Improve random pattern without norandommap
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9
10/*
11 * Change this define to play with the timeout handling
12 */
13#undef FIO_USE_TIMEOUT
14
15struct io_completion_data {
16 int nr; /* input */
17
18 int error; /* output */
19 unsigned long bytes_done[2]; /* output */
20 struct timeval time; /* output */
21};
22
23/*
24 * The ->file_map[] contains a map of blocks we have or have not done io
25 * to yet. Used to make sure we cover the entire range in a fair fashion.
26 */
27static int random_map_free(struct thread_data *td, struct fio_file *f,
28 unsigned long long block)
29{
30 unsigned int idx = RAND_MAP_IDX(td, f, block);
31 unsigned int bit = RAND_MAP_BIT(td, f, block);
32
33 return (f->file_map[idx] & (1UL << bit)) == 0;
34}
35
36/*
37 * Mark a given offset as used in the map.
38 */
39static void mark_random_map(struct thread_data *td, struct io_u *io_u)
40{
41 unsigned int min_bs = td->o.rw_min_bs;
42 struct fio_file *f = io_u->file;
43 unsigned long long block;
44 unsigned int blocks;
45 unsigned int nr_blocks;
46
47 block = io_u->offset / (unsigned long long) min_bs;
48 blocks = 0;
49 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
50
51 while (blocks < nr_blocks) {
52 unsigned int idx, bit;
53
54 /*
55 * If we have a mixed random workload, we may
56 * encounter blocks we already did IO to.
57 */
58 if (!td->o.ddir_nr && !random_map_free(td, f, block))
59 break;
60
61 idx = RAND_MAP_IDX(td, f, block);
62 bit = RAND_MAP_BIT(td, f, block);
63
64 fio_assert(td, idx < f->num_maps);
65
66 f->file_map[idx] |= (1UL << bit);
67 block++;
68 blocks++;
69 }
70
71 if ((blocks * min_bs) < io_u->buflen)
72 io_u->buflen = blocks * min_bs;
73}
74
75/*
76 * Return the next free block in the map.
77 */
78static int get_next_free_block(struct thread_data *td, struct fio_file *f,
79 unsigned long long *b)
80{
81 int i;
82
83 i = f->last_free_lookup;
84 *b = (i * BLOCKS_PER_MAP);
85 while ((*b) * td->o.rw_min_bs < f->real_file_size) {
86 if (f->file_map[i] != -1UL) {
87 *b += fio_ffz(f->file_map[i]);
88 f->last_free_lookup = i;
89 return 0;
90 }
91
92 *b += BLOCKS_PER_MAP;
93 i++;
94 }
95
96 return 1;
97}
98
99static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
100 int ddir, unsigned long long *b)
101{
102 unsigned long long max_blocks = f->io_size / td->o.min_bs[ddir];
103 unsigned long long r, rb;
104 int loops = 5;
105
106 do {
107 r = os_random_long(&td->random_state);
108 if (!max_blocks)
109 *b = 0;
110 else
111 *b = ((max_blocks - 1) * r / (unsigned long long) (RAND_MAX+1.0));
112 /*
113 * if we are not maintaining a random map, we are done.
114 */
115 if (td->o.norandommap)
116 return 0;
117
118 /*
119 * calculate map offset and chec if it's free
120 */
121 rb = *b + (f->file_offset / td->o.min_bs[ddir]);
122 if (random_map_free(td, f, rb))
123 return 0;
124
125 } while (--loops);
126
127 /*
128 * we get here, if we didn't suceed in looking up a block. generate
129 * a random start offset into the filemap, and find the first free
130 * block from there.
131 */
132 loops = 10;
133 do {
134 f->last_free_lookup = (f->num_maps - 1) * (r / (RAND_MAX+1.0));
135 if (!get_next_free_block(td, f, b))
136 return 0;
137
138 r = os_random_long(&td->random_state);
139 } while (--loops);
140
141 /*
142 * that didn't work either, try exhaustive search from the start
143 */
144 f->last_free_lookup = 0;
145 return get_next_free_block(td, f, b);
146}
147
148/*
149 * For random io, generate a random new block and see if it's used. Repeat
150 * until we find a free one. For sequential io, just return the end of
151 * the last io issued.
