Enable quiet build mode, enable by default
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9
10/*
11 * Change this define to play with the timeout handling
12 */
13#undef FIO_USE_TIMEOUT
14
15struct io_completion_data {
16 int nr; /* input */
17
18 int error; /* output */
19 unsigned long bytes_done[2]; /* output */
20 struct timeval time; /* output */
21};
22
23/*
24 * The ->file_map[] contains a map of blocks we have or have not done io
25 * to yet. Used to make sure we cover the entire range in a fair fashion.
26 */
27static int random_map_free(struct thread_data *td, struct fio_file *f,
28 const unsigned long long block)
29{
30 unsigned int idx = RAND_MAP_IDX(td, f, block);
31 unsigned int bit = RAND_MAP_BIT(td, f, block);
32
33 dprint(FD_RANDOM, "free: b=%llu, idx=%u, bit=%u\n", block, idx, bit);
34
35 return (f->file_map[idx] & (1UL << bit)) == 0;
36}
37
38/*
39 * Mark a given offset as used in the map.
40 */
41static void mark_random_map(struct thread_data *td, struct io_u *io_u)
42{
43 unsigned int min_bs = td->o.rw_min_bs;
44 struct fio_file *f = io_u->file;
45 unsigned long long block;
46 unsigned int blocks;
47 unsigned int nr_blocks;
48
49 block = (io_u->offset - f->file_offset) / (unsigned long long) min_bs;
50 blocks = 0;
51 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
52
53 while (blocks < nr_blocks) {
54 unsigned int idx, bit;
55
56 /*
57 * If we have a mixed random workload, we may
58 * encounter blocks we already did IO to.
59 */
60 if ((td->o.ddir_nr == 1) && !random_map_free(td, f, block))
61 break;
62
63 idx = RAND_MAP_IDX(td, f, block);
64 bit = RAND_MAP_BIT(td, f, block);
65
66 fio_assert(td, idx < f->num_maps);
67
68 f->file_map[idx] |= (1UL << bit);
69 block++;
70 blocks++;
71 }
72
73 if ((blocks * min_bs) < io_u->buflen)
74 io_u->buflen = blocks * min_bs;
75}
76
77static inline unsigned long long last_block(struct thread_data *td,
78 struct fio_file *f,
79 enum fio_ddir ddir)
80{
81 unsigned long long max_blocks;
82
83 max_blocks = f->io_size / (unsigned long long) td->o.min_bs[ddir];
84 if (!max_blocks)
85 return 0;
86
87 return max_blocks - 1;
88}
89
90/*
91 * Return the next free block in the map.
92 */
93static int get_next_free_block(struct thread_data *td, struct fio_file *f,
94 enum fio_ddir ddir, unsigned long long *b)
95{
96 unsigned long long min_bs = td->o.rw_min_bs;
97 int i;
98
99 i = f->last_free_lookup;
100 *b = (i * BLOCKS_PER_MAP);
101 while ((*b) * min_bs < f->real_file_size) {
102 if (f->file_map[i] != -1UL) {
103 *b += fio_ffz(f->file_map[i]);
104 if (*b > last_block(td, f, ddir))
105 break;
106 f->last_free_lookup = i;
107 return 0;
108 }
109
110 *b += BLOCKS_PER_MAP;
111 i++;
112 }
113
114 dprint(FD_IO, "failed finding a free block\n");
115 return 1;
116}
117
118static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
119 enum fio_ddir ddir, unsigned long long *b)
120{
121 unsigned long long r;
122 int loops = 5;
123
124 do {
125 r = os_random_long(&td->random_state);
126 dprint(FD_RANDOM, "off rand %llu\n", r);
127 *b = (last_block(td, f, ddir) - 1) * (r / ((unsigned long long) RAND_MAX + 1.0));
128
129 /*
130 * if we are not maintaining a random map, we are done.
131 */
132 if (td->o.norandommap)
133 return 0;
134
135 /*
136 * calculate map offset and check if it's free
137 */
138 if (random_map_free(td, f, *b))
139 return 0;
140
141 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
142 *b);
143 } while (--loops);
144
145 /*
146 * we get here, if we didn't suceed in looking up a block. generate
147 * a random start offset into the filemap, and find the first free
148 * block from there.
