If verify is enabled, automatically enable refill_buffers
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10
11/*
12 * Change this define to play with the timeout handling
13 */
14#undef FIO_USE_TIMEOUT
15
16struct io_completion_data {
17 int nr; /* input */
18
19 int error; /* output */
20 unsigned long bytes_done[2]; /* output */
21 struct timeval time; /* output */
22};
23
24/*
25 * The ->file_map[] contains a map of blocks we have or have not done io
26 * to yet. Used to make sure we cover the entire range in a fair fashion.
27 */
28static int random_map_free(struct fio_file *f, const unsigned long long block)
29{
30 unsigned int idx = RAND_MAP_IDX(f, block);
31 unsigned int bit = RAND_MAP_BIT(f, block);
32
33 dprint(FD_RANDOM, "free: b=%llu, idx=%u, bit=%u\n", block, idx, bit);
34
35 return (f->file_map[idx] & (1UL << bit)) == 0;
36}
37
38/*
39 * Mark a given offset as used in the map.
40 */
41static void mark_random_map(struct thread_data *td, struct io_u *io_u)
42{
43 unsigned int min_bs = td->o.rw_min_bs;
44 struct fio_file *f = io_u->file;
45 unsigned long long block;
46 unsigned int blocks;
47 unsigned int nr_blocks;
48
49 block = (io_u->offset - f->file_offset) / (unsigned long long) min_bs;
50 blocks = 0;
51 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
52
53 while (blocks < nr_blocks) {
54 unsigned int idx, bit;
55
56 /*
57 * If we have a mixed random workload, we may
58 * encounter blocks we already did IO to.
59 */
60 if ((td->o.ddir_nr == 1) && !random_map_free(f, block))
61 break;
62
63 idx = RAND_MAP_IDX(f, block);
64 bit = RAND_MAP_BIT(f, block);
65
66 fio_assert(td, idx < f->num_maps);
67
68 f->file_map[idx] |= (1UL << bit);
69 block++;
70 blocks++;
71 }
72
73 if ((blocks * min_bs) < io_u->buflen)
74 io_u->buflen = blocks * min_bs;
75}
76
77static inline unsigned long long last_block(struct thread_data *td,
78 struct fio_file *f,
79 enum fio_ddir ddir)
80{
81 unsigned long long max_blocks;
82
83 max_blocks = f->io_size / (unsigned long long) td->o.min_bs[ddir];
84 if (!max_blocks)
85 return 0;
86
87 return max_blocks;
88}
89
90/*
91 * Return the next free block in the map.
92 */
93static int get_next_free_block(struct thread_data *td, struct fio_file *f,
94 enum fio_ddir ddir, unsigned long long *b)
95{
96 unsigned long long min_bs = td->o.rw_min_bs;
97 int i;
98
99 i = f->last_free_lookup;
100 *b = (i * BLOCKS_PER_MAP);
101 while ((*b) * min_bs < f->real_file_size) {
102 if (f->file_map[i] != -1UL) {
103 *b += fio_ffz(f->file_map[i]);
104 if (*b > last_block(td, f, ddir))
105 break;
106 f->last_free_lookup = i;
107 return 0;
108 }
109
110 *b += BLOCKS_PER_MAP;
111 i++;
112 }
113
114 dprint(FD_IO, "failed finding a free block\n");
115 return 1;
116}
117
118static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
119 enum fio_ddir ddir, unsigned long long *b)
120{
121 unsigned long long r;
122 int loops = 5;
123
124 do {
125 r = os_random_long(&td->random_state);
126 dprint(FD_RANDOM, "off rand %llu\n", r);
127 *b = (last_block(td, f, ddir) - 1)
128 * (r / ((unsigned long long) RAND_MAX + 1.0));
129
130 /*
131 * if we are not maintaining a random map, we are done.
132 */
133 if (!file_randommap(td, f))
134 return 0;
135
136 /*
137 * calculate map offset and check if it's free
138 */
139 if (random_map_free(f, *b))
140 return 0;
141
142 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
143 *b);
144 } while (--loops);
145
146 /*
147 * we get here, if we didn't suceed in looking up a block. generate
148 * a random start offset into the filemap, and find the first free
149 * block from there.