152 */
153static int get_next_offset(struct thread_data *td, struct io_u *io_u)
154{
155 struct fio_file *f = io_u->file;
156 const int ddir = io_u->ddir;
157 unsigned long long b;
158
159 if (td_random(td) && (td->o.ddir_nr && !--td->ddir_nr)) {
160 td->ddir_nr = td->o.ddir_nr;
161
162 if (get_next_rand_offset(td, f, ddir, &b))
163 return 1;
164 } else {
165 if (f->last_pos >= f->real_file_size)
166 return 1;
167
168 b = f->last_pos / td->o.min_bs[ddir];
169 }
170
171 io_u->offset = (b * td->o.min_bs[ddir]) + f->file_offset;
172 if (io_u->offset >= f->real_file_size)
173 return 1;
174
175 return 0;
176}
177
178static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u)
179{
180 const int ddir = io_u->ddir;
181 unsigned int buflen;
182 long r;
183
184 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
185 buflen = td->o.min_bs[ddir];
186 else {
187 r = os_random_long(&td->bsrange_state);
188 buflen = (unsigned int) (1 + (double) (td->o.max_bs[ddir] - 1) * r / (RAND_MAX + 1.0));
189 if (!td->o.bs_unaligned)
190 buflen = (buflen + td->o.min_bs[ddir] - 1) & ~(td->o.min_bs[ddir] - 1);
191 }
192
193 return buflen;
194}
195
196static void set_rwmix_bytes(struct thread_data *td)
197{
198 unsigned long long rbytes;
199 unsigned int diff;
200
201 /*
202 * we do time or byte based switch. this is needed because
203 * buffered writes may issue a lot quicker than they complete,
204 * whereas reads do not.
205 */
206 rbytes = td->io_bytes[td->rwmix_ddir] - td->rwmix_bytes;
207 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
208
209 td->rwmix_bytes = td->io_bytes[td->rwmix_ddir] + (rbytes * ((100 - diff)) / diff);
210}
211
212static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
213{
214 unsigned int v;
215 long r;
216
217 r = os_random_long(&td->rwmix_state);
218 v = 1 + (int) (100.0 * (r / (RAND_MAX + 1.0)));
219 if (v < td->o.rwmix[DDIR_READ])
220 return DDIR_READ;
221
222 return DDIR_WRITE;
223}
224
225/*
226 * Return the data direction for the next io_u. If the job is a
227 * mixed read/write workload, check the rwmix cycle and switch if
228 * necessary.
229 */
230static enum fio_ddir get_rw_ddir(struct thread_data *td)
231{
232 if (td_rw(td)) {
233 struct timeval now;
234 unsigned long elapsed;
235 unsigned int cycle;
236
237 fio_gettime(&now, NULL);
238 elapsed = mtime_since_now(&td->rwmix_switch);
239
240 /*
241 * if this is the first cycle, make it shorter
242 */
243 cycle = td->o.rwmixcycle;
244 if (!td->rwmix_bytes)
245 cycle /= 10;
246
247 /*
248 * Check if it's time to seed a new data direction.