149 */
150 loops = 10;
151 do {
152 f->last_free_lookup = (f->num_maps - 1) * (r / (RAND_MAX+1.0));
153 if (!get_next_free_block(td, f, ddir, b))
154 return 0;
155
156 r = os_random_long(&td->random_state);
157 } while (--loops);
158
159 /*
160 * that didn't work either, try exhaustive search from the start
161 */
162 f->last_free_lookup = 0;
163 return get_next_free_block(td, f, ddir, b);
164}
165
166/*
167 * For random io, generate a random new block and see if it's used. Repeat
168 * until we find a free one. For sequential io, just return the end of
169 * the last io issued.
170 */
171static int get_next_offset(struct thread_data *td, struct io_u *io_u)
172{
173 struct fio_file *f = io_u->file;
174 unsigned long long b;
175 enum fio_ddir ddir = io_u->ddir;
176
177 if (td_random(td) && (td->o.ddir_nr && !--td->ddir_nr)) {
178 td->ddir_nr = td->o.ddir_nr;
179
180 if (get_next_rand_offset(td, f, ddir, &b))
181 return 1;
182 } else {
183 if (f->last_pos >= f->real_file_size) {
184 if (!td_random(td) ||
185 get_next_rand_offset(td, f, ddir, &b))
186 return 1;
187 } else
188 b = (f->last_pos - f->file_offset) / td->o.min_bs[ddir];
189 }
190
191 io_u->offset = (b * td->o.min_bs[ddir]) + f->file_offset;
192 if (io_u->offset >= f->real_file_size) {
193 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
194 io_u->offset, f->real_file_size);
195 return 1;
196 }
197
198 return 0;
199}
200
201static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u)
202{
203 const int ddir = io_u->ddir;
204 unsigned int buflen;
205 long r;
206
207 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
208 buflen = td->o.min_bs[ddir];
209 else {
210 r = os_random_long(&td->bsrange_state);
211 if (!td->o.bssplit_nr)
212 buflen = (unsigned int) (1 + (double) (td->o.max_bs[ddir] - 1) * r / (RAND_MAX + 1.0));
213 else {
214 long perc = 0;
215 unsigned int i;
216
217 for (i = 0; i < td->o.bssplit_nr; i++) {
218 struct bssplit *bsp = &td->o.bssplit[i];
219
220 buflen = bsp->bs;
221 perc += bsp->perc;
222 if (r <= ((LONG_MAX / 100L) * perc))
223 break;
224 }
225 }
226 if (!td->o.bs_unaligned)
227 buflen = (buflen + td->o.min_bs[ddir] - 1) & ~(td->o.min_bs[ddir] - 1);
228 }
229
230 if (io_u->offset + buflen > io_u->file->real_file_size) {
231 dprint(FD_IO, "lower buflen %u -> %u (ddir=%d)\n", buflen,
232 td->o.min_bs[ddir], ddir);
233 buflen = td->o.min_bs[ddir];
234 }
235
236 return buflen;
237}
238
239static void set_rwmix_bytes(struct thread_data *td)
240{
241 unsigned long long rbytes;
242 unsigned int diff;
243
244 /*
245 * we do time or byte based switch. this is needed because
246 * buffered writes may issue a lot quicker than they complete,
247 * whereas reads do not.
248 */
249 rbytes = td->io_bytes[td->rwmix_ddir] - td->rwmix_bytes;
250 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
251
252 td->rwmix_bytes = td->io_bytes[td->rwmix_ddir] + (rbytes * ((100 - diff)) / diff);
253}
254
255static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
256{
257 unsigned int v;
258 long r;
259
260 r = os_random_long(&td->rwmix_state);
261 v = 1 + (int) (100.0 * (r / (RAND_MAX + 1.0)));
262 if (v < td->o.rwmix[DDIR_READ])
263 return DDIR_READ;
264
265 return DDIR_WRITE;
266}
267
268/*
269 * Return the data direction for the next io_u. If the job is a
270 * mixed read/write workload, check the rwmix cycle and switch if
271 * necessary.
