 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
213
214 return v <= td->o.perc_rand[ddir];
215}
216
217static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
218 enum fio_ddir ddir, uint64_t *b)
219{
220 struct rand_off *r;
221 int i, ret = 1;
222
223 if (!should_sort_io(td))
224 return get_off_from_method(td, f, ddir, b);
225
226 if (!flist_empty(&td->next_rand_list)) {
227fetch:
228 r = flist_first_entry(&td->next_rand_list, struct rand_off, list);
229 flist_del(&r->list);
230 *b = r->off;
231 free(r);
232 return 0;
233 }
234
235 for (i = 0; i < td->o.verifysort_nr; i++) {
236 r = malloc(sizeof(*r));
237
238 ret = get_off_from_method(td, f, ddir, &r->off);
239 if (ret) {
240 free(r);
241 break;
242 }
243
244 flist_add(&r->list, &td->next_rand_list);
245 }
246
247 if (ret && !i)
248 return ret;
249
250 assert(!flist_empty(&td->next_rand_list));
251 flist_sort(NULL, &td->next_rand_list, flist_cmp);
252 goto fetch;
253}
254
255static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
256 enum fio_ddir ddir, uint64_t *b)
257{
258 if (!get_next_rand_offset(td, f, ddir, b))
259 return 0;
260
261 if (td->o.time_based) {
262 fio_file_reset(td, f);
263 if (!get_next_rand_offset(td, f, ddir, b))
264 return 0;
265 }
266
267 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
268 f->file_name, (unsigned long long) f->last_pos[ddir],
269 (unsigned long long) f->real_file_size);
270 return 1;
271}
272
273static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
274 enum fio_ddir ddir, uint64_t *offset)
275{
276 struct thread_options *o = &td->o;
277
278 assert(ddir_rw(ddir));
279
280 if (f->last_pos[ddir] >= f->io_size + get_start_offset(td, f) &&
281 o->time_based)
282 f->last_pos[ddir] = f->last_pos[ddir] - f->io_size;
283
284 if (f->last_pos[ddir] < f->real_file_size) {
285 uint64_t pos;
286
287 if (f->last_pos[ddir] == f->file_offset && o->ddir_seq_add < 0)
288 f->last_pos[ddir] = f->real_file_size;
289
290 pos = f->last_pos[ddir] - f->file_offset;
291 if (pos && o->ddir_seq_add) {
292 pos += o->ddir_seq_add;
293
294 /*
295 * If we reach beyond the end of the file
296 * with holed IO, wrap around to the
297 * beginning again.
298 */
299 if (pos >= f->real_file_size)
300 pos = f->file_offset;
301 }
302
303 *offset = pos;
304 return 0;
305 }
306
307 return 1;
308}
309
310static int get_next_block(struct thread_data *td, struct io_u *io_u,
311 enum fio_ddir ddir, int rw_seq,
312 unsigned int *is_random)
313{
314 struct fio_file *f = io_u->file;
315 uint64_t b, offset;
316 int ret;
317
318 assert(ddir_rw(ddir));
319
320 b = offset = -1ULL;
321
322 if (rw_seq) {
323 if (td_random(td)) {
324 if (should_do_random(td, ddir)) {
325 ret = get_next_rand_block(td, f, ddir, &b);
326 *is_random = 1;
327 } else {
328 *is_random = 0;
329 io_u->flags |= IO_U_F_BUSY_OK;
330 ret = get_next_seq_offset(td, f, ddir, &offset);
331 if (ret)
332 ret = get_next_rand_block(td, f, ddir, &b);
333 }
334 } else {
335 *is_random = 0;
336 ret = get_next_seq_offset(td, f, ddir, &offset);
337 }
338 } else {
339 io_u->flags |= IO_U_F_BUSY_OK;
340 *is_random = 0;
341
342 if (td->o.rw_seq == RW_SEQ_SEQ) {
343 ret = get_next_seq_offset(td, f, ddir, &offset);
344 if (ret) {
345 ret = get_next_rand_block(td, f, ddir, &b);
346 *is_random = 0;
347 }
348 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
349 if (f->last_start[ddir] != -1ULL)
350 offset = f->last_start[ddir] - f->file_offset;
351 else
352 offset = 0;
353 ret = 0;
354 } else {
355 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
356 ret = 1;
357 }
358 }
359
360 if (!ret) {
361 if (offset != -1ULL)
362 io_u->offset = offset;
363 else if (b != -1ULL)
364 io_u->offset = b * td->o.ba[ddir];
365 else {
366 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
367 ret = 1;
368 }
369 }
370
371 return ret;
372}
373
374/*
375 * For random io, generate a random new block and see if it's used. Repeat
376 * until we find a free one. For sequential io, just return the end of
377 * the last io issued.