249 */
250 if (elapsed >= cycle ||
251 td->io_bytes[td->rwmix_ddir] >= td->rwmix_bytes) {
252 unsigned long long max_bytes;
253 enum fio_ddir ddir;
254
255 /*
256 * Put a top limit on how many bytes we do for
257 * one data direction, to avoid overflowing the
258 * ranges too much
259 */
260 ddir = get_rand_ddir(td);
261 max_bytes = td->this_io_bytes[ddir];
262 if (max_bytes >= (td->o.size * td->o.rwmix[ddir] / 100)) {
263 if (!td->rw_end_set[ddir]) {
264 td->rw_end_set[ddir] = 1;
265 memcpy(&td->rw_end[ddir], &now, sizeof(now));
266 }
267 ddir ^= 1;
268 }
269
270 if (ddir != td->rwmix_ddir)
271 set_rwmix_bytes(td);
272
273 td->rwmix_ddir = ddir;
274 memcpy(&td->rwmix_switch, &now, sizeof(now));
275 }
276 return td->rwmix_ddir;
277 } else if (td_read(td))
278 return DDIR_READ;
279 else
280 return DDIR_WRITE;
281}
282
283void put_io_u(struct thread_data *td, struct io_u *io_u)
284{
285 assert((io_u->flags & IO_U_F_FREE) == 0);
286 io_u->flags |= IO_U_F_FREE;
287
288 if (io_u->file)
289 put_file(td, io_u->file);
290
291 io_u->file = NULL;
292 list_del(&io_u->list);
293 list_add(&io_u->list, &td->io_u_freelist);
294 td->cur_depth--;
295}
296
297void requeue_io_u(struct thread_data *td, struct io_u **io_u)
298{
299 struct io_u *__io_u = *io_u;
300
301 __io_u->flags |= IO_U_F_FREE;
302 __io_u->flags &= ~IO_U_F_FLIGHT;
303
304 list_del(&__io_u->list);
305 list_add_tail(&__io_u->list, &td->io_u_requeues);
306 td->cur_depth--;
307 *io_u = NULL;
308}
309
310static int fill_io_u(struct thread_data *td, struct io_u *io_u)
311{
312 /*
313 * If using an iolog, grab next piece if any available.
314 */
315 if (td->o.read_iolog_file)
316 return read_iolog_get(td, io_u);
317
318 /*
319 * see if it's time to sync
320 */
321 if (td->o.fsync_blocks &&
322 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
323 td->io_issues[DDIR_WRITE] && should_fsync(td)) {
324 io_u->ddir = DDIR_SYNC;
325 goto out;
326 }
327
328 io_u->ddir = get_rw_ddir(td);
329
330 /*
331 * No log, let the seq/rand engine retrieve the next buflen and
332 * position.
333 */
334 if (get_next_offset(td, io_u))
335 return 1;
336
337 io_u->buflen = get_next_buflen(td, io_u);
338 if (!io_u->buflen)
339 return 1;
340
341 /*
342 * mark entry before potentially trimming io_u
343 */
344 if (td_random(td) && !td->o.norandommap)
345 mark_random_map(td, io_u);
346
347 /*
348 * If using a write iolog, store this entry.
349 */
350out:
351 if (td->o.write_iolog_file)
352 write_iolog_put(td, io_u);
353
354 return 0;
355}
356
357void io_u_mark_depth(struct thread_data *td, struct io_u *io_u)
358{
359 int index = 0;
360
361 if (io_u->ddir == DDIR_SYNC)
362 return;
363
364 switch (td->cur_depth) {
365 default:
366 index++;
367 case 32 ... 63:
368 index++;
369 case 16 ... 31:
370 index++;
371 case 8 ... 15:
372 index++;
373 case 4 ... 7:
374 index++;
375 case 2 ... 3:
376 index++;
377 case 1:
378 break;
379 }
380
381 td->ts.io_u_map[index]++;
382 td->ts.total_io_u[io_u->ddir]++;
383}
384
385static void io_u_mark_latency(struct thread_data *td, unsigned long msec)
386{
387 int index = 0;
388
389 switch (msec) {
390 default:
391 index++;
392 case 1000 ... 1999:
393 index++;
394 case 750 ... 999:
395 index++;
396 case 500 ... 749:
397 index++;
398 case 250 ... 499:
399 index++;
400 case 100 ... 249:
401 index++;
402 case 50 ... 99:
403 index++;
404 case 20 ... 49:
405 index++;
406 case 10 ... 19:
407 index++;
408 case 4 ... 9:
409 index++;
410 case 2 ... 3:
411 index++;
412 case 0 ... 1:
413 break;
414 }
415
416 td->ts.io_u_lat[index]++;
417}