272 */
273static enum fio_ddir get_rw_ddir(struct thread_data *td)
274{
275 if (td_rw(td)) {
276 struct timeval now;
277 unsigned long elapsed;
278 unsigned int cycle;
279
280 fio_gettime(&now, NULL);
281 elapsed = mtime_since_now(&td->rwmix_switch);
282
283 /*
284 * if this is the first cycle, make it shorter
285 */
286 cycle = td->o.rwmixcycle;
287 if (!td->rwmix_bytes)
288 cycle /= 10;
289
290 /*
291 * Check if it's time to seed a new data direction.
292 */
293 if (elapsed >= cycle ||
294 td->io_bytes[td->rwmix_ddir] >= td->rwmix_bytes) {
295 unsigned long long max_bytes;
296 enum fio_ddir ddir;
297
298 /*
299 * Put a top limit on how many bytes we do for
300 * one data direction, to avoid overflowing the
301 * ranges too much
302 */
303 ddir = get_rand_ddir(td);
304 max_bytes = td->this_io_bytes[ddir];
305 if (max_bytes >= (td->o.size * td->o.rwmix[ddir] / 100)) {
306 if (!td->rw_end_set[ddir]) {
307 td->rw_end_set[ddir] = 1;
308 memcpy(&td->rw_end[ddir], &now, sizeof(now));
309 }
310 ddir ^= 1;
311 }
312
313 if (ddir != td->rwmix_ddir)
314 set_rwmix_bytes(td);
315
316 td->rwmix_ddir = ddir;
317 memcpy(&td->rwmix_switch, &now, sizeof(now));
318 }
319 return td->rwmix_ddir;
320 } else if (td_read(td))
321 return DDIR_READ;
322 else
323 return DDIR_WRITE;
324}
325
326void put_io_u(struct thread_data *td, struct io_u *io_u)
327{
328 assert((io_u->flags & IO_U_F_FREE) == 0);
329 io_u->flags |= IO_U_F_FREE;
330
331 if (io_u->file) {
332 int ret = put_file(td, io_u->file);
333
334 if (ret)
335 td_verror(td, ret, "file close");
336 }
337
338 io_u->file = NULL;
339 list_del(&io_u->list);
340 list_add(&io_u->list, &td->io_u_freelist);
341 td->cur_depth--;
342}
343
344void requeue_io_u(struct thread_data *td, struct io_u **io_u)
345{
346 struct io_u *__io_u = *io_u;
347
348 __io_u->flags |= IO_U_F_FREE;
349 if ((__io_u->flags & IO_U_F_FLIGHT) && (__io_u->ddir != DDIR_SYNC))
350 td->io_issues[__io_u->ddir]--;
351
352 __io_u->flags &= ~IO_U_F_FLIGHT;
353
354 list_del(&__io_u->list);
355 list_add_tail(&__io_u->list, &td->io_u_requeues);
356 td->cur_depth--;
357 *io_u = NULL;
358}
359
360static int fill_io_u(struct thread_data *td, struct io_u *io_u)
361{
362 if (td->io_ops->flags & FIO_NOIO)
363 goto out;
364
365 /*
366 * see if it's time to sync
367 */
368 if (td->o.fsync_blocks &&
369 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
370 td->io_issues[DDIR_WRITE] && should_fsync(td)) {
371 io_u->ddir = DDIR_SYNC;
372 goto out;
373 }
374
375 io_u->ddir = get_rw_ddir(td);
376
377 /*
378 * See if it's time to switch to a new zone
379 */
380 if (td->zone_bytes >= td->o.zone_size) {
381 td->zone_bytes = 0;
382 io_u->file->last_pos += td->o.zone_skip;
383 td->io_skip_bytes += td->o.zone_skip;
384 }
385
386 /*
387 * No log, let the seq/rand engine retrieve the next buflen and
388 * position.
389 */
390 if (get_next_offset(td, io_u)) {
391 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
392 return 1;
393 }
394
395 io_u->buflen = get_next_buflen(td, io_u);
396 if (!io_u->buflen) {
397 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
398 return 1;
399 }
400
401 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
402 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
403 dprint(FD_IO, " off=%llu/%lu > %llu\n", io_u->offset,
404 io_u->buflen, io_u->file->real_file_size);
405 return 1;
406 }
407
408 /*
409 * mark entry before potentially trimming io_u
410 */
411 if (td_random(td) && !td->o.norandommap)
412 mark_random_map(td, io_u);
413
414 /*
415 * If using a write iolog, store this entry.