150 */
151 loops = 10;
152 do {
153 f->last_free_lookup = (f->num_maps - 1) * (r / (RAND_MAX+1.0));
154 if (!get_next_free_block(td, f, ddir, b))
155 return 0;
156
157 r = os_random_long(&td->random_state);
158 } while (--loops);
159
160 /*
161 * that didn't work either, try exhaustive search from the start
162 */
163 f->last_free_lookup = 0;
164 return get_next_free_block(td, f, ddir, b);
165}
166
167/*
168 * For random io, generate a random new block and see if it's used. Repeat
169 * until we find a free one. For sequential io, just return the end of
170 * the last io issued.
171 */
172static int get_next_offset(struct thread_data *td, struct io_u *io_u)
173{
174 struct fio_file *f = io_u->file;
175 unsigned long long b;
176 enum fio_ddir ddir = io_u->ddir;
177
178 if (td_random(td) && (td->o.ddir_nr && !--td->ddir_nr)) {
179 td->ddir_nr = td->o.ddir_nr;
180
181 if (get_next_rand_offset(td, f, ddir, &b))
182 return 1;
183 } else {
184 if (f->last_pos >= f->real_file_size) {
185 if (!td_random(td) ||
186 get_next_rand_offset(td, f, ddir, &b))
187 return 1;
188 } else
189 b = (f->last_pos - f->file_offset) / td->o.min_bs[ddir];
190 }
191
192 io_u->offset = b * td->o.min_bs[ddir];
193 if (io_u->offset >= f->io_size) {
194 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
195 io_u->offset, f->io_size);
196 return 1;
197 }
198
199 io_u->offset += f->file_offset;
200 if (io_u->offset >= f->real_file_size) {
201 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
202 io_u->offset, f->real_file_size);
203 return 1;
204 }
205
206 return 0;
207}
208
209static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u)
210{
211 const int ddir = io_u->ddir;
212 unsigned int buflen;
213 long r;
214
215 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
216 buflen = td->o.min_bs[ddir];
217 else {
218 r = os_random_long(&td->bsrange_state);
219 if (!td->o.bssplit_nr) {
220 buflen = (unsigned int)
221 (1 + (double) (td->o.max_bs[ddir] - 1)
222 * r / (RAND_MAX + 1.0));
223 } else {
224 long perc = 0;
225 unsigned int i;
226
227 for (i = 0; i < td->o.bssplit_nr; i++) {
228 struct bssplit *bsp = &td->o.bssplit[i];
229
230 buflen = bsp->bs;
231 perc += bsp->perc;
232 if (r <= ((LONG_MAX / 100L) * perc))
233 break;
234 }
235 }
236 if (!td->o.bs_unaligned) {
237 buflen = (buflen + td->o.min_bs[ddir] - 1)
238 & ~(td->o.min_bs[ddir] - 1);
239 }
240 }
241
242 if (io_u->offset + buflen > io_u->file->real_file_size) {
243 dprint(FD_IO, "lower buflen %u -> %u (ddir=%d)\n", buflen,
244 td->o.min_bs[ddir], ddir);
245 buflen = td->o.min_bs[ddir];
246 }
247
248 return buflen;
249}
250
251static void set_rwmix_bytes(struct thread_data *td)
252{
253 unsigned long issues;
254 unsigned int diff;
255
256 /*
257 * we do time or byte based switch. this is needed because
258 * buffered writes may issue a lot quicker than they complete,
259 * whereas reads do not.
260 */
261 issues = td->io_issues[td->rwmix_ddir] - td->rwmix_issues;
262 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
263
264 td->rwmix_issues = td->io_issues[td->rwmix_ddir]
265 + (issues * ((100 - diff)) / diff);
266}
267
268static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
269{
270 unsigned int v;
271 long r;
272
273 r = os_random_long(&td->rwmix_state);
274 v = 1 + (int) (100.0 * (r / (RAND_MAX + 1.0)));
275 if (v < td->o.rwmix[DDIR_READ])
276 return DDIR_READ;
277
278 return DDIR_WRITE;
279}
280
281/*
282 * Return the data direction for the next io_u. If the job is a
283 * mixed read/write workload, check the rwmix cycle and switch if
284 * necessary.