418
419/*
420 * Get next file to service by choosing one at random
421 */
422static struct fio_file *get_next_file_rand(struct thread_data *td, int goodf,
423 int badf)
424{
425 struct fio_file *f;
426 int fno;
427
428 do {
429 long r = os_random_long(&td->next_file_state);
430
431 fno = (unsigned int) ((double) td->o.nr_files * (r / (RAND_MAX + 1.0)));
432 f = &td->files[fno];
433 if (f->flags & FIO_FILE_DONE)
434 continue;
435
436 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
437 return f;
438 } while (1);
439}
440
441/*
442 * Get next file to service by doing round robin between all available ones
443 */
444static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
445 int badf)
446{
447 unsigned int old_next_file = td->next_file;
448 struct fio_file *f;
449
450 do {
451 f = &td->files[td->next_file];
452
453 td->next_file++;
454 if (td->next_file >= td->o.nr_files)
455 td->next_file = 0;
456
457 if (f->flags & FIO_FILE_DONE) {
458 f = NULL;
459 continue;
460 }
461
462 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
463 break;
464
465 f = NULL;
466 } while (td->next_file != old_next_file);
467
468 return f;
469}
470
471static struct fio_file *get_next_file(struct thread_data *td)
472{
473 struct fio_file *f;
474
475 assert(td->o.nr_files <= td->files_index);
476
477 if (!td->nr_open_files || td->nr_done_files >= td->o.nr_files)
478 return NULL;
479
480 f = td->file_service_file;
481 if (f && (f->flags & FIO_FILE_OPEN) && td->file_service_left--)
482 return f;
483
484 if (td->o.file_service_type == FIO_FSERVICE_RR)
485 f = get_next_file_rr(td, FIO_FILE_OPEN, FIO_FILE_CLOSING);
486 else
487 f = get_next_file_rand(td, FIO_FILE_OPEN, FIO_FILE_CLOSING);
488
489 td->file_service_file = f;
490 td->file_service_left = td->file_service_nr - 1;
491 return f;
492}
493
494static struct fio_file *find_next_new_file(struct thread_data *td)
495{
496 struct fio_file *f;
497
498 if (!td->nr_open_files || td->nr_done_files >= td->o.nr_files)
499 return NULL;
500
501 if (td->o.file_service_type == FIO_FSERVICE_RR)
502 f = get_next_file_rr(td, 0, FIO_FILE_OPEN);
503 else
504 f = get_next_file_rand(td, 0, FIO_FILE_OPEN);
505
506 return f;
507}
508
509struct io_u *__get_io_u(struct thread_data *td)
510{
511 struct io_u *io_u = NULL;
512
513 if (!list_empty(&td->io_u_requeues))
514 io_u = list_entry(td->io_u_requeues.next, struct io_u, list);
515 else if (!queue_full(td)) {
516 io_u = list_entry(td->io_u_freelist.next, struct io_u, list);
517
518 io_u->buflen = 0;
519 io_u->resid = 0;
520 io_u->file = NULL;
521 io_u->end_io = NULL;
522 }
523
524 if (io_u) {
525 assert(io_u->flags & IO_U_F_FREE);
526 io_u->flags &= ~IO_U_F_FREE;
527
528 io_u->error = 0;
529 list_del(&io_u->list);
530 list_add(&io_u->list, &td->io_u_busylist);
531 td->cur_depth++;
532 }
533
534 return io_u;
535}
536
537/*
538 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
539 * etc. The returned io_u is fully ready to be prepped and submitted.
540 */
541struct io_u *get_io_u(struct thread_data *td)
542{
543 struct fio_file *f;
544 struct io_u *io_u;
545 int ret;
546
547 io_u = __get_io_u(td);
548 if (!io_u)
549 return NULL;
550
551 /*
552 * from a requeue, io_u already setup
553 */
554 if (io_u->file)
555 goto out;
556
557 do {
558 f = get_next_file(td);
559 if (!f) {
560 put_io_u(td, io_u);
561 return NULL;
562 }
563
564set_file:
565 io_u->file = f;
566 get_file(f);
567
568 if (!fill_io_u(td, io_u))
569 break;
570
571 /*
572 * td_io_close() does a put_file() as well, so no need to
573 * do that here.
