Rename TD_F_VER_NONE into TD_F_DO_VERIFY
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <string.h>
3#include <assert.h>
4
5#include "fio.h"
6#include "verify.h"
7#include "trim.h"
8#include "lib/rand.h"
9#include "lib/axmap.h"
10#include "err.h"
11#include "lib/pow2.h"
12#include "minmax.h"
13
14struct io_completion_data {
15 int nr; /* input */
16
17 int error; /* output */
18 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
19 struct timespec time; /* output */
20};
21
22/*
23 * The ->io_axmap contains a map of blocks we have or have not done io
24 * to yet. Used to make sure we cover the entire range in a fair fashion.
25 */
26static bool random_map_free(struct fio_file *f, const uint64_t block)
27{
28 return !axmap_isset(f->io_axmap, block);
29}
30
31/*
32 * Mark a given offset as used in the map.
33 */
34static void mark_random_map(struct thread_data *td, struct io_u *io_u)
35{
36 unsigned int min_bs = td->o.min_bs[io_u->ddir];
37 struct fio_file *f = io_u->file;
38 unsigned int nr_blocks;
39 uint64_t block;
40
41 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
42 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
43
44 if (!(io_u->flags & IO_U_F_BUSY_OK))
45 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
46
47 if ((nr_blocks * min_bs) < io_u->buflen)
48 io_u->buflen = nr_blocks * min_bs;
49}
50
51static uint64_t last_block(struct thread_data *td, struct fio_file *f,
52 enum fio_ddir ddir)
53{
54 uint64_t max_blocks;
55 uint64_t max_size;
56
57 assert(ddir_rw(ddir));
58
59 /*
60 * Hmm, should we make sure that ->io_size <= ->real_file_size?
61 * -> not for now since there is code assuming it could go either.
62 */
63 max_size = f->io_size;
64 if (max_size > f->real_file_size)
65 max_size = f->real_file_size;
66
67 if (td->o.zone_range)
68 max_size = td->o.zone_range;
69
70 if (td->o.min_bs[ddir] > td->o.ba[ddir])
71 max_size -= td->o.min_bs[ddir] - td->o.ba[ddir];
72
73 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
74 if (!max_blocks)
75 return 0;
76
77 return max_blocks;
78}
79
80struct rand_off {
81 struct flist_head list;
82 uint64_t off;
83};
84
85static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
86 enum fio_ddir ddir, uint64_t *b,
87 uint64_t lastb)
88{
89 uint64_t r;
90
91 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
92 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64) {
93
94 r = __rand(&td->random_state);
95
96 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
97
98 *b = lastb * (r / (rand_max(&td->random_state) + 1.0));
99 } else {
100 uint64_t off = 0;
101
102 assert(fio_file_lfsr(f));
103
104 if (lfsr_next(&f->lfsr, &off))
105 return 1;
106
107 *b = off;
108 }
109
110 /*
111 * if we are not maintaining a random map, we are done.
112 */
113 if (!file_randommap(td, f))
114 goto ret;
115
116 /*
117 * calculate map offset and check if it's free
118 */
119 if (random_map_free(f, *b))
120 goto ret;
121
122 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
123 (unsigned long long) *b);
124
125 *b = axmap_next_free(f->io_axmap, *b);
126 if (*b == (uint64_t) -1ULL)
127 return 1;
128ret:
129 return 0;
130}
131
132static int __get_next_rand_offset_zipf(struct thread_data *td,
133 struct fio_file *f, enum fio_ddir ddir,
134 uint64_t *b)
135{
136 *b = zipf_next(&f->zipf);
137 return 0;
138}
139
140static int __get_next_rand_offset_pareto(struct thread_data *td,
141 struct fio_file *f, enum fio_ddir ddir,
142 uint64_t *b)
143{
144 *b = pareto_next(&f->zipf);
145 return 0;
146}
147
148static int __get_next_rand_offset_gauss(struct thread_data *td,
149 struct fio_file *f, enum fio_ddir ddir,
150 uint64_t *b)
151{
152 *b = gauss_next(&f->gauss);
153 return 0;
154}
155
156static int __get_next_rand_offset_zoned_abs(struct thread_data *td,
157 struct fio_file *f,
158 enum fio_ddir ddir, uint64_t *b)
159{
160 struct zone_split_index *zsi;
161 uint64_t lastb, send, stotal;
162 unsigned int v;
163
164 lastb = last_block(td, f, ddir);
165 if (!lastb)
166 return 1;
167
168 if (!td->o.zone_split_nr[ddir]) {
169bail:
170 return __get_next_rand_offset(td, f, ddir, b, lastb);
171 }
172
173 /*
174 * Generate a value, v, between 1 and 100, both inclusive
175 */
176 v = rand32_between(&td->zone_state, 1, 100);
177
178 /*
179 * Find our generated table. 'send' is the end block of this zone,
180 * 'stotal' is our start offset.
181 */
182 zsi = &td->zone_state_index[ddir][v - 1];
183 stotal = zsi->size_prev / td->o.ba[ddir];
184 send = zsi->size / td->o.ba[ddir];
185
186 /*
187 * Should never happen
188 */
189 if (send == -1U) {
190 if (!fio_did_warn(FIO_WARN_ZONED_BUG))
191 log_err("fio: bug in zoned generation\n");
192 goto bail;
193 } else if (send > lastb) {
194 /*
195 * This happens if the user specifies ranges that exceed
196 * the file/device size. We can't handle that gracefully,
197 * so error and exit.
198 */
199 log_err("fio: zoned_abs sizes exceed file size\n");
200 return 1;
201 }
202
203 /*
204 * Generate index from 0..send-stotal
205 */
206 if (__get_next_rand_offset(td, f, ddir, b, send - stotal) == 1)
207 return 1;
208
209 *b += stotal;
210 return 0;
211}
212
213static int __get_next_rand_offset_zoned(struct thread_data *td,
214 struct fio_file *f, enum fio_ddir ddir,
215 uint64_t *b)
216{
217 unsigned int v, send, stotal;
218 uint64_t offset, lastb;
219 struct zone_split_index *zsi;
220
221 lastb = last_block(td, f, ddir);
222 if (!lastb)
223 return 1;
224
225 if (!td->o.zone_split_nr[ddir]) {
226bail:
227 return __get_next_rand_offset(td, f, ddir, b, lastb);
228 }
229
230 /*
231 * Generate a value, v, between 1 and 100, both inclusive
232 */
233 v = rand32_between(&td->zone_state, 1, 100);
234
235 zsi = &td->zone_state_index[ddir][v - 1];
236 stotal = zsi->size_perc_prev;
237 send = zsi->size_perc;
238
239 /*
240 * Should never happen
241 */
242 if (send == -1U) {
243 if (!fio_did_warn(FIO_WARN_ZONED_BUG))
244 log_err("fio: bug in zoned generation\n");
245 goto bail;
246 }
247
248 /*
249 * 'send' is some percentage below or equal to 100 that
250 * marks the end of the current IO range. 'stotal' marks
251 * the start, in percent.
252 */
253 if (stotal)
254 offset = stotal * lastb / 100ULL;
255 else
256 offset = 0;
257
258 lastb = lastb * (send - stotal) / 100ULL;
259
260 /*
261 * Generate index from 0..send-of-lastb
262 */
263 if (__get_next_rand_offset(td, f, ddir, b, lastb) == 1)
264 return 1;
265
266 /*
267 * Add our start offset, if any
268 */
269 if (offset)
270 *b += offset;
271
272 return 0;
273}
274
275static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
276{
277 struct rand_off *r1 = flist_entry(a, struct rand_off, list);
278 struct rand_off *r2 = flist_entry(b, struct rand_off, list);
279
280 return r1->off - r2->off;
281}
282
283static int get_off_from_method(struct thread_data *td, struct fio_file *f,
284 enum fio_ddir ddir, uint64_t *b)
285{
286 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM) {
287 uint64_t lastb;
288
289 lastb = last_block(td, f, ddir);
290 if (!lastb)
291 return 1;
292
293 return __get_next_rand_offset(td, f, ddir, b, lastb);
294 } else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
295 return __get_next_rand_offset_zipf(td, f, ddir, b);
296 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
297 return __get_next_rand_offset_pareto(td, f, ddir, b);
298 else if (td->o.random_distribution == FIO_RAND_DIST_GAUSS)
299 return __get_next_rand_offset_gauss(td, f, ddir, b);
300 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED)
301 return __get_next_rand_offset_zoned(td, f, ddir, b);
302 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED_ABS)
303 return __get_next_rand_offset_zoned_abs(td, f, ddir, b);
304
305 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
306 return 1;
307}
308
309/*
310 * Sort the reads for a verify phase in batches of verifysort_nr, if
311 * specified.