285 */
286static enum fio_ddir get_rw_ddir(struct thread_data *td)
287{
288 if (td_rw(td)) {
289 /*
290 * Check if it's time to seed a new data direction.
291 */
292 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
293 unsigned long long max_bytes;
294 enum fio_ddir ddir;
295
296 /*
297 * Put a top limit on how many bytes we do for
298 * one data direction, to avoid overflowing the
299 * ranges too much
300 */
301 ddir = get_rand_ddir(td);
302 max_bytes = td->this_io_bytes[ddir];
303 if (max_bytes >=
304 (td->o.size * td->o.rwmix[ddir] / 100)) {
305 if (!td->rw_end_set[ddir])
306 td->rw_end_set[ddir] = 1;
307
308 ddir ^= 1;
309 }
310
311 if (ddir != td->rwmix_ddir)
312 set_rwmix_bytes(td);
313
314 td->rwmix_ddir = ddir;
315 }
316 return td->rwmix_ddir;
317 } else if (td_read(td))
318 return DDIR_READ;
319 else
320 return DDIR_WRITE;
321}
322
323static void put_file_log(struct thread_data *td, struct fio_file *f)
324{
325 int ret = put_file(td, f);
326
327 if (ret)
328 td_verror(td, ret, "file close");
329}
330
331void put_io_u(struct thread_data *td, struct io_u *io_u)
332{
333 assert((io_u->flags & IO_U_F_FREE) == 0);
334 io_u->flags |= IO_U_F_FREE;
335
336 if (io_u->file)
337 put_file_log(td, io_u->file);
338
339 io_u->file = NULL;
340 list_del(&io_u->list);
341 list_add(&io_u->list, &td->io_u_freelist);
342 td->cur_depth--;
343}
344
345void requeue_io_u(struct thread_data *td, struct io_u **io_u)
346{
347 struct io_u *__io_u = *io_u;
348
349 __io_u->flags |= IO_U_F_FREE;
350 if ((__io_u->flags & IO_U_F_FLIGHT) && (__io_u->ddir != DDIR_SYNC))
351 td->io_issues[__io_u->ddir]--;
352
353 __io_u->flags &= ~IO_U_F_FLIGHT;
354
355 list_del(&__io_u->list);
356 list_add_tail(&__io_u->list, &td->io_u_requeues);
357 td->cur_depth--;
358 *io_u = NULL;
359}
360
361static int fill_io_u(struct thread_data *td, struct io_u *io_u)
362{
363 if (td->io_ops->flags & FIO_NOIO)
364 goto out;
365
366 /*
367 * see if it's time to sync
368 */
369 if (td->o.fsync_blocks &&
370 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
371 td->io_issues[DDIR_WRITE] && should_fsync(td)) {
372 io_u->ddir = DDIR_SYNC;
373 goto out;
374 }
375
376 io_u->ddir = get_rw_ddir(td);
377
378 /*
379 * See if it's time to switch to a new zone
380 */
381 if (td->zone_bytes >= td->o.zone_size) {
382 td->zone_bytes = 0;
383 io_u->file->last_pos += td->o.zone_skip;
384 td->io_skip_bytes += td->o.zone_skip;
385 }
386
387 /*
388 * No log, let the seq/rand engine retrieve the next buflen and
389 * position.
390 */
391 if (get_next_offset(td, io_u)) {
392 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
393 return 1;
394 }
395
396 io_u->buflen = get_next_buflen(td, io_u);
397 if (!io_u->buflen) {
398 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
399 return 1;
400 }
401
402 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
403 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
404 dprint(FD_IO, " off=%llu/%lu > %llu\n", io_u->offset,
405 io_u->buflen, io_u->file->real_file_size);
406 return 1;
407 }
408
409 /*
410 * mark entry before potentially trimming io_u
411 */
412 if (td_random(td) && file_randommap(td, io_u->file))
413 mark_random_map(td, io_u);
414
415 /*
416 * If using a write iolog, store this entry.