574 */
575 io_u->file = NULL;
576 td_io_close_file(td, f);
577 f->flags |= FIO_FILE_DONE;
578 td->nr_done_files++;
579
580 /*
581 * probably not the right place to do this, but see
582 * if we need to open a new file
583 */
584 if (td->nr_open_files < td->o.open_files &&
585 td->o.open_files != td->o.nr_files) {
586 f = find_next_new_file(td);
587
588 if (!f || (ret = td_io_open_file(td, f))) {
589 put_io_u(td, io_u);
590 return NULL;
591 }
592 goto set_file;
593 }
594 } while (1);
595
596 if (td->zone_bytes >= td->o.zone_size) {
597 td->zone_bytes = 0;
598 f->last_pos += td->o.zone_skip;
599 }
600
601 if (io_u->ddir != DDIR_SYNC) {
602 if (!io_u->buflen) {
603 put_io_u(td, io_u);
604 return NULL;
605 }
606
607 f->last_pos = io_u->offset + io_u->buflen;
608
609 if (td->o.verify != VERIFY_NONE)
610 populate_verify_io_u(td, io_u);
611 }
612
613 /*
614 * Set io data pointers.
615 */
616 io_u->endpos = io_u->offset + io_u->buflen;
617out:
618 io_u->xfer_buf = io_u->buf;
619 io_u->xfer_buflen = io_u->buflen;
620
621 if (td_io_prep(td, io_u)) {
622 put_io_u(td, io_u);
623 return NULL;
624 }
625
626 fio_gettime(&io_u->start_time, NULL);
627 return io_u;
628}
629
630void io_u_log_error(struct thread_data *td, struct io_u *io_u)
631{
632 const char *msg[] = { "read", "write", "sync" };
633
634 log_err("fio: io_u error");
635
636 if (io_u->file)
637 log_err(" on file %s", io_u->file->file_name);
638
639 log_err(": %s\n", strerror(io_u->error));
640
641 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir], io_u->offset, io_u->xfer_buflen);
642
643 if (!td->error)
644 td_verror(td, io_u->error, "io_u error");
645}
646
647static void io_completed(struct thread_data *td, struct io_u *io_u,
648 struct io_completion_data *icd)
649{
650 unsigned long msec;
651
652 assert(io_u->flags & IO_U_F_FLIGHT);
653 io_u->flags &= ~IO_U_F_FLIGHT;
654
655 if (io_u->ddir == DDIR_SYNC) {
656 td->last_was_sync = 1;
657 return;
658 }
659
660 td->last_was_sync = 0;
661
662 if (!io_u->error) {
663 unsigned int bytes = io_u->buflen - io_u->resid;
664 const enum fio_ddir idx = io_u->ddir;
665 int ret;
666
667 td->io_blocks[idx]++;
668 td->io_bytes[idx] += bytes;
669 td->zone_bytes += bytes;
670 td->this_io_bytes[idx] += bytes;
671
672 io_u->file->last_completed_pos = io_u->endpos;
673
674 msec = mtime_since(&io_u->issue_time, &icd->time);
675
676 add_clat_sample(td, idx, msec);
677 add_bw_sample(td, idx, &icd->time);
678 io_u_mark_latency(td, msec);
679
680 if (td_write(td) && idx == DDIR_WRITE &&
681 td->o.verify != VERIFY_NONE)
682 log_io_piece(td, io_u);
683
684 icd->bytes_done[idx] += bytes;
685
686 if (io_u->end_io) {
687 ret = io_u->end_io(td, io_u);
688 if (ret && !icd->error)
689 icd->error = ret;
690 }
691 } else {
692 icd->error = io_u->error;
693 io_u_log_error(td, io_u);
694 }
695}
696
697static void init_icd(struct io_completion_data *icd, int nr)
698{
699 fio_gettime(&icd->time, NULL);
700
701 icd->nr = nr;
702
703 icd->error = 0;
704 icd->bytes_done[0] = icd->bytes_done[1] = 0;
705}
706
707static void ios_completed(struct thread_data *td,
708 struct io_completion_data *icd)
709{
710 struct io_u *io_u;
711 int i;
712
713 for (i = 0; i < icd->nr; i++) {
714 io_u = td->io_ops->event(td, i);
715
716 io_completed(td, io_u, icd);
717 put_io_u(td, io_u);
718 }
719}
720
721/*
722 * Complete a single io_u for the sync engines.