312 */
313static inline bool should_sort_io(struct thread_data *td)
314{
315 if (!td->o.verifysort_nr || !td->o.do_verify)
316 return false;
317 if (!td_random(td))
318 return false;
319 if (td->runstate != TD_VERIFYING)
320 return false;
321 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
322 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64)
323 return false;
324
325 return true;
326}
327
328static bool should_do_random(struct thread_data *td, enum fio_ddir ddir)
329{
330 unsigned int v;
331
332 if (td->o.perc_rand[ddir] == 100)
333 return true;
334
335 v = rand32_between(&td->seq_rand_state[ddir], 1, 100);
336
337 return v <= td->o.perc_rand[ddir];
338}
339
340static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
341 enum fio_ddir ddir, uint64_t *b)
342{
343 struct rand_off *r;
344 int i, ret = 1;
345
346 if (!should_sort_io(td))
347 return get_off_from_method(td, f, ddir, b);
348
349 if (!flist_empty(&td->next_rand_list)) {
350fetch:
351 r = flist_first_entry(&td->next_rand_list, struct rand_off, list);
352 flist_del(&r->list);
353 *b = r->off;
354 free(r);
355 return 0;
356 }
357
358 for (i = 0; i < td->o.verifysort_nr; i++) {
359 r = malloc(sizeof(*r));
360
361 ret = get_off_from_method(td, f, ddir, &r->off);
362 if (ret) {
363 free(r);
364 break;
365 }
366
367 flist_add(&r->list, &td->next_rand_list);
368 }
369
370 if (ret && !i)
371 return ret;
372
373 assert(!flist_empty(&td->next_rand_list));
374 flist_sort(NULL, &td->next_rand_list, flist_cmp);
375 goto fetch;
376}
377
378static void loop_cache_invalidate(struct thread_data *td, struct fio_file *f)
379{
380 struct thread_options *o = &td->o;
381
382 if (o->invalidate_cache && !o->odirect) {
383 int fio_unused ret;
384
385 ret = file_invalidate_cache(td, f);
386 }
387}
388
389static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
390 enum fio_ddir ddir, uint64_t *b)
391{
392 if (!get_next_rand_offset(td, f, ddir, b))
393 return 0;
394
395 if (td->o.time_based ||
396 (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)) {
397 fio_file_reset(td, f);
398 if (!get_next_rand_offset(td, f, ddir, b))
399 return 0;
400 loop_cache_invalidate(td, f);
401 }
402
403 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
404 f->file_name, (unsigned long long) f->last_pos[ddir],
405 (unsigned long long) f->real_file_size);
406 return 1;
407}
408
409static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
410 enum fio_ddir ddir, uint64_t *offset)
411{
412 struct thread_options *o = &td->o;
413
414 assert(ddir_rw(ddir));
415
416 /*
417 * If we reach the end for a time based run, reset us back to 0
418 * and invalidate the cache, if we need to.
419 */
420 if (f->last_pos[ddir] >= f->io_size + get_start_offset(td, f) &&
421 o->time_based) {
422 f->last_pos[ddir] = f->file_offset;
423 loop_cache_invalidate(td, f);
424 }
425
426 if (f->last_pos[ddir] < f->real_file_size) {
427 uint64_t pos;
428
429 /*
430 * Only rewind if we already hit the end
431 */
432 if (f->last_pos[ddir] == f->file_offset &&
433 f->file_offset && o->ddir_seq_add < 0) {
434 if (f->real_file_size > f->io_size)
435 f->last_pos[ddir] = f->io_size;
436 else
437 f->last_pos[ddir] = f->real_file_size;
438 }
439
440 pos = f->last_pos[ddir] - f->file_offset;
441 if (pos && o->ddir_seq_add) {
442 pos += o->ddir_seq_add;
443
444 /*
445 * If we reach beyond the end of the file
446 * with holed IO, wrap around to the
447 * beginning again. If we're doing backwards IO,
448 * wrap to the end.
449 */
450 if (pos >= f->real_file_size) {
451 if (o->ddir_seq_add > 0)
452 pos = f->file_offset;
453 else {
454 if (f->real_file_size > f->io_size)
455 pos = f->io_size;
456 else
457 pos = f->real_file_size;
458
459 pos += o->ddir_seq_add;
460 }
461 }
462 }
463
464 *offset = pos;
465 return 0;
466 }
467
468 return 1;
469}
470
471static int get_next_block(struct thread_data *td, struct io_u *io_u,
472 enum fio_ddir ddir, int rw_seq,
473 bool *is_random)
474{
475 struct fio_file *f = io_u->file;
476 uint64_t b, offset;
477 int ret;
478
479 assert(ddir_rw(ddir));
480
481 b = offset = -1ULL;
482
483 if (rw_seq) {
484 if (td_random(td)) {
485 if (should_do_random(td, ddir)) {
486 ret = get_next_rand_block(td, f, ddir, &b);
487 *is_random = true;
488 } else {
489 *is_random = false;
490 io_u_set(td, io_u, IO_U_F_BUSY_OK);
491 ret = get_next_seq_offset(td, f, ddir, &offset);
492 if (ret)
493 ret = get_next_rand_block(td, f, ddir, &b);
494 }
495 } else {
496 *is_random = false;
497 ret = get_next_seq_offset(td, f, ddir, &offset);
498 }
499 } else {
500 io_u_set(td, io_u, IO_U_F_BUSY_OK);
501 *is_random = false;
502
503 if (td->o.rw_seq == RW_SEQ_SEQ) {
504 ret = get_next_seq_offset(td, f, ddir, &offset);
505 if (ret) {
506 ret = get_next_rand_block(td, f, ddir, &b);
507 *is_random = false;
508 }
509 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
510 if (f->last_start[ddir] != -1ULL)
511 offset = f->last_start[ddir] - f->file_offset;
512 else
513 offset = 0;
514 ret = 0;
515 } else {
516 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
517 ret = 1;
518 }
519 }
520
521 if (!ret) {
522 if (offset != -1ULL)
523 io_u->offset = offset;
524 else if (b != -1ULL)
525 io_u->offset = b * td->o.ba[ddir];
526 else {
527 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
528 ret = 1;
529 }
530 }
531
532 return ret;
533}
534
535/*
536 * For random io, generate a random new block and see if it's used. Repeat
537 * until we find a free one. For sequential io, just return the end of
538 * the last io issued.
539 */
540static int get_next_offset(struct thread_data *td, struct io_u *io_u,
541 bool *is_random)
542{
543 struct fio_file *f = io_u->file;
544 enum fio_ddir ddir = io_u->ddir;
545 int rw_seq_hit = 0;
546
547 assert(ddir_rw(ddir));
548
549 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
550 rw_seq_hit = 1;
551 td->ddir_seq_nr = td->o.ddir_seq_nr;
552 }
553
554 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
555 return 1;
556
557 if (io_u->offset >= f->io_size) {
558 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
559 (unsigned long long) io_u->offset,
560 (unsigned long long) f->io_size);
561 return 1;
562 }
563
564 io_u->offset += f->file_offset;
565 if (io_u->offset >= f->real_file_size) {
566 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
567 (unsigned long long) io_u->offset,
568 (unsigned long long) f->real_file_size);
569 return 1;
570 }
571
572 return 0;
573}
574
575static inline bool io_u_fits(struct thread_data *td, struct io_u *io_u,
576 unsigned int buflen)
577{
578 struct fio_file *f = io_u->file;
579
580 return io_u->offset + buflen <= f->io_size + get_start_offset(td, f);
581}
582
583static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u,
584 bool is_random)
585{
586 int ddir = io_u->ddir;
587 unsigned int buflen = 0;
588 unsigned int minbs, maxbs;
589 uint64_t frand_max, r;
590 bool power_2;
591
592 assert(ddir_rw(ddir));
593
594 if (td->o.bs_is_seq_rand)
595 ddir = is_random ? DDIR_WRITE : DDIR_READ;
596
597 minbs = td->o.min_bs[ddir];
598 maxbs = td->o.max_bs[ddir];
599
600 if (minbs == maxbs)
601 return minbs;
602
603 /*
604 * If we can't satisfy the min block size from here, then fail
605 */
606 if (!io_u_fits(td, io_u, minbs))
607 return 0;
608
609 frand_max = rand_max(&td->bsrange_state[ddir]);
610 do {
611 r = __rand(&td->bsrange_state[ddir]);
612
613 if (!td->o.bssplit_nr[ddir]) {
614 buflen = 1 + (unsigned int) ((double) maxbs *
615 (r / (frand_max + 1.0)));
616 if (buflen < minbs)
617 buflen = minbs;
618 } else {
619 long long perc = 0;
620 unsigned int i;
621
622 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
623 struct bssplit *bsp = &td->o.bssplit[ddir][i];
624
625 buflen = bsp->bs;
626 perc += bsp->perc;
627 if (!perc)
628 break;
629 if ((r / perc <= frand_max / 100ULL) &&
630 io_u_fits(td, io_u, buflen))
631 break;
632 }
633 }
634
635 power_2 = is_power_of_2(minbs);
636 if (!td->o.bs_unaligned && power_2)
637 buflen &= ~(minbs - 1);
638 else if (!td->o.bs_unaligned && !power_2)
639 buflen -= buflen % minbs;
640 } while (!io_u_fits(td, io_u, buflen));
641
642 return buflen;
643}
644
645static void set_rwmix_bytes(struct thread_data *td)
646{
647 unsigned int diff;
648
649 /*
650 * we do time or byte based switch. this is needed because
651 * buffered writes may issue a lot quicker than they complete,
652 * whereas reads do not.