378 */
379static int __get_next_offset(struct thread_data *td, struct io_u *io_u,
380 unsigned int *is_random)
381{
382 struct fio_file *f = io_u->file;
383 enum fio_ddir ddir = io_u->ddir;
384 int rw_seq_hit = 0;
385
386 assert(ddir_rw(ddir));
387
388 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
389 rw_seq_hit = 1;
390 td->ddir_seq_nr = td->o.ddir_seq_nr;
391 }
392
393 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
394 return 1;
395
396 if (io_u->offset >= f->io_size) {
397 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
398 (unsigned long long) io_u->offset,
399 (unsigned long long) f->io_size);
400 return 1;
401 }
402
403 io_u->offset += f->file_offset;
404 if (io_u->offset >= f->real_file_size) {
405 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
406 (unsigned long long) io_u->offset,
407 (unsigned long long) f->real_file_size);
408 return 1;
409 }
410
411 return 0;
412}
413
414static int get_next_offset(struct thread_data *td, struct io_u *io_u,
415 unsigned int *is_random)
416{
417 if (td->flags & TD_F_PROFILE_OPS) {
418 struct prof_io_ops *ops = &td->prof_io_ops;
419
420 if (ops->fill_io_u_off)
421 return ops->fill_io_u_off(td, io_u, is_random);
422 }
423
424 return __get_next_offset(td, io_u, is_random);
425}
426
427static inline int io_u_fits(struct thread_data *td, struct io_u *io_u,
428 unsigned int buflen)
429{
430 struct fio_file *f = io_u->file;
431
432 return io_u->offset + buflen <= f->io_size + get_start_offset(td, f);
433}
434
435static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u,
436 unsigned int is_random)
437{
438 int ddir = io_u->ddir;
439 unsigned int buflen = 0;
440 unsigned int minbs, maxbs;
441 unsigned long r;
442
443 assert(ddir_rw(ddir));
444
445 if (td->o.bs_is_seq_rand)
446 ddir = is_random ? DDIR_WRITE: DDIR_READ;
447
448 minbs = td->o.min_bs[ddir];
449 maxbs = td->o.max_bs[ddir];
450
451 if (minbs == maxbs)
452 return minbs;
453
454 /*
455 * If we can't satisfy the min block size from here, then fail
456 */
457 if (!io_u_fits(td, io_u, minbs))
458 return 0;
459
460 do {
461 r = __rand(&td->bsrange_state);
462
463 if (!td->o.bssplit_nr[ddir]) {
464 buflen = 1 + (unsigned int) ((double) maxbs *
465 (r / (FRAND_MAX + 1.0)));
466 if (buflen < minbs)
467 buflen = minbs;
468 } else {
469 long perc = 0;
470 unsigned int i;
471
472 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
473 struct bssplit *bsp = &td->o.bssplit[ddir][i];
474
475 buflen = bsp->bs;
476 perc += bsp->perc;
477 if ((r <= ((FRAND_MAX / 100L) * perc)) &&
478 io_u_fits(td, io_u, buflen))
479 break;
480 }
481 }
482
483 if (td->o.do_verify && td->o.verify != VERIFY_NONE)
484 buflen = (buflen + td->o.verify_interval - 1) &
485 ~(td->o.verify_interval - 1);
486
487 if (!td->o.bs_unaligned && is_power_of_2(minbs))
488 buflen = (buflen + minbs - 1) & ~(minbs - 1);
489
490 } while (!io_u_fits(td, io_u, buflen));
491
492 return buflen;
493}
494
495static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u,
496 unsigned int is_random)
497{
498 if (td->flags & TD_F_PROFILE_OPS) {
499 struct prof_io_ops *ops = &td->prof_io_ops;
500
501 if (ops->fill_io_u_size)
502 return ops->fill_io_u_size(td, io_u, is_random);
503 }
504
505 return __get_next_buflen(td, io_u, is_random);
506}
507
508static void set_rwmix_bytes(struct thread_data *td)
509{
510 unsigned int diff;
511
512 /*
513 * we do time or byte based switch. this is needed because
514 * buffered writes may issue a lot quicker than they complete,
515 * whereas reads do not.
516 */
517 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
518 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
519}
520
521static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
522{
523 unsigned int v;
524 unsigned long r;
525
526 r = __rand(&td->rwmix_state);
527 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
528
529 if (v <= td->o.rwmix[DDIR_READ])
530 return DDIR_READ;
531
532 return DDIR_WRITE;
533}
534
535void io_u_quiesce(struct thread_data *td)
536{
537 /*
538 * We are going to sleep, ensure that we flush anything pending as
539 * not to skew our latency numbers.
540 *
541 * Changed to only monitor 'in flight' requests here instead of the
542 * td->cur_depth, b/c td->cur_depth does not accurately represent
543 * io's that have been actually submitted to an async engine,
544 * and cur_depth is meaningless for sync engines.
545 */
546 if (td->io_u_queued || td->cur_depth) {
547 int fio_unused ret;
548
549 ret = td_io_commit(td);
550 }
551
552 while (td->io_u_in_flight) {
553 int fio_unused ret;
554
555 ret = io_u_queued_complete(td, 1, NULL);
556 }
557}
558
559static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
560{
561 enum fio_ddir odir = ddir ^ 1;
562 long usec;
563
564 assert(ddir_rw(ddir));
565
566 if (td->rate_pending_usleep[ddir] <= 0)
567 return ddir;
568
569 /*
570 * We have too much pending sleep in this direction. See if we
571 * should switch.
572 */
573 if (td_rw(td) && td->o.rwmix[odir]) {
574 /*
575 * Other direction does not have too much pending, switch
576 */
577 if (td->rate_pending_usleep[odir] < 100000)
578 return odir;
579
580 /*
581 * Both directions have pending sleep. Sleep the minimum time
582 * and deduct from both.
583 */
584 if (td->rate_pending_usleep[ddir] <=
585 td->rate_pending_usleep[odir]) {
586 usec = td->rate_pending_usleep[ddir];
587 } else {
588 usec = td->rate_pending_usleep[odir];
589 ddir = odir;
590 }
591 } else
592 usec = td->rate_pending_usleep[ddir];
593
594 io_u_quiesce(td);
595
596 usec = usec_sleep(td, usec);
597
598 td->rate_pending_usleep[ddir] -= usec;
599
600 odir = ddir ^ 1;
601 if (td_rw(td) && __should_check_rate(td, odir))
602 td->rate_pending_usleep[odir] -= usec;
603
604 return ddir;
605}
606
607/*
608 * Return the data direction for the next io_u. If the job is a
609 * mixed read/write workload, check the rwmix cycle and switch if
610 * necessary.
611 */
612static enum fio_ddir get_rw_ddir(struct thread_data *td)
613{
614 enum fio_ddir ddir;
615
616 /*
617 * see if it's time to fsync
618 */
619 if (td->o.fsync_blocks &&
620 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
621 td->io_issues[DDIR_WRITE] && should_fsync(td))
622 return DDIR_SYNC;
623
624 /*
625 * see if it's time to fdatasync
626 */
627 if (td->o.fdatasync_blocks &&
628 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) &&
629 td->io_issues[DDIR_WRITE] && should_fsync(td))
630 return DDIR_DATASYNC;
631
632 /*
633 * see if it's time to sync_file_range
634 */
635 if (td->sync_file_range_nr &&
636 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) &&
637 td->io_issues[DDIR_WRITE] && should_fsync(td))
638 return DDIR_SYNC_FILE_RANGE;
639
640 if (td_rw(td)) {
641 /*
642 * Check if it's time to seed a new data direction.