723 */
724long io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
725{
726 struct io_completion_data icd;
727
728 init_icd(&icd, 1);
729 io_completed(td, io_u, &icd);
730 put_io_u(td, io_u);
731
732 if (!icd.error)
733 return icd.bytes_done[0] + icd.bytes_done[1];
734
735 td_verror(td, icd.error, "io_u_sync_complete");
736 return -1;
737}
738
739/*
740 * Called to complete min_events number of io for the async engines.
741 */
742long io_u_queued_complete(struct thread_data *td, int min_events)
743{
744 struct io_completion_data icd;
745 struct timespec *tvp = NULL;
746 int ret;
747 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
748
749 if (!min_events)
750 tvp = &ts;
751
752 ret = td_io_getevents(td, min_events, td->cur_depth, tvp);
753 if (ret < 0) {
754 td_verror(td, -ret, "td_io_getevents");
755 return ret;
756 } else if (!ret)
757 return ret;
758
759 init_icd(&icd, ret);
760 ios_completed(td, &icd);
761 if (!icd.error)
762 return icd.bytes_done[0] + icd.bytes_done[1];
763
764 td_verror(td, icd.error, "io_u_queued_complete");
765 return -1;
766}
767
768/*
769 * Call when io_u is really queued, to update the submission latency.
770 */
771void io_u_queued(struct thread_data *td, struct io_u *io_u)
772{
773 unsigned long slat_time;
774
775 slat_time = mtime_since(&io_u->start_time, &io_u->issue_time);
776 add_slat_sample(td, io_u->ddir, slat_time);
777}
778
779#ifdef FIO_USE_TIMEOUT
780void io_u_set_timeout(struct thread_data *td)
781{
782 assert(td->cur_depth);
783
784 td->timer.it_interval.tv_sec = 0;
785 td->timer.it_interval.tv_usec = 0;
786 td->timer.it_value.tv_sec = IO_U_TIMEOUT + IO_U_TIMEOUT_INC;
787 td->timer.it_value.tv_usec = 0;
788 setitimer(ITIMER_REAL, &td->timer, NULL);
789 fio_gettime(&td->timeout_end, NULL);
790}
791
792static void io_u_dump(struct io_u *io_u)
793{
794 unsigned long t_start = mtime_since_now(&io_u->start_time);
795 unsigned long t_issue = mtime_since_now(&io_u->issue_time);
796
797 log_err("io_u=%p, t_start=%lu, t_issue=%lu\n", io_u, t_start, t_issue);
798 log_err(" buf=%p/%p, len=%lu/%lu, offset=%llu\n", io_u->buf, io_u->xfer_buf, io_u->buflen, io_u->xfer_buflen, io_u->offset);
799 log_err(" ddir=%d, fname=%s\n", io_u->ddir, io_u->file->file_name);
800}
801#else
802void io_u_set_timeout(struct thread_data fio_unused *td)
803{
804}
805#endif
806
807#ifdef FIO_USE_TIMEOUT
808static void io_u_timeout_handler(int fio_unused sig)
809{
810 struct thread_data *td, *__td;
811 pid_t pid = getpid();
812 struct list_head *entry;
813 struct io_u *io_u;
814 int i;
815
816 log_err("fio: io_u timeout\n");
817
818 /*
819 * TLS would be nice...
820 */
821 td = NULL;
822 for_each_td(__td, i) {
823 if (__td->pid == pid) {
824 td = __td;
825 break;
826 }
827 }
828
829 if (!td) {
830 log_err("fio: io_u timeout, can't find job\n");
831 exit(1);
832 }
833
834 if (!td->cur_depth) {
835 log_err("fio: timeout without pending work?\n");
836 return;
837 }
838
839 log_err("fio: io_u timeout: job=%s, pid=%d\n", td->o.name, td->pid);
840
841 list_for_each(entry, &td->io_u_busylist) {
842 io_u = list_entry(entry, struct io_u, list);
843
844 io_u_dump(io_u);
845 }
846
847 td_verror(td, ETIMEDOUT, "io_u timeout");
848 exit(1);
849}
850#endif
851
852void io_u_init_timeout(void)
853{
854#ifdef FIO_USE_TIMEOUT
855 signal(SIGALRM, io_u_timeout_handler);
856#endif
857}