653 */
654 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
655 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
656}
657
658static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
659{
660 unsigned int v;
661
662 v = rand32_between(&td->rwmix_state, 1, 100);
663
664 if (v <= td->o.rwmix[DDIR_READ])
665 return DDIR_READ;
666
667 return DDIR_WRITE;
668}
669
670int io_u_quiesce(struct thread_data *td)
671{
672 int completed = 0;
673
674 /*
675 * We are going to sleep, ensure that we flush anything pending as
676 * not to skew our latency numbers.
677 *
678 * Changed to only monitor 'in flight' requests here instead of the
679 * td->cur_depth, b/c td->cur_depth does not accurately represent
680 * io's that have been actually submitted to an async engine,
681 * and cur_depth is meaningless for sync engines.
682 */
683 if (td->io_u_queued || td->cur_depth) {
684 int fio_unused ret;
685
686 ret = td_io_commit(td);
687 }
688
689 while (td->io_u_in_flight) {
690 int ret;
691
692 ret = io_u_queued_complete(td, 1);
693 if (ret > 0)
694 completed += ret;
695 }
696
697 if (td->flags & TD_F_REGROW_LOGS)
698 regrow_logs(td);
699
700 return completed;
701}
702
703static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
704{
705 enum fio_ddir odir = ddir ^ 1;
706 uint64_t usec;
707 uint64_t now;
708
709 assert(ddir_rw(ddir));
710 now = utime_since_now(&td->start);
711
712 /*
713 * if rate_next_io_time is in the past, need to catch up to rate
714 */
715 if (td->rate_next_io_time[ddir] <= now)
716 return ddir;
717
718 /*
719 * We are ahead of rate in this direction. See if we
720 * should switch.
721 */
722 if (td_rw(td) && td->o.rwmix[odir]) {
723 /*
724 * Other direction is behind rate, switch
725 */
726 if (td->rate_next_io_time[odir] <= now)
727 return odir;
728
729 /*
730 * Both directions are ahead of rate. sleep the min,
731 * switch if necessary
732 */
733 if (td->rate_next_io_time[ddir] <=
734 td->rate_next_io_time[odir]) {
735 usec = td->rate_next_io_time[ddir] - now;
736 } else {
737 usec = td->rate_next_io_time[odir] - now;
738 ddir = odir;
739 }
740 } else
741 usec = td->rate_next_io_time[ddir] - now;
742
743 if (td->o.io_submit_mode == IO_MODE_INLINE)
744 io_u_quiesce(td);
745
746 usec_sleep(td, usec);
747 return ddir;
748}
749
750/*
751 * Return the data direction for the next io_u. If the job is a
752 * mixed read/write workload, check the rwmix cycle and switch if
753 * necessary.
754 */
755static enum fio_ddir get_rw_ddir(struct thread_data *td)
756{
757 enum fio_ddir ddir;
758
759 /*
760 * See if it's time to fsync/fdatasync/sync_file_range first,
761 * and if not then move on to check regular I/Os.
762 */
763 if (should_fsync(td)) {
764 if (td->o.fsync_blocks && td->io_issues[DDIR_WRITE] &&
765 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks))
766 return DDIR_SYNC;
767
768 if (td->o.fdatasync_blocks && td->io_issues[DDIR_WRITE] &&
769 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks))
770 return DDIR_DATASYNC;
771
772 if (td->sync_file_range_nr && td->io_issues[DDIR_WRITE] &&
773 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr))
774 return DDIR_SYNC_FILE_RANGE;
775 }
776
777 if (td_rw(td)) {
778 /*
779 * Check if it's time to seed a new data direction.
780 */
781 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
782 /*
783 * Put a top limit on how many bytes we do for
784 * one data direction, to avoid overflowing the
785 * ranges too much
786 */
787 ddir = get_rand_ddir(td);
788
789 if (ddir != td->rwmix_ddir)
790 set_rwmix_bytes(td);
791
792 td->rwmix_ddir = ddir;
793 }
794 ddir = td->rwmix_ddir;
795 } else if (td_read(td))
796 ddir = DDIR_READ;
797 else if (td_write(td))
798 ddir = DDIR_WRITE;
799 else if (td_trim(td))
800 ddir = DDIR_TRIM;
801 else
802 ddir = DDIR_INVAL;
803
804 td->rwmix_ddir = rate_ddir(td, ddir);
805 return td->rwmix_ddir;
806}
807
808static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
809{
810 enum fio_ddir ddir = get_rw_ddir(td);
811
812 if (td_trimwrite(td)) {
813 struct fio_file *f = io_u->file;
814 if (f->last_pos[DDIR_WRITE] == f->last_pos[DDIR_TRIM])
815 ddir = DDIR_TRIM;
816 else
817 ddir = DDIR_WRITE;
818 }
819
820 io_u->ddir = io_u->acct_ddir = ddir;
821
822 if (io_u->ddir == DDIR_WRITE && td_ioengine_flagged(td, FIO_BARRIER) &&
823 td->o.barrier_blocks &&
824 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
825 td->io_issues[DDIR_WRITE])
826 io_u_set(td, io_u, IO_U_F_BARRIER);
827}
828
829void put_file_log(struct thread_data *td, struct fio_file *f)
830{
831 unsigned int ret = put_file(td, f);
832
833 if (ret)
834 td_verror(td, ret, "file close");
835}
836
837void put_io_u(struct thread_data *td, struct io_u *io_u)
838{
839 if (td->parent)
840 td = td->parent;
841
842 td_io_u_lock(td);
843
844 if (io_u->file && !(io_u->flags & IO_U_F_NO_FILE_PUT))
845 put_file_log(td, io_u->file);
846
847 io_u->file = NULL;
848 io_u_set(td, io_u, IO_U_F_FREE);
849
850 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) {
851 td->cur_depth--;
852 assert(!(td->flags & TD_F_CHILD));
853 }
854 io_u_qpush(&td->io_u_freelist, io_u);
855 td_io_u_free_notify(td);
856 td_io_u_unlock(td);
857}
858
859void clear_io_u(struct thread_data *td, struct io_u *io_u)
860{
861 io_u_clear(td, io_u, IO_U_F_FLIGHT);
862 put_io_u(td, io_u);
863}
864
865void requeue_io_u(struct thread_data *td, struct io_u **io_u)
866{
867 struct io_u *__io_u = *io_u;
868 enum fio_ddir ddir = acct_ddir(__io_u);
869
870 dprint(FD_IO, "requeue %p\n", __io_u);
871
872 if (td->parent)
873 td = td->parent;
874
875 td_io_u_lock(td);
876
877 io_u_set(td, __io_u, IO_U_F_FREE);
878 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
879 td->io_issues[ddir]--;
880
881 io_u_clear(td, __io_u, IO_U_F_FLIGHT);
882 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) {
883 td->cur_depth--;
884 assert(!(td->flags & TD_F_CHILD));
885 }
886
887 io_u_rpush(&td->io_u_requeues, __io_u);
888 td_io_u_free_notify(td);
889 td_io_u_unlock(td);
890 *io_u = NULL;
891}
892
893static void __fill_io_u_zone(struct thread_data *td, struct io_u *io_u)
894{
895 struct fio_file *f = io_u->file;
896
897 /*
898 * See if it's time to switch to a new zone
899 */
900 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
901 td->zone_bytes = 0;
902 f->file_offset += td->o.zone_range + td->o.zone_skip;
903
904 /*
905 * Wrap from the beginning, if we exceed the file size
906 */
907 if (f->file_offset >= f->real_file_size)
908 f->file_offset = f->real_file_size - f->file_offset;
909 f->last_pos[io_u->ddir] = f->file_offset;
910 td->io_skip_bytes += td->o.zone_skip;
911 }
912
913 /*
914 * If zone_size > zone_range, then maintain the same zone until
915 * zone_bytes >= zone_size.