643 */
644 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
645 /*
646 * Put a top limit on how many bytes we do for
647 * one data direction, to avoid overflowing the
648 * ranges too much
649 */
650 ddir = get_rand_ddir(td);
651
652 if (ddir != td->rwmix_ddir)
653 set_rwmix_bytes(td);
654
655 td->rwmix_ddir = ddir;
656 }
657 ddir = td->rwmix_ddir;
658 } else if (td_read(td))
659 ddir = DDIR_READ;
660 else if (td_write(td))
661 ddir = DDIR_WRITE;
662 else
663 ddir = DDIR_TRIM;
664
665 td->rwmix_ddir = rate_ddir(td, ddir);
666 return td->rwmix_ddir;
667}
668
669static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
670{
671 io_u->ddir = io_u->acct_ddir = get_rw_ddir(td);
672
673 if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) &&
674 td->o.barrier_blocks &&
675 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
676 td->io_issues[DDIR_WRITE])
677 io_u->flags |= IO_U_F_BARRIER;
678}
679
680void put_file_log(struct thread_data *td, struct fio_file *f)
681{
682 unsigned int ret = put_file(td, f);
683
684 if (ret)
685 td_verror(td, ret, "file close");
686}
687
688void put_io_u(struct thread_data *td, struct io_u *io_u)
689{
690 td_io_u_lock(td);
691
692 if (io_u->file && !(io_u->flags & IO_U_F_NO_FILE_PUT))
693 put_file_log(td, io_u->file);
694
695 io_u->file = NULL;
696 io_u->flags |= IO_U_F_FREE;
697
698 if (io_u->flags & IO_U_F_IN_CUR_DEPTH)
699 td->cur_depth--;
700 io_u_qpush(&td->io_u_freelist, io_u);
701 td_io_u_unlock(td);
702 td_io_u_free_notify(td);
703}
704
705void clear_io_u(struct thread_data *td, struct io_u *io_u)
706{
707 io_u->flags &= ~IO_U_F_FLIGHT;
708 put_io_u(td, io_u);
709}
710
711void requeue_io_u(struct thread_data *td, struct io_u **io_u)
712{
713 struct io_u *__io_u = *io_u;
714 enum fio_ddir ddir = acct_ddir(__io_u);
715
716 dprint(FD_IO, "requeue %p\n", __io_u);
717
718 td_io_u_lock(td);
719
720 __io_u->flags |= IO_U_F_FREE;
721 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
722 td->io_issues[ddir]--;
723
724 __io_u->flags &= ~IO_U_F_FLIGHT;
725 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH)
726 td->cur_depth--;
727
728 io_u_rpush(&td->io_u_requeues, __io_u);
729 td_io_u_unlock(td);
730 *io_u = NULL;
731}
732
733static int fill_io_u(struct thread_data *td, struct io_u *io_u)
734{
735 unsigned int is_random;
736
737 if (td->io_ops->flags & FIO_NOIO)
738 goto out;
739
740 set_rw_ddir(td, io_u);
741
742 /*
743 * fsync() or fdatasync() or trim etc, we are done
744 */
745 if (!ddir_rw(io_u->ddir))
746 goto out;
747
748 /*
749 * See if it's time to switch to a new zone
750 */
751 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
752 struct fio_file *f = io_u->file;
753
754 td->zone_bytes = 0;
755 f->file_offset += td->o.zone_range + td->o.zone_skip;
756
757 /*
758 * Wrap from the beginning, if we exceed the file size
759 */
760 if (f->file_offset >= f->real_file_size)
761 f->file_offset = f->real_file_size - f->file_offset;
762 f->last_pos[io_u->ddir] = f->file_offset;
763 td->io_skip_bytes += td->o.zone_skip;
764 }
765
766 /*
767 * No log, let the seq/rand engine retrieve the next buflen and
768 * position.
769 */
770 if (get_next_offset(td, io_u, &is_random)) {
771 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
772 return 1;
773 }
774
775 io_u->buflen = get_next_buflen(td, io_u, is_random);
776 if (!io_u->buflen) {
777 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
778 return 1;
779 }
780
781 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
782 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
783 dprint(FD_IO, " off=%llu/%lu > %llu\n",
784 (unsigned long long) io_u->offset, io_u->buflen,
785 (unsigned long long) io_u->file->real_file_size);
786 return 1;
787 }
788
789 /*
790 * mark entry before potentially trimming io_u
791 */
792 if (td_random(td) && file_randommap(td, io_u->file))
793 mark_random_map(td, io_u);
794
795out:
796 dprint_io_u(io_u, "fill_io_u");
797 td->zone_bytes += io_u->buflen;
798 return 0;
799}
800
801static void __io_u_mark_map(unsigned int *map, unsigned int nr)
802{
803 int idx = 0;
804
805 switch (nr) {
806 default:
807 idx = 6;
808 break;
809 case 33 ... 64:
810 idx = 5;
811 break;
812 case 17 ... 32:
813 idx = 4;
814 break;
815 case 9 ... 16:
816 idx = 3;
817 break;
818 case 5 ... 8:
819 idx = 2;
820 break;
821 case 1 ... 4:
822 idx = 1;
823 case 0:
824 break;
825 }
826
827 map[idx]++;
828}
829
830void io_u_mark_submit(struct thread_data *td, unsigned int nr)
831{
832 __io_u_mark_map(td->ts.io_u_submit, nr);
833 td->ts.total_submit++;
834}
835
836void io_u_mark_complete(struct thread_data *td, unsigned int nr)
837{
838 __io_u_mark_map(td->ts.io_u_complete, nr);
839 td->ts.total_complete++;
840}
841
842void io_u_mark_depth(struct thread_data *td, unsigned int nr)
843{
844 int idx = 0;
845
846 switch (td->cur_depth) {
847 default:
848 idx = 6;
849 break;
850 case 32 ... 63:
851 idx = 5;
852 break;
853 case 16 ... 31:
854 idx = 4;
855 break;
856 case 8 ... 15:
857 idx = 3;
858 break;
859 case 4 ... 7:
860 idx = 2;
861 break;
862 case 2 ... 3:
863 idx = 1;
864 case 1:
865 break;
866 }
867
868 td->ts.io_u_map[idx] += nr;
869}
870
871static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
872{
873 int idx = 0;
874
875 assert(usec < 1000);
876
877 switch (usec) {
878 case 750 ... 999:
879 idx = 9;
880 break;
881 case 500 ... 749:
882 idx = 8;
883 break;
884 case 250 ... 499:
885 idx = 7;
886 break;
887 case 100 ... 249:
888 idx = 6;
889 break;
890 case 50 ... 99:
891 idx = 5;
892 break;
893 case 20 ... 49:
894 idx = 4;
895 break;
896 case 10 ... 19:
897 idx = 3;
898 break;
899 case 4 ... 9:
900 idx = 2;
901 break;
902 case 2 ... 3:
903 idx = 1;
904 case 0 ... 1:
905 break;
906 }
907
908 assert(idx < FIO_IO_U_LAT_U_NR);