416 */
417out:
418 dprint_io_u(io_u, "fill_io_u");
419 td->zone_bytes += io_u->buflen;
420 log_io_u(td, io_u);
421 return 0;
422}
423
424void io_u_mark_depth(struct thread_data *td, struct io_u *io_u)
425{
426 int index = 0;
427
428 if (io_u->ddir == DDIR_SYNC)
429 return;
430
431 switch (td->cur_depth) {
432 default:
433 index = 6;
434 break;
435 case 32 ... 63:
436 index = 5;
437 break;
438 case 16 ... 31:
439 index = 4;
440 break;
441 case 8 ... 15:
442 index = 3;
443 break;
444 case 4 ... 7:
445 index = 2;
446 break;
447 case 2 ... 3:
448 index = 1;
449 case 1:
450 break;
451 }
452
453 td->ts.io_u_map[index]++;
454 td->ts.total_io_u[io_u->ddir]++;
455}
456
457static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
458{
459 int index = 0;
460
461 assert(usec < 1000);
462
463 switch (usec) {
464 case 750 ... 999:
465 index = 9;
466 break;
467 case 500 ... 749:
468 index = 8;
469 break;
470 case 250 ... 499:
471 index = 7;
472 break;
473 case 100 ... 249:
474 index = 6;
475 break;
476 case 50 ... 99:
477 index = 5;
478 break;
479 case 20 ... 49:
480 index = 4;
481 break;
482 case 10 ... 19:
483 index = 3;
484 break;
485 case 4 ... 9:
486 index = 2;
487 break;
488 case 2 ... 3:
489 index = 1;
490 case 0 ... 1:
491 break;
492 }
493
494 assert(index < FIO_IO_U_LAT_U_NR);
495 td->ts.io_u_lat_u[index]++;
496}
497
498static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
499{
500 int index = 0;
501
502 switch (msec) {
503 default:
504 index = 11;
505 break;
506 case 1000 ... 1999:
507 index = 10;
508 break;
509 case 750 ... 999:
510 index = 9;
511 break;
512 case 500 ... 749:
513 index = 8;
514 break;
515 case 250 ... 499:
516 index = 7;
517 break;
518 case 100 ... 249:
519 index = 6;
520 break;
521 case 50 ... 99:
522 index = 5;
523 break;
524 case 20 ... 49:
525 index = 4;
526 break;
527 case 10 ... 19:
528 index = 3;
529 break;
530 case 4 ... 9:
531 index = 2;
532 break;
533 case 2 ... 3:
534 index = 1;
535 case 0 ... 1:
536 break;
537 }
538
539 assert(index < FIO_IO_U_LAT_M_NR);
540 td->ts.io_u_lat_m[index]++;
541}
542
543static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
544{
545 if (usec < 1000)
546 io_u_mark_lat_usec(td, usec);
547 else
548 io_u_mark_lat_msec(td, usec / 1000);
549}
550
551/*
552 * Get next file to service by choosing one at random
553 */
554static struct fio_file *get_next_file_rand(struct thread_data *td, int goodf,
555 int badf)
556{
557 struct fio_file *f;
558 int fno;
559
560 do {
561 long r = os_random_long(&td->next_file_state);
562
563 fno = (unsigned int) ((double) td->o.nr_files * (r / (RAND_MAX + 1.0)));
564 f = &td->files[fno];
565 if (f->flags & FIO_FILE_DONE)
566 continue;
567
568 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
569 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
570 return f;
571 }
572 } while (1);
573}
574
575/*
576 * Get next file to service by doing round robin between all available ones
577 */
578static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
579 int badf)
580{
581 unsigned int old_next_file = td->next_file;
582 struct fio_file *f;
583
584 do {
585 f = &td->files[td->next_file];
586
587 td->next_file++;
588 if (td->next_file >= td->o.nr_files)
589 td->next_file = 0;
590
591 if (f->flags & FIO_FILE_DONE) {
592 f = NULL;
593 continue;
594 }
595
596 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
597 break;
598