916 */
917 if (f->last_pos[io_u->ddir] >= (f->file_offset + td->o.zone_range)) {
918 dprint(FD_IO, "io_u maintain zone offset=%" PRIu64 "/last_pos=%" PRIu64 "\n",
919 f->file_offset, f->last_pos[io_u->ddir]);
920 f->last_pos[io_u->ddir] = f->file_offset;
921 }
922
923 /*
924 * For random: if 'norandommap' is not set and zone_size > zone_range,
925 * map needs to be reset as it's done with zone_range everytime.
926 */
927 if ((td->zone_bytes % td->o.zone_range) == 0) {
928 fio_file_reset(td, f);
929 }
930}
931
932static int fill_io_u(struct thread_data *td, struct io_u *io_u)
933{
934 bool is_random;
935
936 if (td_ioengine_flagged(td, FIO_NOIO))
937 goto out;
938
939 set_rw_ddir(td, io_u);
940
941 /*
942 * fsync() or fdatasync() or trim etc, we are done
943 */
944 if (!ddir_rw(io_u->ddir))
945 goto out;
946
947 /*
948 * When file is zoned zone_range is always positive
949 */
950 if (td->o.zone_range) {
951 __fill_io_u_zone(td, io_u);
952 }
953
954 /*
955 * No log, let the seq/rand engine retrieve the next buflen and
956 * position.
957 */
958 if (get_next_offset(td, io_u, &is_random)) {
959 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
960 return 1;
961 }
962
963 io_u->buflen = get_next_buflen(td, io_u, is_random);
964 if (!io_u->buflen) {
965 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
966 return 1;
967 }
968
969 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
970 dprint(FD_IO, "io_u %p, off=0x%llx + len=0x%lx exceeds file size=0x%llx\n",
971 io_u,
972 (unsigned long long) io_u->offset, io_u->buflen,
973 (unsigned long long) io_u->file->real_file_size);
974 return 1;
975 }
976
977 /*
978 * mark entry before potentially trimming io_u
979 */
980 if (td_random(td) && file_randommap(td, io_u->file))
981 mark_random_map(td, io_u);
982
983out:
984 dprint_io_u(io_u, "fill");
985 td->zone_bytes += io_u->buflen;
986 return 0;
987}
988
989static void __io_u_mark_map(uint64_t *map, unsigned int nr)
990{
991 int idx = 0;
992
993 switch (nr) {
994 default:
995 idx = 6;
996 break;
997 case 33 ... 64:
998 idx = 5;
999 break;
1000 case 17 ... 32:
1001 idx = 4;
1002 break;
1003 case 9 ... 16:
1004 idx = 3;
1005 break;
1006 case 5 ... 8:
1007 idx = 2;
1008 break;
1009 case 1 ... 4:
1010 idx = 1;
1011 case 0:
1012 break;
1013 }
1014
1015 map[idx]++;
1016}
1017
1018void io_u_mark_submit(struct thread_data *td, unsigned int nr)
1019{
1020 __io_u_mark_map(td->ts.io_u_submit, nr);
1021 td->ts.total_submit++;
1022}
1023
1024void io_u_mark_complete(struct thread_data *td, unsigned int nr)
1025{
1026 __io_u_mark_map(td->ts.io_u_complete, nr);
1027 td->ts.total_complete++;
1028}
1029
1030void io_u_mark_depth(struct thread_data *td, unsigned int nr)
1031{
1032 int idx = 0;
1033
1034 switch (td->cur_depth) {
1035 default:
1036 idx = 6;
1037 break;
1038 case 32 ... 63:
1039 idx = 5;
1040 break;
1041 case 16 ... 31:
1042 idx = 4;
1043 break;
1044 case 8 ... 15:
1045 idx = 3;
1046 break;
1047 case 4 ... 7:
1048 idx = 2;
1049 break;
1050 case 2 ... 3:
1051 idx = 1;
1052 case 1:
1053 break;
1054 }
1055
1056 td->ts.io_u_map[idx] += nr;
1057}
1058
1059static void io_u_mark_lat_nsec(struct thread_data *td, unsigned long long nsec)
1060{
1061 int idx = 0;
1062
1063 assert(nsec < 1000);
1064
1065 switch (nsec) {
1066 case 750 ... 999:
1067 idx = 9;
1068 break;
1069 case 500 ... 749:
1070 idx = 8;
1071 break;
1072 case 250 ... 499:
1073 idx = 7;
1074 break;
1075 case 100 ... 249:
1076 idx = 6;
1077 break;
1078 case 50 ... 99:
1079 idx = 5;
1080 break;
1081 case 20 ... 49:
1082 idx = 4;
1083 break;
1084 case 10 ... 19:
1085 idx = 3;
1086 break;
1087 case 4 ... 9:
1088 idx = 2;
1089 break;
1090 case 2 ... 3:
1091 idx = 1;
1092 case 0 ... 1:
1093 break;
1094 }
1095
1096 assert(idx < FIO_IO_U_LAT_N_NR);
1097 td->ts.io_u_lat_n[idx]++;
1098}
1099
1100static void io_u_mark_lat_usec(struct thread_data *td, unsigned long long usec)
1101{
1102 int idx = 0;
1103
1104 assert(usec < 1000 && usec >= 1);
1105
1106 switch (usec) {
1107 case 750 ... 999:
1108 idx = 9;
1109 break;
1110 case 500 ... 749:
1111 idx = 8;
1112 break;
1113 case 250 ... 499:
1114 idx = 7;
1115 break;
1116 case 100 ... 249:
1117 idx = 6;
1118 break;
1119 case 50 ... 99:
1120 idx = 5;
1121 break;
1122 case 20 ... 49:
1123 idx = 4;
1124 break;
1125 case 10 ... 19:
1126 idx = 3;
1127 break;
1128 case 4 ... 9:
1129 idx = 2;
1130 break;
1131 case 2 ... 3:
1132 idx = 1;
1133 case 0 ... 1:
1134 break;
1135 }
1136
1137 assert(idx < FIO_IO_U_LAT_U_NR);
1138 td->ts.io_u_lat_u[idx]++;
1139}
1140
1141static void io_u_mark_lat_msec(struct thread_data *td, unsigned long long msec)
1142{
1143 int idx = 0;
1144
1145 assert(msec >= 1);
1146
1147 switch (msec) {
1148 default:
1149 idx = 11;
1150 break;
1151 case 1000 ... 1999:
1152 idx = 10;
1153 break;
1154 case 750 ... 999:
1155 idx = 9;
1156 break;
1157 case 500 ... 749:
1158 idx = 8;
1159 break;
1160 case 250 ... 499:
1161 idx = 7;
1162 break;
1163 case 100 ... 249:
1164 idx = 6;
1165 break;
1166 case 50 ... 99:
1167 idx = 5;
1168 break;
1169 case 20 ... 49:
1170 idx = 4;
1171 break;
1172 case 10 ... 19:
1173 idx = 3;
1174 break;
1175 case 4 ... 9:
1176 idx = 2;
1177 break;
1178 case 2 ... 3:
1179 idx = 1;
1180 case 0 ... 1:
1181 break;
1182 }
1183
1184 assert(idx < FIO_IO_U_LAT_M_NR);
1185 td->ts.io_u_lat_m[idx]++;
1186}
1187
1188static void io_u_mark_latency(struct thread_data *td, unsigned long long nsec)
1189{
1190 if (nsec < 1000)
1191 io_u_mark_lat_nsec(td, nsec);
1192 else if (nsec < 1000000)
1193 io_u_mark_lat_usec(td, nsec / 1000);
1194 else
1195 io_u_mark_lat_msec(td, nsec / 1000000);
1196}
1197
1198static unsigned int __get_next_fileno_rand(struct thread_data *td)
1199{
1200 unsigned long fileno;
1201
1202 if (td->o.file_service_type == FIO_FSERVICE_RANDOM) {
1203 uint64_t frand_max = rand_max(&td->next_file_state);
1204 unsigned long r;
1205
1206 r = __rand(&td->next_file_state);
1207 return (unsigned int) ((double) td->o.nr_files
1208 * (r / (frand_max + 1.0)));
1209 }
1210
1211 if (td->o.file_service_type == FIO_FSERVICE_ZIPF)
1212 fileno = zipf_next(&td->next_file_zipf);
1213 else if (td->o.file_service_type == FIO_FSERVICE_PARETO)
1214 fileno = pareto_next(&td->next_file_zipf);
1215 else if (td->o.file_service_type == FIO_FSERVICE_GAUSS)
1216 fileno = gauss_next(&td->next_file_gauss);
1217 else {
1218 log_err("fio: bad file service type: %d\n", td->o.file_service_type);
1219 assert(0);
1220 return 0;
1221 }
1222
1223 return fileno >> FIO_FSERVICE_SHIFT;
1224}