909 td->ts.io_u_lat_u[idx]++;
910}
911
912static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
913{
914 int idx = 0;
915
916 switch (msec) {
917 default:
918 idx = 11;
919 break;
920 case 1000 ... 1999:
921 idx = 10;
922 break;
923 case 750 ... 999:
924 idx = 9;
925 break;
926 case 500 ... 749:
927 idx = 8;
928 break;
929 case 250 ... 499:
930 idx = 7;
931 break;
932 case 100 ... 249:
933 idx = 6;
934 break;
935 case 50 ... 99:
936 idx = 5;
937 break;
938 case 20 ... 49:
939 idx = 4;
940 break;
941 case 10 ... 19:
942 idx = 3;
943 break;
944 case 4 ... 9:
945 idx = 2;
946 break;
947 case 2 ... 3:
948 idx = 1;
949 case 0 ... 1:
950 break;
951 }
952
953 assert(idx < FIO_IO_U_LAT_M_NR);
954 td->ts.io_u_lat_m[idx]++;
955}
956
957static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
958{
959 if (usec < 1000)
960 io_u_mark_lat_usec(td, usec);
961 else
962 io_u_mark_lat_msec(td, usec / 1000);
963}
964
965/*
966 * Get next file to service by choosing one at random
967 */
968static struct fio_file *get_next_file_rand(struct thread_data *td,
969 enum fio_file_flags goodf,
970 enum fio_file_flags badf)
971{
972 struct fio_file *f;
973 int fno;
974
975 do {
976 int opened = 0;
977 unsigned long r;
978
979 r = __rand(&td->next_file_state);
980 fno = (unsigned int) ((double) td->o.nr_files
981 * (r / (FRAND_MAX + 1.0)));
982
983 f = td->files[fno];
984 if (fio_file_done(f))
985 continue;
986
987 if (!fio_file_open(f)) {
988 int err;
989
990 if (td->nr_open_files >= td->o.open_files)
991 return ERR_PTR(-EBUSY);
992
993 err = td_io_open_file(td, f);
994 if (err)
995 continue;
996 opened = 1;
997 }
998
999 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
1000 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
1001 return f;
1002 }
1003 if (opened)
1004 td_io_close_file(td, f);
1005 } while (1);
1006}
1007
1008/*
1009 * Get next file to service by doing round robin between all available ones
1010 */
1011static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
1012 int badf)
1013{
1014 unsigned int old_next_file = td->next_file;
1015 struct fio_file *f;
1016
1017 do {
1018 int opened = 0;
1019
1020 f = td->files[td->next_file];
1021
1022 td->next_file++;
1023 if (td->next_file >= td->o.nr_files)
1024 td->next_file = 0;
1025
1026 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
1027 if (fio_file_done(f)) {
1028 f = NULL;
1029 continue;
1030 }
1031
1032 if (!fio_file_open(f)) {
1033 int err;
1034
1035 if (td->nr_open_files >= td->o.open_files)
1036 return ERR_PTR(-EBUSY);
1037
1038 err = td_io_open_file(td, f);
1039 if (err) {
1040 dprint(FD_FILE, "error %d on open of %s\n",
1041 err, f->file_name);
1042 f = NULL;
1043 continue;
1044 }
1045 opened = 1;
1046 }
1047
1048 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1049 f->flags);
1050 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1051 break;
1052
1053 if (opened)
1054 td_io_close_file(td, f);
1055
1056 f = NULL;
1057 } while (td->next_file != old_next_file);
1058
1059 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1060 return f;
1061}
1062
1063static struct fio_file *__get_next_file(struct thread_data *td)
1064{
1065 struct fio_file *f;
1066
1067 assert(td->o.nr_files <= td->files_index);
1068
1069 if (td->nr_done_files >= td->o.nr_files) {
1070 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1071 " nr_files=%d\n", td->nr_open_files,
1072 td->nr_done_files,
1073 td->o.nr_files);
1074 return NULL;
1075 }
1076
1077 f = td->file_service_file;
1078 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1079 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1080 goto out;
1081 if (td->file_service_left--)
1082 goto out;
1083 }
1084
1085 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1086 td->o.file_service_type == FIO_FSERVICE_SEQ)
1087 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1088 else
1089 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1090
1091 if (IS_ERR(f))
1092 return f;
1093
1094 td->file_service_file = f;
1095 td->file_service_left = td->file_service_nr - 1;
1096out:
1097 if (f)
1098 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1099 else
1100 dprint(FD_FILE, "get_next_file: NULL\n");
1101 return f;
1102}
1103
1104static struct fio_file *get_next_file(struct thread_data *td)
1105{
1106 if (td->flags & TD_F_PROFILE_OPS) {
1107 struct prof_io_ops *ops = &td->prof_io_ops;
1108
1109 if (ops->get_next_file)
1110 return ops->get_next_file(td);
1111 }
1112
1113 return __get_next_file(td);
1114}
1115
1116static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
1117{
1118 struct fio_file *f;
1119
1120 do {
1121 f = get_next_file(td);
1122 if (IS_ERR_OR_NULL(f))
1123 return PTR_ERR(f);
1124
1125 io_u->file = f;
1126 get_file(f);
1127
1128 if (!fill_io_u(td, io_u))
1129 break;
1130
1131 put_file_log(td, f);
1132 td_io_close_file(td, f);
1133 io_u->file = NULL;
1134 fio_file_set_done(f);
1135 td->nr_done_files++;
1136 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1137 td->nr_done_files, td->o.nr_files);
1138 } while (1);
1139
1140 return 0;
1141}
1142
1143static void lat_fatal(struct thread_data *td, struct io_completion_data *icd,
1144 unsigned long tusec, unsigned long max_usec)
1145{
1146 if (!td->error)
1147 log_err("fio: latency of %lu usec exceeds specified max (%lu usec)\n", tusec, max_usec);
1148 td_verror(td, ETIMEDOUT, "max latency exceeded");
1149 icd->error = ETIMEDOUT;
1150}
1151
1152static void lat_new_cycle(struct thread_data *td)
1153{
1154 fio_gettime(&td->latency_ts, NULL);
1155 td->latency_ios = ddir_rw_sum(td->io_blocks);
1156 td->latency_failed = 0;
1157}
1158
1159/*
1160 * We had an IO outside the latency target. Reduce the queue depth. If we
1161 * are at QD=1, then it's time to give up.