599 f = NULL;
600 } while (td->next_file != old_next_file);
601
602 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
603 return f;
604}
605
606static struct fio_file *get_next_file(struct thread_data *td)
607{
608 struct fio_file *f;
609
610 assert(td->o.nr_files <= td->files_index);
611
612 if (!td->nr_open_files || td->nr_done_files >= td->o.nr_files) {
613 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d, nr_files=%d\n", td->nr_open_files, td->nr_done_files, td->o.nr_files);
614 return NULL;
615 }
616
617 f = td->file_service_file;
618 if (f && (f->flags & FIO_FILE_OPEN) && td->file_service_left--)
619 goto out;
620
621 if (td->o.file_service_type == FIO_FSERVICE_RR)
622 f = get_next_file_rr(td, FIO_FILE_OPEN, FIO_FILE_CLOSING);
623 else
624 f = get_next_file_rand(td, FIO_FILE_OPEN, FIO_FILE_CLOSING);
625
626 td->file_service_file = f;
627 td->file_service_left = td->file_service_nr - 1;
628out:
629 dprint(FD_FILE, "get_next_file: %p\n", f);
630 return f;
631}
632
633static struct fio_file *find_next_new_file(struct thread_data *td)
634{
635 struct fio_file *f;
636
637 if (!td->nr_open_files || td->nr_done_files >= td->o.nr_files)
638 return NULL;
639
640 if (td->o.file_service_type == FIO_FSERVICE_RR)
641 f = get_next_file_rr(td, 0, FIO_FILE_OPEN);
642 else
643 f = get_next_file_rand(td, 0, FIO_FILE_OPEN);
644
645 return f;
646}
647
648static int set_io_u_file(struct thread_data *td, struct io_u *io_u)
649{
650 struct fio_file *f;
651
652 do {
653 f = get_next_file(td);
654 if (!f)
655 return 1;
656
657set_file:
658 io_u->file = f;
659 get_file(f);
660
661 if (!fill_io_u(td, io_u))
662 break;
663
664 /*
665 * td_io_close() does a put_file() as well, so no need to
666 * do that here.
667 */
668 io_u->file = NULL;
669 td_io_close_file(td, f);
670 f->flags |= FIO_FILE_DONE;
671 td->nr_done_files++;
672
673 /*
674 * probably not the right place to do this, but see
675 * if we need to open a new file
676 */
677 if (td->nr_open_files < td->o.open_files &&
678 td->o.open_files != td->o.nr_files) {
679 f = find_next_new_file(td);
680
681 if (!f || td_io_open_file(td, f))
682 return 1;
683
684 goto set_file;
685 }
686 } while (1);
687
688 return 0;
689}
690
691
692struct io_u *__get_io_u(struct thread_data *td)
693{
694 struct io_u *io_u = NULL;
695
696 if (!list_empty(&td->io_u_requeues))
697 io_u = list_entry(td->io_u_requeues.next, struct io_u, list);
698 else if (!queue_full(td)) {
699 io_u = list_entry(td->io_u_freelist.next, struct io_u, list);
700
701 io_u->buflen = 0;
702 io_u->resid = 0;
703 io_u->file = NULL;
704 io_u->end_io = NULL;
705 }
706
707 if (io_u) {
708 assert(io_u->flags & IO_U_F_FREE);
709 io_u->flags &= ~IO_U_F_FREE;
710
711 io_u->error = 0;
712 list_del(&io_u->list);
713 list_add(&io_u->list, &td->io_u_busylist);
714 td->cur_depth++;
715 }
716
717 return io_u;
718}
719
720/*
721 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
722 * etc. The returned io_u is fully ready to be prepped and submitted.
723 */
724struct io_u *get_io_u(struct thread_data *td)
725{
726 struct fio_file *f;
727 struct io_u *io_u;
728
729 io_u = __get_io_u(td);
730 if (!io_u) {
731 dprint(FD_IO, "__get_io_u failed\n");
732 return NULL;
733 }
734
735 /*
736 * from a requeue, io_u already setup
737 */
738 if (io_u->file)
739 goto out;
740
741 /*
742 * If using an iolog, grab next piece if any available.