417 */
418out:
419 dprint_io_u(io_u, "fill_io_u");
420 td->zone_bytes += io_u->buflen;
421 log_io_u(td, io_u);
422 return 0;
423}
424
425void io_u_mark_depth(struct thread_data *td, unsigned int nr)
426{
427 int index = 0;
428
429 switch (td->cur_depth) {
430 default:
431 index = 6;
432 break;
433 case 32 ... 63:
434 index = 5;
435 break;
436 case 16 ... 31:
437 index = 4;
438 break;
439 case 8 ... 15:
440 index = 3;
441 break;
442 case 4 ... 7:
443 index = 2;
444 break;
445 case 2 ... 3:
446 index = 1;
447 case 1:
448 break;
449 }
450
451 td->ts.io_u_map[index] += nr;
452}
453
454static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
455{
456 int index = 0;
457
458 assert(usec < 1000);
459
460 switch (usec) {
461 case 750 ... 999:
462 index = 9;
463 break;
464 case 500 ... 749:
465 index = 8;
466 break;
467 case 250 ... 499:
468 index = 7;
469 break;
470 case 100 ... 249:
471 index = 6;
472 break;
473 case 50 ... 99:
474 index = 5;
475 break;
476 case 20 ... 49:
477 index = 4;
478 break;
479 case 10 ... 19:
480 index = 3;
481 break;
482 case 4 ... 9:
483 index = 2;
484 break;
485 case 2 ... 3:
486 index = 1;
487 case 0 ... 1:
488 break;
489 }
490
491 assert(index < FIO_IO_U_LAT_U_NR);
492 td->ts.io_u_lat_u[index]++;
493}
494
495static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
496{
497 int index = 0;
498
499 switch (msec) {
500 default:
501 index = 11;
502 break;
503 case 1000 ... 1999:
504 index = 10;
505 break;
506 case 750 ... 999:
507 index = 9;
508 break;
509 case 500 ... 749:
510 index = 8;
511 break;
512 case 250 ... 499:
513 index = 7;
514 break;
515 case 100 ... 249:
516 index = 6;
517 break;
518 case 50 ... 99:
519 index = 5;
520 break;
521 case 20 ... 49:
522 index = 4;
523 break;
524 case 10 ... 19:
525 index = 3;
526 break;
527 case 4 ... 9:
528 index = 2;
529 break;
530 case 2 ... 3:
531 index = 1;
532 case 0 ... 1:
533 break;
534 }
535
536 assert(index < FIO_IO_U_LAT_M_NR);
537 td->ts.io_u_lat_m[index]++;
538}
539
540static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
541{
542 if (usec < 1000)
543 io_u_mark_lat_usec(td, usec);
544 else
545 io_u_mark_lat_msec(td, usec / 1000);
546}
547
548/*
549 * Get next file to service by choosing one at random
550 */
551static struct fio_file *get_next_file_rand(struct thread_data *td, int goodf,
552 int badf)
553{
554 struct fio_file *f;
555 int fno;
556
557 do {
558 long r = os_random_long(&td->next_file_state);
559
560 fno = (unsigned int) ((double) td->o.nr_files
561 * (r / (RAND_MAX + 1.0)));
562 f = td->files[fno];
563 if (f->flags & FIO_FILE_DONE)
564 continue;
565
566 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
567 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
568 return f;
569 }
570 } while (1);
571}
572
573/*
574 * Get next file to service by doing round robin between all available ones
575 */
576static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
577 int badf)
578{
579 unsigned int old_next_file = td->next_file;
580 struct fio_file *f;
581
582 do {
583 f = td->files[td->next_file];
584
585 td->next_file++;
586 if (td->next_file >= td->o.nr_files)
587 td->next_file = 0;
588
589 if (f->flags & FIO_FILE_DONE) {
590 f = NULL;
591 continue;
592 }
593
594 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
595 break;
596
597 f = NULL;
598 } while (td->next_file != old_next_file);
599
600 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
601 return f;
602}
603
604static struct fio_file *get_next_file(struct thread_data *td)
605{
606 struct fio_file *f;
607
608 assert(td->o.nr_files <= td->files_index);
609
610 if (!td->nr_open_files || td->nr_done_files >= td->o.nr_files) {
611 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
612 " nr_files=%d\n", td->nr_open_files,
613 td->nr_done_files,