1162 */
1163static int __lat_target_failed(struct thread_data *td)
1164{
1165 if (td->latency_qd == 1)
1166 return 1;
1167
1168 td->latency_qd_high = td->latency_qd;
1169
1170 if (td->latency_qd == td->latency_qd_low)
1171 td->latency_qd_low--;
1172
1173 td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
1174
1175 dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1176
1177 /*
1178 * When we ramp QD down, quiesce existing IO to prevent
1179 * a storm of ramp downs due to pending higher depth.
1180 */
1181 io_u_quiesce(td);
1182 lat_new_cycle(td);
1183 return 0;
1184}
1185
1186static int lat_target_failed(struct thread_data *td)
1187{
1188 if (td->o.latency_percentile.u.f == 100.0)
1189 return __lat_target_failed(td);
1190
1191 td->latency_failed++;
1192 return 0;
1193}
1194
1195void lat_target_init(struct thread_data *td)
1196{
1197 td->latency_end_run = 0;
1198
1199 if (td->o.latency_target) {
1200 dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
1201 fio_gettime(&td->latency_ts, NULL);
1202 td->latency_qd = 1;
1203 td->latency_qd_high = td->o.iodepth;
1204 td->latency_qd_low = 1;
1205 td->latency_ios = ddir_rw_sum(td->io_blocks);
1206 } else
1207 td->latency_qd = td->o.iodepth;
1208}
1209
1210void lat_target_reset(struct thread_data *td)
1211{
1212 if (!td->latency_end_run)
1213 lat_target_init(td);
1214}
1215
1216static void lat_target_success(struct thread_data *td)
1217{
1218 const unsigned int qd = td->latency_qd;
1219 struct thread_options *o = &td->o;
1220
1221 td->latency_qd_low = td->latency_qd;
1222
1223 /*
1224 * If we haven't failed yet, we double up to a failing value instead
1225 * of bisecting from highest possible queue depth. If we have set
1226 * a limit other than td->o.iodepth, bisect between that.
1227 */
1228 if (td->latency_qd_high != o->iodepth)
1229 td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
1230 else
1231 td->latency_qd *= 2;
1232
1233 if (td->latency_qd > o->iodepth)
1234 td->latency_qd = o->iodepth;
1235
1236 dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1237
1238 /*
1239 * Same as last one, we are done. Let it run a latency cycle, so
1240 * we get only the results from the targeted depth.
1241 */
1242 if (td->latency_qd == qd) {
1243 if (td->latency_end_run) {
1244 dprint(FD_RATE, "We are done\n");
1245 td->done = 1;
1246 } else {
1247 dprint(FD_RATE, "Quiesce and final run\n");
1248 io_u_quiesce(td);
1249 td->latency_end_run = 1;
1250 reset_all_stats(td);
1251 reset_io_stats(td);
1252 }
1253 }
1254
1255 lat_new_cycle(td);
1256}
1257
1258/*
1259 * Check if we can bump the queue depth
1260 */
1261void lat_target_check(struct thread_data *td)
1262{
1263 uint64_t usec_window;
1264 uint64_t ios;
1265 double success_ios;
1266
1267 usec_window = utime_since_now(&td->latency_ts);
1268 if (usec_window < td->o.latency_window)
1269 return;
1270
1271 ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
1272 success_ios = (double) (ios - td->latency_failed) / (double) ios;
1273 success_ios *= 100.0;
1274
1275 dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
1276
1277 if (success_ios >= td->o.latency_percentile.u.f)
1278 lat_target_success(td);
1279 else
1280 __lat_target_failed(td);
1281}
1282
1283/*
1284 * If latency target is enabled, we might be ramping up or down and not
1285 * using the full queue depth available.