743 */
744 if (td->o.read_iolog_file) {
745 if (read_iolog_get(td, io_u))
746 goto err_put;
747 } else if (set_io_u_file(td, io_u)) {
748 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
749 goto err_put;
750 }
751
752 f = io_u->file;
753 assert(f->flags & FIO_FILE_OPEN);
754
755 if (io_u->ddir != DDIR_SYNC) {
756 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) {
757 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
758 goto err_put;
759 }
760
761 f->last_pos = io_u->offset + io_u->buflen;
762
763 if (td->o.verify != VERIFY_NONE)
764 populate_verify_io_u(td, io_u);
765 }
766
767 /*
768 * Set io data pointers.
769 */
770 io_u->endpos = io_u->offset + io_u->buflen;
771 io_u->xfer_buf = io_u->buf;
772 io_u->xfer_buflen = io_u->buflen;
773out:
774 if (!td_io_prep(td, io_u)) {
775 fio_gettime(&io_u->start_time, NULL);
776 return io_u;
777 }
778err_put:
779 dprint(FD_IO, "get_io_u failed\n");
780 put_io_u(td, io_u);
781 return NULL;
782}
783
784void io_u_log_error(struct thread_data *td, struct io_u *io_u)
785{
786 const char *msg[] = { "read", "write", "sync" };
787
788 log_err("fio: io_u error");
789
790 if (io_u->file)
791 log_err(" on file %s", io_u->file->file_name);
792
793 log_err(": %s\n", strerror(io_u->error));
794
795 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir], io_u->offset, io_u->xfer_buflen);
796
797 if (!td->error)
798 td_verror(td, io_u->error, "io_u error");
799}
800
801static void io_completed(struct thread_data *td, struct io_u *io_u,
802 struct io_completion_data *icd)
803{
804 unsigned long usec;
805
806 dprint_io_u(io_u, "io complete");
807
808 assert(io_u->flags & IO_U_F_FLIGHT);
809 io_u->flags &= ~IO_U_F_FLIGHT;
810
811 if (io_u->ddir == DDIR_SYNC) {
812 td->last_was_sync = 1;
813 return;
814 }
815
816 td->last_was_sync = 0;
817
818 if (!io_u->error) {
819 unsigned int bytes = io_u->buflen - io_u->resid;
820 const enum fio_ddir idx = io_u->ddir;
821 int ret;
822
823 td->io_blocks[idx]++;
824 td->io_bytes[idx] += bytes;
825 td->this_io_bytes[idx] += bytes;
826
827 io_u->file->last_completed_pos = io_u->endpos;
828
829 usec = utime_since(&io_u->issue_time, &icd->time);
830
831 add_clat_sample(td, idx, usec);
832 add_bw_sample(td, idx, &icd->time);
833 io_u_mark_latency(td, usec);
834
835 if (td_write(td) && idx == DDIR_WRITE &&
836 td->o.do_verify &&
837 td->o.verify != VERIFY_NONE)
838 log_io_piece(td, io_u);
839
840 icd->bytes_done[idx] += bytes;
841
842 if (io_u->end_io) {
843 ret = io_u->end_io(td, io_u);
844 if (ret && !icd->error)
845 icd->error = ret;
846 }
847 } else {
848 icd->error = io_u->error;
849 io_u_log_error(td, io_u);
850 }
851}
852
853static void init_icd(struct io_completion_data *icd, int nr)
854{
855 fio_gettime(&icd->time, NULL);
856
857 icd->nr = nr;
858
859 icd->error = 0;
860 icd->bytes_done[0] = icd->bytes_done[1] = 0;
861}
862
863static void ios_completed(struct thread_data *td,
864 struct io_completion_data *icd)
865{
866 struct io_u *io_u;
867 int i;
868
869 for (i = 0; i < icd->nr; i++) {
870 io_u = td->io_ops->event(td, i);
871
872 io_completed(td, io_u, icd);
873 put_io_u(td, io_u);
874 }
875}
876
877/*
878 * Complete a single io_u for the sync engines.