1225
1226/*
1227 * Get next file to service by choosing one at random
1228 */
1229static struct fio_file *get_next_file_rand(struct thread_data *td,
1230 enum fio_file_flags goodf,
1231 enum fio_file_flags badf)
1232{
1233 struct fio_file *f;
1234 int fno;
1235
1236 do {
1237 int opened = 0;
1238
1239 fno = __get_next_fileno_rand(td);
1240
1241 f = td->files[fno];
1242 if (fio_file_done(f))
1243 continue;
1244
1245 if (!fio_file_open(f)) {
1246 int err;
1247
1248 if (td->nr_open_files >= td->o.open_files)
1249 return ERR_PTR(-EBUSY);
1250
1251 err = td_io_open_file(td, f);
1252 if (err)
1253 continue;
1254 opened = 1;
1255 }
1256
1257 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
1258 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
1259 return f;
1260 }
1261 if (opened)
1262 td_io_close_file(td, f);
1263 } while (1);
1264}
1265
1266/*
1267 * Get next file to service by doing round robin between all available ones
1268 */
1269static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
1270 int badf)
1271{
1272 unsigned int old_next_file = td->next_file;
1273 struct fio_file *f;
1274
1275 do {
1276 int opened = 0;
1277
1278 f = td->files[td->next_file];
1279
1280 td->next_file++;
1281 if (td->next_file >= td->o.nr_files)
1282 td->next_file = 0;
1283
1284 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
1285 if (fio_file_done(f)) {
1286 f = NULL;
1287 continue;
1288 }
1289
1290 if (!fio_file_open(f)) {
1291 int err;
1292
1293 if (td->nr_open_files >= td->o.open_files)
1294 return ERR_PTR(-EBUSY);
1295
1296 err = td_io_open_file(td, f);
1297 if (err) {
1298 dprint(FD_FILE, "error %d on open of %s\n",
1299 err, f->file_name);
1300 f = NULL;
1301 continue;
1302 }
1303 opened = 1;
1304 }
1305
1306 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1307 f->flags);
1308 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1309 break;
1310
1311 if (opened)
1312 td_io_close_file(td, f);
1313
1314 f = NULL;
1315 } while (td->next_file != old_next_file);
1316
1317 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1318 return f;
1319}
1320
1321static struct fio_file *__get_next_file(struct thread_data *td)
1322{
1323 struct fio_file *f;
1324
1325 assert(td->o.nr_files <= td->files_index);
1326
1327 if (td->nr_done_files >= td->o.nr_files) {
1328 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1329 " nr_files=%d\n", td->nr_open_files,
1330 td->nr_done_files,
1331 td->o.nr_files);
1332 return NULL;
1333 }
1334
1335 f = td->file_service_file;
1336 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1337 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1338 goto out;
1339 if (td->file_service_left--)
1340 goto out;
1341 }
1342
1343 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1344 td->o.file_service_type == FIO_FSERVICE_SEQ)
1345 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1346 else
1347 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1348
1349 if (IS_ERR(f))
1350 return f;
1351
1352 td->file_service_file = f;
1353 td->file_service_left = td->file_service_nr - 1;
1354out:
1355 if (f)
1356 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1357 else
1358 dprint(FD_FILE, "get_next_file: NULL\n");
1359 return f;
1360}
1361
1362static struct fio_file *get_next_file(struct thread_data *td)
1363{
1364 return __get_next_file(td);
1365}
1366
1367static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
1368{
1369 struct fio_file *f;
1370
1371 do {
1372 f = get_next_file(td);
1373 if (IS_ERR_OR_NULL(f))
1374 return PTR_ERR(f);
1375
1376 io_u->file = f;
1377 get_file(f);
1378
1379 if (!fill_io_u(td, io_u))
1380 break;
1381
1382 put_file_log(td, f);
1383 td_io_close_file(td, f);
1384 io_u->file = NULL;
1385 if (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)
1386 fio_file_reset(td, f);
1387 else {
1388 fio_file_set_done(f);
1389 td->nr_done_files++;
1390 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1391 td->nr_done_files, td->o.nr_files);
1392 }
1393 } while (1);
1394
1395 return 0;
1396}
1397
1398static void lat_fatal(struct thread_data *td, struct io_completion_data *icd,
1399 unsigned long long tnsec, unsigned long long max_nsec)
1400{
1401 if (!td->error)
1402 log_err("fio: latency of %llu nsec exceeds specified max (%llu nsec)\n", tnsec, max_nsec);
1403 td_verror(td, ETIMEDOUT, "max latency exceeded");
1404 icd->error = ETIMEDOUT;
1405}
1406
1407static void lat_new_cycle(struct thread_data *td)
1408{
1409 fio_gettime(&td->latency_ts, NULL);
1410 td->latency_ios = ddir_rw_sum(td->io_blocks);
1411 td->latency_failed = 0;
1412}
1413
1414/*
1415 * We had an IO outside the latency target. Reduce the queue depth. If we
1416 * are at QD=1, then it's time to give up.
1417 */
1418static bool __lat_target_failed(struct thread_data *td)
1419{
1420 if (td->latency_qd == 1)
1421 return true;
1422
1423 td->latency_qd_high = td->latency_qd;
1424
1425 if (td->latency_qd == td->latency_qd_low)
1426 td->latency_qd_low--;
1427
1428 td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
1429
1430 dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1431
1432 /*
1433 * When we ramp QD down, quiesce existing IO to prevent
1434 * a storm of ramp downs due to pending higher depth.
1435 */
1436 io_u_quiesce(td);
1437 lat_new_cycle(td);
1438 return false;
1439}
1440
1441static bool lat_target_failed(struct thread_data *td)
1442{
1443 if (td->o.latency_percentile.u.f == 100.0)
1444 return __lat_target_failed(td);
1445
1446 td->latency_failed++;
1447 return false;
1448}
1449
1450void lat_target_init(struct thread_data *td)
1451{
1452 td->latency_end_run = 0;
1453
1454 if (td->o.latency_target) {
1455 dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
1456 fio_gettime(&td->latency_ts, NULL);
1457 td->latency_qd = 1;
1458 td->latency_qd_high = td->o.iodepth;
1459 td->latency_qd_low = 1;
1460 td->latency_ios = ddir_rw_sum(td->io_blocks);
1461 } else
1462 td->latency_qd = td->o.iodepth;
1463}
1464
1465void lat_target_reset(struct thread_data *td)
1466{
1467 if (!td->latency_end_run)
1468 lat_target_init(td);
1469}
1470
1471static void lat_target_success(struct thread_data *td)
1472{
1473 const unsigned int qd = td->latency_qd;
1474 struct thread_options *o = &td->o;
1475
1476 td->latency_qd_low = td->latency_qd;
1477
1478 /*
1479 * If we haven't failed yet, we double up to a failing value instead
1480 * of bisecting from highest possible queue depth. If we have set
1481 * a limit other than td->o.iodepth, bisect between that.