1286 */
1287int queue_full(const struct thread_data *td)
1288{
1289 const int qempty = io_u_qempty(&td->io_u_freelist);
1290
1291 if (qempty)
1292 return 1;
1293 if (!td->o.latency_target)
1294 return 0;
1295
1296 return td->cur_depth >= td->latency_qd;
1297}
1298
1299struct io_u *__get_io_u(struct thread_data *td)
1300{
1301 struct io_u *io_u = NULL;
1302
1303 if (td->stop_io)
1304 return NULL;
1305
1306 td_io_u_lock(td);
1307
1308again:
1309 if (!io_u_rempty(&td->io_u_requeues))
1310 io_u = io_u_rpop(&td->io_u_requeues);
1311 else if (!queue_full(td)) {
1312 io_u = io_u_qpop(&td->io_u_freelist);
1313
1314 io_u->file = NULL;
1315 io_u->buflen = 0;
1316 io_u->resid = 0;
1317 io_u->end_io = NULL;
1318 }
1319
1320 if (io_u) {
1321 assert(io_u->flags & IO_U_F_FREE);
1322 io_u->flags &= ~(IO_U_F_FREE | IO_U_F_NO_FILE_PUT |
1323 IO_U_F_TRIMMED | IO_U_F_BARRIER |
1324 IO_U_F_VER_LIST);
1325
1326 io_u->error = 0;
1327 io_u->acct_ddir = -1;
1328 td->cur_depth++;
1329 io_u->flags |= IO_U_F_IN_CUR_DEPTH;
1330 io_u->ipo = NULL;
1331 } else if (td->o.verify_async) {
1332 /*
1333 * We ran out, wait for async verify threads to finish and
1334 * return one
1335 */
1336 pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1337 goto again;
1338 }
1339
1340 td_io_u_unlock(td);
1341 return io_u;
1342}
1343
1344static int check_get_trim(struct thread_data *td, struct io_u *io_u)
1345{
1346 if (!(td->flags & TD_F_TRIM_BACKLOG))
1347 return 0;
1348
1349 if (td->trim_entries) {
1350 int get_trim = 0;
1351
1352 if (td->trim_batch) {
1353 td->trim_batch--;
1354 get_trim = 1;
1355 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1356 td->last_ddir != DDIR_READ) {
1357 td->trim_batch = td->o.trim_batch;
1358 if (!td->trim_batch)
1359 td->trim_batch = td->o.trim_backlog;
1360 get_trim = 1;
1361 }
1362
1363 if (get_trim && !get_next_trim(td, io_u))
1364 return 1;
1365 }
1366
1367 return 0;
1368}
1369
1370static int check_get_verify(struct thread_data *td, struct io_u *io_u)
1371{
1372 if (!(td->flags & TD_F_VER_BACKLOG))
1373 return 0;
1374
1375 if (td->io_hist_len) {
1376 int get_verify = 0;
1377
1378 if (td->verify_batch)
1379 get_verify = 1;
1380 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1381 td->last_ddir != DDIR_READ) {
1382 td->verify_batch = td->o.verify_batch;
1383 if (!td->verify_batch)
1384 td->verify_batch = td->o.verify_backlog;
1385 get_verify = 1;
1386 }
1387
1388 if (get_verify && !get_next_verify(td, io_u)) {
1389 td->verify_batch--;
1390 return 1;
1391 }
1392 }
1393
1394 return 0;
1395}
1396
1397/*
1398 * Fill offset and start time into the buffer content, to prevent too
1399 * easy compressible data for simple de-dupe attempts. Do this for every
1400 * 512b block in the range, since that should be the smallest block size
1401 * we can expect from a device.
1402 */
1403static void small_content_scramble(struct io_u *io_u)
1404{
1405 unsigned int i, nr_blocks = io_u->buflen / 512;
1406 uint64_t boffset;
1407 unsigned int offset;
1408 void *p, *end;
1409
1410 if (!nr_blocks)
1411 return;
1412
1413 p = io_u->xfer_buf;
1414 boffset = io_u->offset;
1415 io_u->buf_filled_len = 0;
1416
1417 for (i = 0; i < nr_blocks; i++) {
1418 /*
1419 * Fill the byte offset into a "random" start offset of
1420 * the buffer, given by the product of the usec time
1421 * and the actual offset.
1422 */
1423 offset = (io_u->start_time.tv_usec ^ boffset) & 511;
1424 offset &= ~(sizeof(uint64_t) - 1);
1425 if (offset >= 512 - sizeof(uint64_t))
1426 offset -= sizeof(uint64_t);
1427 memcpy(p + offset, &boffset, sizeof(boffset));
1428
1429 end = p + 512 - sizeof(io_u->start_time);
1430 memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
1431 p += 512;
1432 boffset += 512;
1433 }
1434}
1435
1436/*
1437 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1438 * etc. The returned io_u is fully ready to be prepped and submitted.
1439 */
1440struct io_u *get_io_u(struct thread_data *td)
1441{
1442 struct fio_file *f;
1443 struct io_u *io_u;
1444 int do_scramble = 0;
1445 long ret = 0;
1446
1447 io_u = __get_io_u(td);
1448 if (!io_u) {
1449 dprint(FD_IO, "__get_io_u failed\n");
1450 return NULL;
1451 }
1452
1453 if (check_get_verify(td, io_u))
1454 goto out;
1455 if (check_get_trim(td, io_u))
1456 goto out;
1457
1458 /*
1459 * from a requeue, io_u already setup
1460 */
1461 if (io_u->file)
1462 goto out;
1463
1464 /*
1465 * If using an iolog, grab next piece if any available.
1466 */
1467 if (td->flags & TD_F_READ_IOLOG) {
1468 if (read_iolog_get(td, io_u))
1469 goto err_put;
1470 } else if (set_io_u_file(td, io_u)) {
1471 ret = -EBUSY;
1472 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1473 goto err_put;
1474 }
1475
1476 f = io_u->file;
1477 if (!f) {
1478 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1479 goto err_put;
1480 }
1481
1482 assert(fio_file_open(f));
1483
1484 if (ddir_rw(io_u->ddir)) {
1485 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) {
1486 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1487 goto err_put;
1488 }
1489
1490 f->last_start[io_u->ddir] = io_u->offset;
1491 f->last_pos[io_u->ddir] = io_u->offset + io_u->buflen;
1492
1493 if (io_u->ddir == DDIR_WRITE) {
1494 if (td->flags & TD_F_REFILL_BUFFERS) {
1495 io_u_fill_buffer(td, io_u,
1496 td->o.min_bs[DDIR_WRITE],
1497 io_u->xfer_buflen);
1498 } else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) &&
1499 !(td->flags & TD_F_COMPRESS))
1500 do_scramble = 1;
1501 if (td->flags & TD_F_VER_NONE) {
1502 populate_verify_io_u(td, io_u);
1503 do_scramble = 0;
1504 }
1505 } else if (io_u->ddir == DDIR_READ) {
1506 /*
1507 * Reset the buf_filled parameters so next time if the
1508 * buffer is used for writes it is refilled.
1509 */
1510 io_u->buf_filled_len = 0;
1511 }
1512 }
1513
1514 /*
1515 * Set io data pointers.