614 td->o.nr_files);
615 return NULL;
616 }
617
618 f = td->file_service_file;
619 if (f && (f->flags & FIO_FILE_OPEN) && td->file_service_left--)
620 goto out;
621
622 if (td->o.file_service_type == FIO_FSERVICE_RR)
623 f = get_next_file_rr(td, FIO_FILE_OPEN, FIO_FILE_CLOSING);
624 else
625 f = get_next_file_rand(td, FIO_FILE_OPEN, FIO_FILE_CLOSING);
626
627 td->file_service_file = f;
628 td->file_service_left = td->file_service_nr - 1;
629out:
630 dprint(FD_FILE, "get_next_file: %p\n", f);
631 return f;
632}
633
634static struct fio_file *find_next_new_file(struct thread_data *td)
635{
636 struct fio_file *f;
637
638 if (!td->nr_open_files || td->nr_done_files >= td->o.nr_files)
639 return NULL;
640
641 if (td->o.file_service_type == FIO_FSERVICE_RR)
642 f = get_next_file_rr(td, 0, FIO_FILE_OPEN);
643 else
644 f = get_next_file_rand(td, 0, FIO_FILE_OPEN);
645
646 return f;
647}
648
649static int set_io_u_file(struct thread_data *td, struct io_u *io_u)
650{
651 struct fio_file *f;
652
653 do {
654 f = get_next_file(td);
655 if (!f)
656 return 1;
657
658set_file:
659 io_u->file = f;
660 get_file(f);
661
662 if (!fill_io_u(td, io_u))
663 break;
664
665 /*
666 * optimization to prevent close/open of the same file. This
667 * way we preserve queueing etc.
668 */
669 if (td->o.nr_files == 1 && td->o.time_based) {
670 put_file_log(td, f);
671 fio_file_reset(f);
672 goto set_file;
673 }
674
675 /*
676 * td_io_close() does a put_file() as well, so no need to
677 * do that here.
678 */
679 io_u->file = NULL;
680 td_io_close_file(td, f);
681 f->flags |= FIO_FILE_DONE;
682 td->nr_done_files++;
683
684 /*
685 * probably not the right place to do this, but see
686 * if we need to open a new file
687 */
688 if (td->nr_open_files < td->o.open_files &&
689 td->o.open_files != td->o.nr_files) {
690 f = find_next_new_file(td);
691
692 if (!f || td_io_open_file(td, f))
693 return 1;
694
695 goto set_file;
696 }
697 } while (1);
698
699 return 0;
700}
701
702
703struct io_u *__get_io_u(struct thread_data *td)
704{
705 struct io_u *io_u = NULL;
706
707 if (!list_empty(&td->io_u_requeues))
708 io_u = list_entry(td->io_u_requeues.next, struct io_u, list);
709 else if (!queue_full(td)) {
710 io_u = list_entry(td->io_u_freelist.next, struct io_u, list);
711
712 io_u->buflen = 0;
713 io_u->resid = 0;
714 io_u->file = NULL;
715 io_u->end_io = NULL;
716 }
717
718 if (io_u) {
719 assert(io_u->flags & IO_U_F_FREE);
720 io_u->flags &= ~IO_U_F_FREE;
721
722 io_u->error = 0;
723 list_del(&io_u->list);
724 list_add(&io_u->list, &td->io_u_busylist);
725 td->cur_depth++;
726 }
727
728 return io_u;
729}
730
731/*
732 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
733 * etc. The returned io_u is fully ready to be prepped and submitted.
734 */
735struct io_u *get_io_u(struct thread_data *td)
736{
737 struct fio_file *f;
738 struct io_u *io_u;
739
740 io_u = __get_io_u(td);
741 if (!io_u) {
742 dprint(FD_IO, "__get_io_u failed\n");
743 return NULL;
744 }
745
746 /*
747 * from a requeue, io_u already setup
748 */
749 if (io_u->file)
750 goto out;
751
752 /*
753 * If using an iolog, grab next piece if any available.
754 */
755 if (td->o.read_iolog_file) {
756 if (read_iolog_get(td, io_u))
757 goto err_put;
758 } else if (set_io_u_file(td, io_u)) {
759 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
760 goto err_put;
761 }
762
763 f = io_u->file;
764 assert(f->flags & FIO_FILE_OPEN);
765
766 if (io_u->ddir != DDIR_SYNC) {
767 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) {
768 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
769 goto err_put;
770 }
771
772 f->last_pos = io_u->offset + io_u->buflen;
773
774 if (td->o.verify != VERIFY_NONE)
775 populate_verify_io_u(td, io_u);
776 }
777
778 /*
779 * Set io data pointers.