1482 */
1483 if (td->latency_qd_high != o->iodepth)
1484 td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
1485 else
1486 td->latency_qd *= 2;
1487
1488 if (td->latency_qd > o->iodepth)
1489 td->latency_qd = o->iodepth;
1490
1491 dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1492
1493 /*
1494 * Same as last one, we are done. Let it run a latency cycle, so
1495 * we get only the results from the targeted depth.
1496 */
1497 if (td->latency_qd == qd) {
1498 if (td->latency_end_run) {
1499 dprint(FD_RATE, "We are done\n");
1500 td->done = 1;
1501 } else {
1502 dprint(FD_RATE, "Quiesce and final run\n");
1503 io_u_quiesce(td);
1504 td->latency_end_run = 1;
1505 reset_all_stats(td);
1506 reset_io_stats(td);
1507 }
1508 }
1509
1510 lat_new_cycle(td);
1511}
1512
1513/*
1514 * Check if we can bump the queue depth
1515 */
1516void lat_target_check(struct thread_data *td)
1517{
1518 uint64_t usec_window;
1519 uint64_t ios;
1520 double success_ios;
1521
1522 usec_window = utime_since_now(&td->latency_ts);
1523 if (usec_window < td->o.latency_window)
1524 return;
1525
1526 ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
1527 success_ios = (double) (ios - td->latency_failed) / (double) ios;
1528 success_ios *= 100.0;
1529
1530 dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
1531
1532 if (success_ios >= td->o.latency_percentile.u.f)
1533 lat_target_success(td);
1534 else
1535 __lat_target_failed(td);
1536}
1537
1538/*
1539 * If latency target is enabled, we might be ramping up or down and not
1540 * using the full queue depth available.
1541 */
1542bool queue_full(const struct thread_data *td)
1543{
1544 const int qempty = io_u_qempty(&td->io_u_freelist);
1545
1546 if (qempty)
1547 return true;
1548 if (!td->o.latency_target)
1549 return false;
1550
1551 return td->cur_depth >= td->latency_qd;
1552}
1553
1554struct io_u *__get_io_u(struct thread_data *td)
1555{
1556 struct io_u *io_u = NULL;
1557 int ret;
1558
1559 if (td->stop_io)
1560 return NULL;
1561
1562 td_io_u_lock(td);
1563
1564again:
1565 if (!io_u_rempty(&td->io_u_requeues))
1566 io_u = io_u_rpop(&td->io_u_requeues);
1567 else if (!queue_full(td)) {
1568 io_u = io_u_qpop(&td->io_u_freelist);
1569
1570 io_u->file = NULL;
1571 io_u->buflen = 0;
1572 io_u->resid = 0;
1573 io_u->end_io = NULL;
1574 }
1575
1576 if (io_u) {
1577 assert(io_u->flags & IO_U_F_FREE);
1578 io_u_clear(td, io_u, IO_U_F_FREE | IO_U_F_NO_FILE_PUT |
1579 IO_U_F_TRIMMED | IO_U_F_BARRIER |
1580 IO_U_F_VER_LIST);
1581
1582 io_u->error = 0;
1583 io_u->acct_ddir = -1;
1584 td->cur_depth++;
1585 assert(!(td->flags & TD_F_CHILD));
1586 io_u_set(td, io_u, IO_U_F_IN_CUR_DEPTH);
1587 io_u->ipo = NULL;
1588 } else if (td_async_processing(td)) {
1589 /*
1590 * We ran out, wait for async verify threads to finish and
1591 * return one
1592 */
1593 assert(!(td->flags & TD_F_CHILD));
1594 ret = pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1595 assert(ret == 0);
1596 goto again;
1597 }
1598
1599 td_io_u_unlock(td);
1600 return io_u;
1601}
1602
1603static bool check_get_trim(struct thread_data *td, struct io_u *io_u)
1604{
1605 if (!(td->flags & TD_F_TRIM_BACKLOG))
1606 return false;
1607 if (!td->trim_entries)
1608 return false;
1609
1610 if (td->trim_batch) {
1611 td->trim_batch--;
1612 if (get_next_trim(td, io_u))
1613 return true;
1614 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1615 td->last_ddir != DDIR_READ) {
1616 td->trim_batch = td->o.trim_batch;
1617 if (!td->trim_batch)
1618 td->trim_batch = td->o.trim_backlog;
1619 if (get_next_trim(td, io_u))
1620 return true;
1621 }
1622
1623 return false;
1624}
1625
1626static bool check_get_verify(struct thread_data *td, struct io_u *io_u)
1627{
1628 if (!(td->flags & TD_F_VER_BACKLOG))
1629 return false;
1630
1631 if (td->io_hist_len) {
1632 int get_verify = 0;
1633
1634 if (td->verify_batch)
1635 get_verify = 1;
1636 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1637 td->last_ddir != DDIR_READ) {
1638 td->verify_batch = td->o.verify_batch;
1639 if (!td->verify_batch)
1640 td->verify_batch = td->o.verify_backlog;
1641 get_verify = 1;
1642 }
1643
1644 if (get_verify && !get_next_verify(td, io_u)) {
1645 td->verify_batch--;
1646 return true;
1647 }
1648 }
1649
1650 return false;
1651}
1652
1653/*
1654 * Fill offset and start time into the buffer content, to prevent too
1655 * easy compressible data for simple de-dupe attempts. Do this for every
1656 * 512b block in the range, since that should be the smallest block size
1657 * we can expect from a device.
1658 */
1659static void small_content_scramble(struct io_u *io_u)
1660{
1661 unsigned int i, nr_blocks = io_u->buflen >> 9;
1662 unsigned int offset;
1663 uint64_t boffset, *iptr;
1664 char *p;
1665
1666 if (!nr_blocks)
1667 return;
1668
1669 p = io_u->xfer_buf;
1670 boffset = io_u->offset;
1671
1672 if (io_u->buf_filled_len)
1673 io_u->buf_filled_len = 0;
1674
1675 /*
1676 * Generate random index between 0..7. We do chunks of 512b, if
1677 * we assume a cacheline is 64 bytes, then we have 8 of those.
1678 * Scramble content within the blocks in the same cacheline to
1679 * speed things up.
1680 */
1681 offset = (io_u->start_time.tv_nsec ^ boffset) & 7;
1682
1683 for (i = 0; i < nr_blocks; i++) {
1684 /*
1685 * Fill offset into start of cacheline, time into end
1686 * of cacheline
1687 */
1688 iptr = (void *) p + (offset << 6);
1689 *iptr = boffset;
1690
1691 iptr = (void *) p + 64 - 2 * sizeof(uint64_t);
1692 iptr[0] = io_u->start_time.tv_sec;
1693 iptr[1] = io_u->start_time.tv_nsec;
1694
1695 p += 512;
1696 boffset += 512;
1697 }
1698}
1699
1700/*
1701 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1702 * etc. The returned io_u is fully ready to be prepped and submitted.
1703 */
1704struct io_u *get_io_u(struct thread_data *td)
1705{
1706 struct fio_file *f;
1707 struct io_u *io_u;
1708 int do_scramble = 0;
1709 long ret = 0;
1710
1711 io_u = __get_io_u(td);
1712 if (!io_u) {
1713 dprint(FD_IO, "__get_io_u failed\n");
1714 return NULL;
1715 }
1716
1717 if (check_get_verify(td, io_u))
1718 goto out;
1719 if (check_get_trim(td, io_u))
1720 goto out;
1721
1722 /*
1723 * from a requeue, io_u already setup
1724 */
1725 if (io_u->file)
1726 goto out;
1727
1728 /*
1729 * If using an iolog, grab next piece if any available.
1730 */
1731 if (td->flags & TD_F_READ_IOLOG) {
1732 if (read_iolog_get(td, io_u))
1733 goto err_put;
1734 } else if (set_io_u_file(td, io_u)) {
1735 ret = -EBUSY;
1736 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1737 goto err_put;
1738 }
1739
1740 f = io_u->file;
1741 if (!f) {
1742 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1743 goto err_put;
1744 }
1745
1746 assert(fio_file_open(f));
1747
1748 if (ddir_rw(io_u->ddir)) {
1749 if (!io_u->buflen && !td_ioengine_flagged(td, FIO_NOIO)) {
1750 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1751 goto err_put;
1752 }
1753
1754 f->last_start[io_u->ddir] = io_u->offset;
1755 f->last_pos[io_u->ddir] = io_u->offset + io_u->buflen;
1756
1757 if (io_u->ddir == DDIR_WRITE) {
1758 if (td->flags & TD_F_REFILL_BUFFERS) {
1759 io_u_fill_buffer(td, io_u,
1760 td->o.min_bs[DDIR_WRITE],
1761 io_u->buflen);
1762 } else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) &&
1763 !(td->flags & TD_F_COMPRESS))
1764 do_scramble = 1;
1765 if (td->flags & TD_F_DO_VERIFY) {
1766 populate_verify_io_u(td, io_u);
1767 do_scramble = 0;
1768 }
1769 } else if (io_u->ddir == DDIR_READ) {
1770 /*
1771 * Reset the buf_filled parameters so next time if the
1772 * buffer is used for writes it is refilled.