1516 */
1517 io_u->xfer_buf = io_u->buf;
1518 io_u->xfer_buflen = io_u->buflen;
1519
1520out:
1521 assert(io_u->file);
1522 if (!td_io_prep(td, io_u)) {
1523 if (!td->o.disable_slat)
1524 fio_gettime(&io_u->start_time, NULL);
1525 if (do_scramble)
1526 small_content_scramble(io_u);
1527 return io_u;
1528 }
1529err_put:
1530 dprint(FD_IO, "get_io_u failed\n");
1531 put_io_u(td, io_u);
1532 return ERR_PTR(ret);
1533}
1534
1535void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1536{
1537 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1538
1539 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1540 return;
1541
1542 log_err("fio: io_u error%s%s: %s: %s offset=%llu, buflen=%lu\n",
1543 io_u->file ? " on file " : "",
1544 io_u->file ? io_u->file->file_name : "",
1545 strerror(io_u->error),
1546 io_ddir_name(io_u->ddir),
1547 io_u->offset, io_u->xfer_buflen);
1548
1549 if (!td->error)
1550 td_verror(td, io_u->error, "io_u error");
1551}
1552
1553static inline int gtod_reduce(struct thread_data *td)
1554{
1555 return td->o.disable_clat && td->o.disable_lat && td->o.disable_slat
1556 && td->o.disable_bw;
1557}
1558
1559static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1560 struct io_completion_data *icd,
1561 const enum fio_ddir idx, unsigned int bytes)
1562{
1563 unsigned long lusec = 0;
1564
1565 if (!gtod_reduce(td))
1566 lusec = utime_since(&io_u->issue_time, &icd->time);
1567
1568 if (!td->o.disable_lat) {
1569 unsigned long tusec;
1570
1571 tusec = utime_since(&io_u->start_time, &icd->time);
1572 add_lat_sample(td, idx, tusec, bytes, io_u->offset);
1573
1574 if (td->flags & TD_F_PROFILE_OPS) {
1575 struct prof_io_ops *ops = &td->prof_io_ops;
1576
1577 if (ops->io_u_lat)
1578 icd->error = ops->io_u_lat(td, tusec);
1579 }
1580
1581 if (td->o.max_latency && tusec > td->o.max_latency)
1582 lat_fatal(td, icd, tusec, td->o.max_latency);
1583 if (td->o.latency_target && tusec > td->o.latency_target) {
1584 if (lat_target_failed(td))
1585 lat_fatal(td, icd, tusec, td->o.latency_target);
1586 }
1587 }
1588
1589 if (!td->o.disable_clat) {
1590 add_clat_sample(td, idx, lusec, bytes, io_u->offset);
1591 io_u_mark_latency(td, lusec);
1592 }
1593
1594 if (!td->o.disable_bw)
1595 add_bw_sample(td, idx, bytes, &icd->time);
1596
1597 if (!gtod_reduce(td))
1598 add_iops_sample(td, idx, bytes, &icd->time);
1599}
1600
1601static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
1602{
1603 uint64_t secs, remainder, bps, bytes;
1604
1605 bytes = td->this_io_bytes[ddir];
1606 bps = td->rate_bps[ddir];
1607 secs = bytes / bps;
1608 remainder = bytes % bps;
1609 return remainder * 1000000 / bps + secs * 1000000;
1610}
1611
1612static void io_completed(struct thread_data *td, struct io_u **io_u_ptr,
1613 struct io_completion_data *icd)
1614{
1615 struct io_u *io_u = *io_u_ptr;
1616 enum fio_ddir ddir = io_u->ddir;
1617 struct fio_file *f = io_u->file;
1618
1619 dprint_io_u(io_u, "io complete");
1620
1621 td_io_u_lock(td);
1622 assert(io_u->flags & IO_U_F_FLIGHT);
1623 io_u->flags &= ~(IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1624
1625 /*
1626 * Mark IO ok to verify
1627 */
1628 if (io_u->ipo) {
1629 /*
1630 * Remove errored entry from the verification list
1631 */
1632 if (io_u->error)
1633 unlog_io_piece(td, io_u);
1634 else {
1635 io_u->ipo->flags &= ~IP_F_IN_FLIGHT;
1636 write_barrier();
1637 }
1638 }
1639
1640 td_io_u_unlock(td);
1641
1642 if (ddir_sync(ddir)) {
1643 td->last_was_sync = 1;
1644 if (f) {
1645 f->first_write = -1ULL;
1646 f->last_write = -1ULL;
1647 }
1648 return;
1649 }
1650
1651 td->last_was_sync = 0;
1652 td->last_ddir = ddir;
1653
1654 if (!io_u->error && ddir_rw(ddir)) {
1655 unsigned int bytes = io_u->buflen - io_u->resid;
1656 const enum fio_ddir oddir = ddir ^ 1;
1657 int ret;
1658
1659 td->io_blocks[ddir]++;
1660 td->this_io_blocks[ddir]++;
1661 td->io_bytes[ddir] += bytes;
1662
1663 if (!(io_u->flags & IO_U_F_VER_LIST))
1664 td->this_io_bytes[ddir] += bytes;
1665
1666 if (ddir == DDIR_WRITE) {
1667 if (f) {
1668 if (f->first_write == -1ULL ||
1669 io_u->offset < f->first_write)
1670 f->first_write = io_u->offset;
1671 if (f->last_write == -1ULL ||
1672 ((io_u->offset + bytes) > f->last_write))
1673 f->last_write = io_u->offset + bytes;
1674 }
1675 if (td->last_write_comp) {
1676 int idx = td->last_write_idx++;
1677
1678 td->last_write_comp[idx] = io_u->offset;
1679 if (td->last_write_idx == td->o.iodepth)
1680 td->last_write_idx = 0;
1681 }
1682 }
1683
1684 if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1685 td->runstate == TD_VERIFYING)) {
1686 account_io_completion(td, io_u, icd, ddir, bytes);
1687
1688 if (__should_check_rate(td, ddir)) {
1689 td->rate_pending_usleep[ddir] =
1690 (usec_for_io(td, ddir) -
1691 utime_since_now(&td->start));
1692 }
1693 if (ddir != DDIR_TRIM &&
1694 __should_check_rate(td, oddir)) {
1695 td->rate_pending_usleep[oddir] =
1696 (usec_for_io(td, oddir) -
1697 utime_since_now(&td->start));
1698 }
1699 }
1700
1701 icd->bytes_done[ddir] += bytes;
1702
1703 if (io_u->end_io) {
1704 ret = io_u->end_io(td, io_u_ptr);
1705 io_u = *io_u_ptr;
1706 if (ret && !icd->error)
1707 icd->error = ret;
1708 }
1709 } else if (io_u->error) {
1710 icd->error = io_u->error;
1711 io_u_log_error(td, io_u);
1712 }
1713 if (icd->error) {
1714 enum error_type_bit eb = td_error_type(ddir, icd->error);
1715
1716 if (!td_non_fatal_error(td, eb, icd->error))
1717 return;
1718
1719 /*
1720 * If there is a non_fatal error, then add to the error count
1721 * and clear all the errors.