879 */
880long io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
881{
882 struct io_completion_data icd;
883
884 init_icd(&icd, 1);
885 io_completed(td, io_u, &icd);
886 put_io_u(td, io_u);
887
888 if (!icd.error)
889 return icd.bytes_done[0] + icd.bytes_done[1];
890
891 td_verror(td, icd.error, "io_u_sync_complete");
892 return -1;
893}
894
895/*
896 * Called to complete min_events number of io for the async engines.
897 */
898long io_u_queued_complete(struct thread_data *td, int min_events)
899{
900 struct io_completion_data icd;
901 struct timespec *tvp = NULL;
902 int ret;
903 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
904
905 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_events);
906
907 if (!min_events)
908 tvp = &ts;
909
910 ret = td_io_getevents(td, min_events, td->cur_depth, tvp);
911 if (ret < 0) {
912 td_verror(td, -ret, "td_io_getevents");
913 return ret;
914 } else if (!ret)
915 return ret;
916
917 init_icd(&icd, ret);
918 ios_completed(td, &icd);
919 if (!icd.error)
920 return icd.bytes_done[0] + icd.bytes_done[1];
921
922 td_verror(td, icd.error, "io_u_queued_complete");
923 return -1;
924}
925
926/*
927 * Call when io_u is really queued, to update the submission latency.
928 */
929void io_u_queued(struct thread_data *td, struct io_u *io_u)
930{
931 unsigned long slat_time;
932
933 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
934 add_slat_sample(td, io_u->ddir, slat_time);
935}
936
937#ifdef FIO_USE_TIMEOUT
938void io_u_set_timeout(struct thread_data *td)
939{
940 assert(td->cur_depth);
941
942 td->timer.it_interval.tv_sec = 0;
943 td->timer.it_interval.tv_usec = 0;
944 td->timer.it_value.tv_sec = IO_U_TIMEOUT + IO_U_TIMEOUT_INC;
945 td->timer.it_value.tv_usec = 0;
946 setitimer(ITIMER_REAL, &td->timer, NULL);
947 fio_gettime(&td->timeout_end, NULL);
948}
949
950static void io_u_dump(struct io_u *io_u)
951{
952 unsigned long t_start = mtime_since_now(&io_u->start_time);
953 unsigned long t_issue = mtime_since_now(&io_u->issue_time);
954
955 log_err("io_u=%p, t_start=%lu, t_issue=%lu\n", io_u, t_start, t_issue);
956 log_err(" buf=%p/%p, len=%lu/%lu, offset=%llu\n", io_u->buf, io_u->xfer_buf, io_u->buflen, io_u->xfer_buflen, io_u->offset);
957 log_err(" ddir=%d, fname=%s\n", io_u->ddir, io_u->file->file_name);
958}
959#else
960void io_u_set_timeout(struct thread_data fio_unused *td)
961{
962}
963#endif
964
965#ifdef FIO_USE_TIMEOUT
966static void io_u_timeout_handler(int fio_unused sig)
967{
968 struct thread_data *td, *__td;
969 pid_t pid = getpid();
970 struct list_head *entry;
971 struct io_u *io_u;
972 int i;
973
974 log_err("fio: io_u timeout\n");
975
976 /*
977 * TLS would be nice...
978 */
979 td = NULL;
980 for_each_td(__td, i) {
981 if (__td->pid == pid) {
982 td = __td;
983 break;
984 }
985 }
986
987 if (!td) {
988 log_err("fio: io_u timeout, can't find job\n");
989 exit(1);
990 }
991
992 if (!td->cur_depth) {
993 log_err("fio: timeout without pending work?\n");
994 return;
995 }
996
997 log_err("fio: io_u timeout: job=%s, pid=%d\n", td->o.name, td->pid);
998
999 list_for_each(entry, &td->io_u_busylist) {
1000 io_u = list_entry(entry, struct io_u, list);
1001
1002 io_u_dump(io_u);
1003 }
1004
1005 td_verror(td, ETIMEDOUT, "io_u timeout");
1006 exit(1);
1007}
1008#endif
1009
1010void io_u_init_timeout(void)
1011{
1012#ifdef FIO_USE_TIMEOUT
1013 signal(SIGALRM, io_u_timeout_handler);
1014#endif
1015}