1773 */
1774 io_u->buf_filled_len = 0;
1775 }
1776 }
1777
1778 /*
1779 * Set io data pointers.
1780 */
1781 io_u->xfer_buf = io_u->buf;
1782 io_u->xfer_buflen = io_u->buflen;
1783
1784out:
1785 assert(io_u->file);
1786 if (!td_io_prep(td, io_u)) {
1787 if (!td->o.disable_lat)
1788 fio_gettime(&io_u->start_time, NULL);
1789
1790 if (do_scramble)
1791 small_content_scramble(io_u);
1792
1793 return io_u;
1794 }
1795err_put:
1796 dprint(FD_IO, "get_io_u failed\n");
1797 put_io_u(td, io_u);
1798 return ERR_PTR(ret);
1799}
1800
1801static void __io_u_log_error(struct thread_data *td, struct io_u *io_u)
1802{
1803 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1804
1805 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1806 return;
1807
1808 log_err("fio: io_u error%s%s: %s: %s offset=%llu, buflen=%lu\n",
1809 io_u->file ? " on file " : "",
1810 io_u->file ? io_u->file->file_name : "",
1811 strerror(io_u->error),
1812 io_ddir_name(io_u->ddir),
1813 io_u->offset, io_u->xfer_buflen);
1814
1815 if (td->io_ops->errdetails) {
1816 char *err = td->io_ops->errdetails(io_u);
1817
1818 log_err("fio: %s\n", err);
1819 free(err);
1820 }
1821
1822 if (!td->error)
1823 td_verror(td, io_u->error, "io_u error");
1824}
1825
1826void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1827{
1828 __io_u_log_error(td, io_u);
1829 if (td->parent)
1830 __io_u_log_error(td->parent, io_u);
1831}
1832
1833static inline bool gtod_reduce(struct thread_data *td)
1834{
1835 return (td->o.disable_clat && td->o.disable_slat && td->o.disable_bw)
1836 || td->o.gtod_reduce;
1837}
1838
1839static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1840 struct io_completion_data *icd,
1841 const enum fio_ddir idx, unsigned int bytes)
1842{
1843 const int no_reduce = !gtod_reduce(td);
1844 unsigned long long llnsec = 0;
1845
1846 if (td->parent)
1847 td = td->parent;
1848
1849 if (!td->o.stats || td_ioengine_flagged(td, FIO_NOSTATS))
1850 return;
1851
1852 if (no_reduce)
1853 llnsec = ntime_since(&io_u->issue_time, &icd->time);
1854
1855 if (!td->o.disable_lat) {
1856 unsigned long long tnsec;
1857
1858 tnsec = ntime_since(&io_u->start_time, &icd->time);
1859 add_lat_sample(td, idx, tnsec, bytes, io_u->offset);
1860
1861 if (td->flags & TD_F_PROFILE_OPS) {
1862 struct prof_io_ops *ops = &td->prof_io_ops;
1863
1864 if (ops->io_u_lat)
1865 icd->error = ops->io_u_lat(td, tnsec);
1866 }
1867
1868 if (td->o.max_latency && tnsec > td->o.max_latency)
1869 lat_fatal(td, icd, tnsec, td->o.max_latency);
1870 if (td->o.latency_target && tnsec > td->o.latency_target) {
1871 if (lat_target_failed(td))
1872 lat_fatal(td, icd, tnsec, td->o.latency_target);
1873 }
1874 }
1875
1876 if (ddir_rw(idx)) {
1877 if (!td->o.disable_clat) {
1878 add_clat_sample(td, idx, llnsec, bytes, io_u->offset);
1879 io_u_mark_latency(td, llnsec);
1880 }
1881
1882 if (!td->o.disable_bw && per_unit_log(td->bw_log))
1883 add_bw_sample(td, io_u, bytes, llnsec);
1884
1885 if (no_reduce && per_unit_log(td->iops_log))
1886 add_iops_sample(td, io_u, bytes);
1887 } else if (ddir_sync(idx) && !td->o.disable_clat)
1888 add_sync_clat_sample(&td->ts, llnsec);
1889
1890 if (td->ts.nr_block_infos && io_u->ddir == DDIR_TRIM) {
1891 uint32_t *info = io_u_block_info(td, io_u);
1892 if (BLOCK_INFO_STATE(*info) < BLOCK_STATE_TRIM_FAILURE) {
1893 if (io_u->ddir == DDIR_TRIM) {
1894 *info = BLOCK_INFO(BLOCK_STATE_TRIMMED,
1895 BLOCK_INFO_TRIMS(*info) + 1);
1896 } else if (io_u->ddir == DDIR_WRITE) {
1897 *info = BLOCK_INFO_SET_STATE(BLOCK_STATE_WRITTEN,
1898 *info);
1899 }
1900 }
1901 }
1902}
1903
1904static void file_log_write_comp(const struct thread_data *td, struct fio_file *f,
1905 uint64_t offset, unsigned int bytes)
1906{
1907 int idx;
1908
1909 if (!f)
1910 return;
1911
1912 if (f->first_write == -1ULL || offset < f->first_write)
1913 f->first_write = offset;
1914 if (f->last_write == -1ULL || ((offset + bytes) > f->last_write))
1915 f->last_write = offset + bytes;
1916
1917 if (!f->last_write_comp)
1918 return;
1919
1920 idx = f->last_write_idx++;
1921 f->last_write_comp[idx] = offset;
1922 if (f->last_write_idx == td->o.iodepth)
1923 f->last_write_idx = 0;
1924}
1925
1926static bool should_account(struct thread_data *td)
1927{
1928 return ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1929 td->runstate == TD_VERIFYING);
1930}
1931
1932static void io_completed(struct thread_data *td, struct io_u **io_u_ptr,
1933 struct io_completion_data *icd)
1934{
1935 struct io_u *io_u = *io_u_ptr;
1936 enum fio_ddir ddir = io_u->ddir;
1937 struct fio_file *f = io_u->file;
1938
1939 dprint_io_u(io_u, "complete");
1940
1941 assert(io_u->flags & IO_U_F_FLIGHT);
1942 io_u_clear(td, io_u, IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1943
1944 /*
1945 * Mark IO ok to verify
1946 */
1947 if (io_u->ipo) {
1948 /*
1949 * Remove errored entry from the verification list
1950 */
1951 if (io_u->error)
1952 unlog_io_piece(td, io_u);
1953 else {
1954 io_u->ipo->flags &= ~IP_F_IN_FLIGHT;
1955 write_barrier();
1956 }
1957 }
1958
1959 if (ddir_sync(ddir)) {
1960 td->last_was_sync = true;
1961 if (f) {
1962 f->first_write = -1ULL;
1963 f->last_write = -1ULL;
1964 }
1965 if (should_account(td))
1966 account_io_completion(td, io_u, icd, ddir, io_u->buflen);
1967 return;
1968 }
1969
1970 td->last_was_sync = false;
1971 td->last_ddir = ddir;
1972
1973 if (!io_u->error && ddir_rw(ddir)) {
1974 unsigned int bytes = io_u->buflen - io_u->resid;
1975 int ret;
1976
1977 td->io_blocks[ddir]++;
1978 td->io_bytes[ddir] += bytes;
1979
1980 if (!(io_u->flags & IO_U_F_VER_LIST)) {
1981 td->this_io_blocks[ddir]++;
1982 td->this_io_bytes[ddir] += bytes;
1983 }
1984
1985 if (ddir == DDIR_WRITE)
1986 file_log_write_comp(td, f, io_u->offset, bytes);
1987
1988 if (should_account(td))
1989 account_io_completion(td, io_u, icd, ddir, bytes);
1990
1991 icd->bytes_done[ddir] += bytes;
1992
1993 if (io_u->end_io) {
1994 ret = io_u->end_io(td, io_u_ptr);
1995 io_u = *io_u_ptr;
1996 if (ret && !icd->error)
1997 icd->error = ret;
1998 }
1999 } else if (io_u->error) {
2000 icd->error = io_u->error;
2001 io_u_log_error(td, io_u);
2002 }
2003 if (icd->error) {
2004 enum error_type_bit eb = td_error_type(ddir, icd->error);
2005
2006 if (!td_non_fatal_error(td, eb, icd->error))
2007 return;
2008
2009 /*
2010 * If there is a non_fatal error, then add to the error count
2011 * and clear all the errors.