1722 */
1723 update_error_count(td, icd->error);
1724 td_clear_error(td);
1725 icd->error = 0;
1726 if (io_u)
1727 io_u->error = 0;
1728 }
1729}
1730
1731static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1732 int nr)
1733{
1734 int ddir;
1735
1736 if (!gtod_reduce(td))
1737 fio_gettime(&icd->time, NULL);
1738
1739 icd->nr = nr;
1740
1741 icd->error = 0;
1742 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1743 icd->bytes_done[ddir] = 0;
1744}
1745
1746static void ios_completed(struct thread_data *td,
1747 struct io_completion_data *icd)
1748{
1749 struct io_u *io_u;
1750 int i;
1751
1752 for (i = 0; i < icd->nr; i++) {
1753 io_u = td->io_ops->event(td, i);
1754
1755 io_completed(td, &io_u, icd);
1756
1757 if (io_u)
1758 put_io_u(td, io_u);
1759 }
1760}
1761
1762/*
1763 * Complete a single io_u for the sync engines.
1764 */
1765int io_u_sync_complete(struct thread_data *td, struct io_u *io_u,
1766 uint64_t *bytes)
1767{
1768 struct io_completion_data icd;
1769
1770 init_icd(td, &icd, 1);
1771 io_completed(td, &io_u, &icd);
1772
1773 if (io_u)
1774 put_io_u(td, io_u);
1775
1776 if (icd.error) {
1777 td_verror(td, icd.error, "io_u_sync_complete");
1778 return -1;
1779 }
1780
1781 if (bytes) {
1782 int ddir;
1783
1784 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1785 bytes[ddir] += icd.bytes_done[ddir];
1786 }
1787
1788 return 0;
1789}
1790
1791/*
1792 * Called to complete min_events number of io for the async engines.
1793 */
1794int io_u_queued_complete(struct thread_data *td, int min_evts,
1795 uint64_t *bytes)
1796{
1797 struct io_completion_data icd;
1798 struct timespec *tvp = NULL;
1799 int ret;
1800 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
1801
1802 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts);
1803
1804 if (!min_evts)
1805 tvp = &ts;
1806 else if (min_evts > td->cur_depth)
1807 min_evts = td->cur_depth;
1808
1809 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp);
1810 if (ret < 0) {
1811 td_verror(td, -ret, "td_io_getevents");
1812 return ret;
1813 } else if (!ret)
1814 return ret;
1815
1816 init_icd(td, &icd, ret);
1817 ios_completed(td, &icd);
1818 if (icd.error) {
1819 td_verror(td, icd.error, "io_u_queued_complete");
1820 return -1;
1821 }
1822
1823 if (bytes) {
1824 int ddir;
1825
1826 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1827 bytes[ddir] += icd.bytes_done[ddir];
1828 }
1829
1830 return 0;
1831}
1832
1833/*
1834 * Call when io_u is really queued, to update the submission latency.
1835 */
1836void io_u_queued(struct thread_data *td, struct io_u *io_u)
1837{
1838 if (!td->o.disable_slat) {
1839 unsigned long slat_time;
1840
1841 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
1842 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen,
1843 io_u->offset);
1844 }
1845}
1846
1847/*
1848 * See if we should reuse the last seed, if dedupe is enabled
1849 */
1850static struct frand_state *get_buf_state(struct thread_data *td)
1851{
1852 unsigned int v;
1853 unsigned long r;
1854
1855 if (!td->o.dedupe_percentage)
1856 return &td->buf_state;
1857 else if (td->o.dedupe_percentage == 100)
1858 return &td->buf_state_prev;
1859
1860 r = __rand(&td->dedupe_state);
1861 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
1862
1863 if (v <= td->o.dedupe_percentage)
1864 return &td->buf_state_prev;
1865
1866 return &td->buf_state;
1867}
1868
1869static void save_buf_state(struct thread_data *td, struct frand_state *rs)
1870{
1871 if (rs == &td->buf_state)
1872 frand_copy(&td->buf_state_prev, rs);
1873}
1874
1875void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write,
1876 unsigned int max_bs)
1877{
1878 struct thread_options *o = &td->o;
1879
1880 if (o->compress_percentage || o->dedupe_percentage) {
1881 unsigned int perc = td->o.compress_percentage;
1882 struct frand_state *rs;
1883 unsigned int left = max_bs;
1884
1885 do {
1886 rs = get_buf_state(td);
1887
1888 min_write = min(min_write, left);
1889
1890 if (perc) {
1891 unsigned int seg = min_write;
1892
1893 seg = min(min_write, td->o.compress_chunk);
1894 if (!seg)
1895 seg = min_write;
1896
1897 fill_random_buf_percentage(rs, buf, perc, seg,
1898 min_write, o->buffer_pattern,
1899 o->buffer_pattern_bytes);
1900 } else
1901 fill_random_buf(rs, buf, min_write);
1902
1903 buf += min_write;
1904 left -= min_write;
1905 save_buf_state(td, rs);
1906 } while (left);
1907 } else if (o->buffer_pattern_bytes)
1908 fill_buffer_pattern(td, buf, max_bs);
1909 else if (o->zero_buffers)
1910 memset(buf, 0, max_bs);
1911 else
1912 fill_random_buf(get_buf_state(td), buf, max_bs);
1913}
1914
1915/*
1916 * "randomly" fill the buffer contents
1917 */
1918void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
1919 unsigned int min_write, unsigned int max_bs)
1920{
1921 io_u->buf_filled_len = 0;
1922 fill_io_buffer(td, io_u->buf, min_write, max_bs);
1923}