780 */
781 io_u->endpos = io_u->offset + io_u->buflen;
782 io_u->xfer_buf = io_u->buf;
783 io_u->xfer_buflen = io_u->buflen;
784
785 if (td->o.refill_buffers && io_u->ddir == DDIR_WRITE)
786 io_u_fill_buffer(td, io_u, io_u->xfer_buflen);
787out:
788 if (!td_io_prep(td, io_u)) {
789 fio_gettime(&io_u->start_time, NULL);
790 return io_u;
791 }
792err_put:
793 dprint(FD_IO, "get_io_u failed\n");
794 put_io_u(td, io_u);
795 return NULL;
796}
797
798void io_u_log_error(struct thread_data *td, struct io_u *io_u)
799{
800 const char *msg[] = { "read", "write", "sync" };
801
802 log_err("fio: io_u error");
803
804 if (io_u->file)
805 log_err(" on file %s", io_u->file->file_name);
806
807 log_err(": %s\n", strerror(io_u->error));
808
809 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir],
810 io_u->offset, io_u->xfer_buflen);
811
812 if (!td->error)
813 td_verror(td, io_u->error, "io_u error");
814}
815
816static void io_completed(struct thread_data *td, struct io_u *io_u,
817 struct io_completion_data *icd)
818{
819 unsigned long usec;
820
821 dprint_io_u(io_u, "io complete");
822
823 assert(io_u->flags & IO_U_F_FLIGHT);
824 io_u->flags &= ~IO_U_F_FLIGHT;
825
826 if (io_u->ddir == DDIR_SYNC) {
827 td->last_was_sync = 1;
828 return;
829 }
830
831 td->last_was_sync = 0;
832
833 if (!io_u->error) {
834 unsigned int bytes = io_u->buflen - io_u->resid;
835 const enum fio_ddir idx = io_u->ddir;
836 int ret;
837
838 td->io_blocks[idx]++;
839 td->io_bytes[idx] += bytes;
840 td->this_io_bytes[idx] += bytes;
841
842 usec = utime_since(&io_u->issue_time, &icd->time);
843
844 add_clat_sample(td, idx, usec);
845 add_bw_sample(td, idx, &icd->time);
846 io_u_mark_latency(td, usec);
847
848 if (td_write(td) && idx == DDIR_WRITE &&
849 td->o.do_verify &&
850 td->o.verify != VERIFY_NONE)
851 log_io_piece(td, io_u);
852
853 icd->bytes_done[idx] += bytes;
854
855 if (io_u->end_io) {
856 ret = io_u->end_io(td, io_u);
857 if (ret && !icd->error)
858 icd->error = ret;
859 }
860 } else {
861 icd->error = io_u->error;
862 io_u_log_error(td, io_u);
863 }
864}
865
866static void init_icd(struct io_completion_data *icd, int nr)
867{
868 fio_gettime(&icd->time, NULL);
869
870 icd->nr = nr;
871
872 icd->error = 0;
873 icd->bytes_done[0] = icd->bytes_done[1] = 0;
874}
875
876static void ios_completed(struct thread_data *td,
877 struct io_completion_data *icd)
878{
879 struct io_u *io_u;
880 int i;
881
882 for (i = 0; i < icd->nr; i++) {
883 io_u = td->io_ops->event(td, i);
884
885 io_completed(td, io_u, icd);
886 put_io_u(td, io_u);
887 }
888}
889
890/*
891 * Complete a single io_u for the sync engines.
892 */
893long io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
894{
895 struct io_completion_data icd;
896
897 init_icd(&icd, 1);
898 io_completed(td, io_u, &icd);
899 put_io_u(td, io_u);
900
901 if (!icd.error)
902 return icd.bytes_done[0] + icd.bytes_done[1];
903
904 td_verror(td, icd.error, "io_u_sync_complete");
905 return -1;
906}
907
908/*
909 * Called to complete min_events number of io for the async engines.