2012 */
2013 update_error_count(td, icd->error);
2014 td_clear_error(td);
2015 icd->error = 0;
2016 if (io_u)
2017 io_u->error = 0;
2018 }
2019}
2020
2021static void init_icd(struct thread_data *td, struct io_completion_data *icd,
2022 int nr)
2023{
2024 int ddir;
2025
2026 if (!gtod_reduce(td))
2027 fio_gettime(&icd->time, NULL);
2028
2029 icd->nr = nr;
2030
2031 icd->error = 0;
2032 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2033 icd->bytes_done[ddir] = 0;
2034}
2035
2036static void ios_completed(struct thread_data *td,
2037 struct io_completion_data *icd)
2038{
2039 struct io_u *io_u;
2040 int i;
2041
2042 for (i = 0; i < icd->nr; i++) {
2043 io_u = td->io_ops->event(td, i);
2044
2045 io_completed(td, &io_u, icd);
2046
2047 if (io_u)
2048 put_io_u(td, io_u);
2049 }
2050}
2051
2052/*
2053 * Complete a single io_u for the sync engines.
2054 */
2055int io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
2056{
2057 struct io_completion_data icd;
2058 int ddir;
2059
2060 init_icd(td, &icd, 1);
2061 io_completed(td, &io_u, &icd);
2062
2063 if (io_u)
2064 put_io_u(td, io_u);
2065
2066 if (icd.error) {
2067 td_verror(td, icd.error, "io_u_sync_complete");
2068 return -1;
2069 }
2070
2071 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2072 td->bytes_done[ddir] += icd.bytes_done[ddir];
2073
2074 return 0;
2075}
2076
2077/*
2078 * Called to complete min_events number of io for the async engines.
2079 */
2080int io_u_queued_complete(struct thread_data *td, int min_evts)
2081{
2082 struct io_completion_data icd;
2083 struct timespec *tvp = NULL;
2084 int ret, ddir;
2085 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
2086
2087 dprint(FD_IO, "io_u_queued_complete: min=%d\n", min_evts);
2088
2089 if (!min_evts)
2090 tvp = &ts;
2091 else if (min_evts > td->cur_depth)
2092 min_evts = td->cur_depth;
2093
2094 /* No worries, td_io_getevents fixes min and max if they are
2095 * set incorrectly */
2096 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete_max, tvp);
2097 if (ret < 0) {
2098 td_verror(td, -ret, "td_io_getevents");
2099 return ret;
2100 } else if (!ret)
2101 return ret;
2102
2103 init_icd(td, &icd, ret);
2104 ios_completed(td, &icd);
2105 if (icd.error) {
2106 td_verror(td, icd.error, "io_u_queued_complete");
2107 return -1;
2108 }
2109
2110 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2111 td->bytes_done[ddir] += icd.bytes_done[ddir];
2112
2113 return ret;
2114}
2115
2116/*
2117 * Call when io_u is really queued, to update the submission latency.
2118 */
2119void io_u_queued(struct thread_data *td, struct io_u *io_u)
2120{
2121 if (!td->o.disable_slat && ramp_time_over(td) && td->o.stats) {
2122 unsigned long slat_time;
2123
2124 slat_time = ntime_since(&io_u->start_time, &io_u->issue_time);
2125
2126 if (td->parent)
2127 td = td->parent;
2128
2129 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen,
2130 io_u->offset);
2131 }
2132}
2133
2134/*
2135 * See if we should reuse the last seed, if dedupe is enabled
2136 */
2137static struct frand_state *get_buf_state(struct thread_data *td)
2138{
2139 unsigned int v;
2140
2141 if (!td->o.dedupe_percentage)
2142 return &td->buf_state;
2143 else if (td->o.dedupe_percentage == 100) {
2144 frand_copy(&td->buf_state_prev, &td->buf_state);
2145 return &td->buf_state;
2146 }
2147
2148 v = rand32_between(&td->dedupe_state, 1, 100);
2149
2150 if (v <= td->o.dedupe_percentage)
2151 return &td->buf_state_prev;
2152
2153 return &td->buf_state;
2154}
2155
2156static void save_buf_state(struct thread_data *td, struct frand_state *rs)
2157{
2158 if (td->o.dedupe_percentage == 100)
2159 frand_copy(rs, &td->buf_state_prev);
2160 else if (rs == &td->buf_state)
2161 frand_copy(&td->buf_state_prev, rs);
2162}
2163
2164void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write,
2165 unsigned int max_bs)
2166{
2167 struct thread_options *o = &td->o;
2168
2169 if (o->mem_type == MEM_CUDA_MALLOC)
2170 return;
2171
2172 if (o->compress_percentage || o->dedupe_percentage) {
2173 unsigned int perc = td->o.compress_percentage;
2174 struct frand_state *rs;
2175 unsigned int left = max_bs;
2176 unsigned int this_write;
2177
2178 do {
2179 rs = get_buf_state(td);
2180
2181 min_write = min(min_write, left);
2182
2183 if (perc) {
2184 this_write = min_not_zero(min_write,
2185 td->o.compress_chunk);
2186
2187 fill_random_buf_percentage(rs, buf, perc,
2188 this_write, this_write,
2189 o->buffer_pattern,
2190 o->buffer_pattern_bytes);
2191 } else {
2192 fill_random_buf(rs, buf, min_write);
2193 this_write = min_write;
2194 }
2195
2196 buf += this_write;
2197 left -= this_write;
2198 save_buf_state(td, rs);
2199 } while (left);
2200 } else if (o->buffer_pattern_bytes)
2201 fill_buffer_pattern(td, buf, max_bs);
2202 else if (o->zero_buffers)
2203 memset(buf, 0, max_bs);
2204 else
2205 fill_random_buf(get_buf_state(td), buf, max_bs);
2206}
2207
2208/*
2209 * "randomly" fill the buffer contents
2210 */
2211void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
2212 unsigned int min_write, unsigned int max_bs)
2213{
2214 io_u->buf_filled_len = 0;
2215 fill_io_buffer(td, io_u->buf, min_write, max_bs);
2216}
2217
2218static int do_sync_file_range(const struct thread_data *td,
2219 struct fio_file *f)
2220{
2221 off64_t offset, nbytes;
2222
2223 offset = f->first_write;
2224 nbytes = f->last_write - f->first_write;
2225
2226 if (!nbytes)
2227 return 0;
2228
2229 return sync_file_range(f->fd, offset, nbytes, td->o.sync_file_range);
2230}
2231
2232int do_io_u_sync(const struct thread_data *td, struct io_u *io_u)
2233{
2234 int ret;
2235
2236 if (io_u->ddir == DDIR_SYNC) {
2237 ret = fsync(io_u->file->fd);
2238 } else if (io_u->ddir == DDIR_DATASYNC) {
2239#ifdef CONFIG_FDATASYNC
2240 ret = fdatasync(io_u->file->fd);
2241#else
2242 ret = io_u->xfer_buflen;
2243 io_u->error = EINVAL;
2244#endif
2245 } else if (io_u->ddir == DDIR_SYNC_FILE_RANGE)
2246 ret = do_sync_file_range(td, io_u->file);
2247 else {
2248 ret = io_u->xfer_buflen;
2249 io_u->error = EINVAL;
2250 }
2251
2252 if (ret < 0)
2253 io_u->error = errno;
2254
2255 return ret;
2256}
2257
2258int do_io_u_trim(const struct thread_data *td, struct io_u *io_u)
2259{
2260#ifndef FIO_HAVE_TRIM
2261 io_u->error = EINVAL;
2262 return 0;
2263#else
2264 struct fio_file *f = io_u->file;
2265 int ret;
2266
2267 ret = os_trim(f, io_u->offset, io_u->xfer_buflen);
2268 if (!ret)
2269 return io_u->xfer_buflen;
2270
2271 io_u->error = ret;
2272 return 0;
2273#endif
2274}