910 */
911long io_u_queued_complete(struct thread_data *td, int min_events)
912{
913 struct io_completion_data icd;
914 struct timespec *tvp = NULL;
915 int ret;
916 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
917
918 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_events);
919
920 if (!min_events)
921 tvp = &ts;
922
923 ret = td_io_getevents(td, min_events, td->cur_depth, tvp);
924 if (ret < 0) {
925 td_verror(td, -ret, "td_io_getevents");
926 return ret;
927 } else if (!ret)
928 return ret;
929
930 init_icd(&icd, ret);
931 ios_completed(td, &icd);
932 if (!icd.error)
933 return icd.bytes_done[0] + icd.bytes_done[1];
934
935 td_verror(td, icd.error, "io_u_queued_complete");
936 return -1;
937}
938
939/*
940 * Call when io_u is really queued, to update the submission latency.
941 */
942void io_u_queued(struct thread_data *td, struct io_u *io_u)
943{
944 unsigned long slat_time;
945
946 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
947 add_slat_sample(td, io_u->ddir, slat_time);
948}
949
950/*
951 * "randomly" fill the buffer contents
952 */
953void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
954 unsigned int max_bs)
955{
956 long *ptr = io_u->buf;
957
958 if (!td->o.zero_buffers) {
959 while ((void *) ptr - io_u->buf < max_bs) {
960 *ptr = rand() * GOLDEN_RATIO_PRIME;
961 ptr++;
962 }
963 } else
964 memset(ptr, 0, max_bs);
965}
966
967#ifdef FIO_USE_TIMEOUT
968void io_u_set_timeout(struct thread_data *td)
969{
970 assert(td->cur_depth);
971
972 td->timer.it_interval.tv_sec = 0;
973 td->timer.it_interval.tv_usec = 0;
974 td->timer.it_value.tv_sec = IO_U_TIMEOUT + IO_U_TIMEOUT_INC;
975 td->timer.it_value.tv_usec = 0;
976 setitimer(ITIMER_REAL, &td->timer, NULL);
977 fio_gettime(&td->timeout_end, NULL);
978}
979
980static void io_u_dump(struct io_u *io_u)
981{
982 unsigned long t_start = mtime_since_now(&io_u->start_time);
983 unsigned long t_issue = mtime_since_now(&io_u->issue_time);
984
985 log_err("io_u=%p, t_start=%lu, t_issue=%lu\n", io_u, t_start, t_issue);
986 log_err(" buf=%p/%p, len=%lu/%lu, offset=%llu\n", io_u->buf,
987 io_u->xfer_buf, io_u->buflen,
988 io_u->xfer_buflen,
989 io_u->offset);
990 log_err(" ddir=%d, fname=%s\n", io_u->ddir, io_u->file->file_name);
991}
992#else
993void io_u_set_timeout(struct thread_data fio_unused *td)
994{
995}
996#endif
997
998#ifdef FIO_USE_TIMEOUT
999static void io_u_timeout_handler(int fio_unused sig)
1000{
1001 struct thread_data *td, *__td;
1002 pid_t pid = getpid();
1003 struct list_head *entry;
1004 struct io_u *io_u;
1005 int i;
1006
1007 log_err("fio: io_u timeout\n");
1008
1009 /*
1010 * TLS would be nice...
1011 */
1012 td = NULL;
1013 for_each_td(__td, i) {
1014 if (__td->pid == pid) {
1015 td = __td;
1016 break;
1017 }
1018 }
1019
1020 if (!td) {
1021 log_err("fio: io_u timeout, can't find job\n");
1022 exit(1);
1023 }
1024
1025 if (!td->cur_depth) {
1026 log_err("fio: timeout without pending work?\n");
1027 return;
1028 }
1029
1030 log_err("fio: io_u timeout: job=%s, pid=%d\n", td->o.name, td->pid);
1031
1032 list_for_each(entry, &td->io_u_busylist) {
1033 io_u = list_entry(entry, struct io_u, list);
1034
1035 io_u_dump(io_u);
1036 }
1037
1038 td_verror(td, ETIMEDOUT, "io_u timeout");
1039 exit(1);
1040}
1041#endif
1042
1043void io_u_init_timeout(void)
1044{
1045#ifdef FIO_USE_TIMEOUT
1046 signal(SIGALRM, io_u_timeout_handler);
1047#endif
1048}