android: use ashmem
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13#include "lib/axmap.h"
14
15struct io_completion_data {
16 int nr; /* input */
17
18 int error; /* output */
19 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
20 struct timeval time; /* output */
21};
22
23/*
24 * The ->io_axmap contains a map of blocks we have or have not done io
25 * to yet. Used to make sure we cover the entire range in a fair fashion.
26 */
27static int random_map_free(struct fio_file *f, const uint64_t block)
28{
29 return !axmap_isset(f->io_axmap, block);
30}
31
32/*
33 * Mark a given offset as used in the map.
34 */
35static void mark_random_map(struct thread_data *td, struct io_u *io_u)
36{
37 unsigned int min_bs = td->o.rw_min_bs;
38 struct fio_file *f = io_u->file;
39 unsigned int nr_blocks;
40 uint64_t block;
41
42 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
43 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
44
45 if (!(io_u->flags & IO_U_F_BUSY_OK))
46 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
47
48 if ((nr_blocks * min_bs) < io_u->buflen)
49 io_u->buflen = nr_blocks * min_bs;
50}
51
52static uint64_t last_block(struct thread_data *td, struct fio_file *f,
53 enum fio_ddir ddir)
54{
55 uint64_t max_blocks;
56 uint64_t max_size;
57
58 assert(ddir_rw(ddir));
59
60 /*
61 * Hmm, should we make sure that ->io_size <= ->real_file_size?
62 */
63 max_size = f->io_size;
64 if (max_size > f->real_file_size)
65 max_size = f->real_file_size;
66
67 if (td->o.zone_range)
68 max_size = td->o.zone_range;
69
70 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
71 if (!max_blocks)
72 return 0;
73
74 return max_blocks;
75}
76
77struct rand_off {
78 struct flist_head list;
79 uint64_t off;
80};
81
82static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
83 enum fio_ddir ddir, uint64_t *b)
84{
85 uint64_t r, lastb;
86
87 lastb = last_block(td, f, ddir);
88 if (!lastb)
89 return 1;
90
91 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE) {
92 uint64_t rmax;
93
94 rmax = td->o.use_os_rand ? OS_RAND_MAX : FRAND_MAX;
95
96 if (td->o.use_os_rand) {
97 rmax = OS_RAND_MAX;
98 r = os_random_long(&td->random_state);
99 } else {
100 rmax = FRAND_MAX;
101 r = __rand(&td->__random_state);
102 }
103
104 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
105
106 *b = (lastb - 1) * (r / ((uint64_t) rmax + 1.0));
107 } else {
108 uint64_t off = 0;
109
110 if (lfsr_next(&f->lfsr, &off, lastb))
111 return 1;
112
113 *b = off;
114 }
115
116 /*
117 * if we are not maintaining a random map, we are done.
118 */
119 if (!file_randommap(td, f))
120 goto ret;
121
122 /*
123 * calculate map offset and check if it's free
124 */
125 if (random_map_free(f, *b))
126 goto ret;
127
128 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
129 (unsigned long long) *b);
130
131 *b = axmap_next_free(f->io_axmap, *b);
132 if (*b == (uint64_t) -1ULL)
133 return 1;
134ret:
135 return 0;
136}
137
138static int __get_next_rand_offset_zipf(struct thread_data *td,
139 struct fio_file *f, enum fio_ddir ddir,
140 uint64_t *b)
141{
142 *b = zipf_next(&f->zipf);
143 return 0;
144}
145
146static int __get_next_rand_offset_pareto(struct thread_data *td,
147 struct fio_file *f, enum fio_ddir ddir,
148 uint64_t *b)
149{
150 *b = pareto_next(&f->zipf);
151 return 0;
152}
153
154static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
155{
156 struct rand_off *r1 = flist_entry(a, struct rand_off, list);
157 struct rand_off *r2 = flist_entry(b, struct rand_off, list);
158
159 return r1->off - r2->off;
160}
161
162static int get_off_from_method(struct thread_data *td, struct fio_file *f,
163 enum fio_ddir ddir, uint64_t *b)
164{
165 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM)
166 return __get_next_rand_offset(td, f, ddir, b);
167 else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
168 return __get_next_rand_offset_zipf(td, f, ddir, b);
169 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
170 return __get_next_rand_offset_pareto(td, f, ddir, b);
171
172 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
173 return 1;
174}
175
176/*
177 * Sort the reads for a verify phase in batches of verifysort_nr, if
178 * specified.
179 */
180static inline int should_sort_io(struct thread_data *td)
181{
182 if (!td->o.verifysort_nr || !td->o.do_verify)
183 return 0;
184 if (!td_random(td))
185 return 0;
186 if (td->runstate != TD_VERIFYING)
187 return 0;
188 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE)
189 return 0;
190
191 return 1;
192}
193
194static int should_do_random(struct thread_data *td)
195{
196 unsigned int v;
197 unsigned long r;
198
199 if (td->o.perc_rand == 100)
200 return 1;
201
202 if (td->o.use_os_rand) {
203 r = os_random_long(&td->seq_rand_state);
204 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0)));
205 } else {
206 r = __rand(&td->__seq_rand_state);
207 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
208 }
209
210 return v <= td->o.perc_rand;
211}
212
213static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
214 enum fio_ddir ddir, uint64_t *b)
215{
216 struct rand_off *r;
217 int i, ret = 1;
218
219 if (!should_sort_io(td))
220 return get_off_from_method(td, f, ddir, b);
221
222 if (!flist_empty(&td->next_rand_list)) {
223 struct rand_off *r;
224fetch:
225 r = flist_entry(td->next_rand_list.next, struct rand_off, list);
226 flist_del(&r->list);
227 *b = r->off;
228 free(r);
229 return 0;
230 }
231
232 for (i = 0; i < td->o.verifysort_nr; i++) {
233 r = malloc(sizeof(*r));
234
235 ret = get_off_from_method(td, f, ddir, &r->off);
236 if (ret) {
237 free(r);
238 break;
239 }
240
241 flist_add(&r->list, &td->next_rand_list);
242 }
243
244 if (ret && !i)
245 return ret;
246
247 assert(!flist_empty(&td->next_rand_list));
248 flist_sort(NULL, &td->next_rand_list, flist_cmp);
249 goto fetch;
250}
251
252static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
253 enum fio_ddir ddir, uint64_t *b)
254{
255 if (!get_next_rand_offset(td, f, ddir, b))
256 return 0;
257
258 if (td->o.time_based) {
259 fio_file_reset(td, f);
260 if (!get_next_rand_offset(td, f, ddir, b))
261 return 0;
262 }
263
264 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
265 f->file_name, (unsigned long long) f->last_pos,
266 (unsigned long long) f->real_file_size);
267 return 1;
268}
269
270static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
271 enum fio_ddir ddir, uint64_t *offset)
272{
273 assert(ddir_rw(ddir));
274
275 if (f->last_pos >= f->io_size + get_start_offset(td) && td->o.time_based)
276 f->last_pos = f->last_pos - f->io_size;
277
278 if (f->last_pos < f->real_file_size) {
279 uint64_t pos;
280
281 if (f->last_pos == f->file_offset && td->o.ddir_seq_add < 0)
282 f->last_pos = f->real_file_size;
283
284 pos = f->last_pos - f->file_offset;
285 if (pos)
286 pos += td->o.ddir_seq_add;
287
288 *offset = pos;
289 return 0;
290 }
291
292 return 1;
293}
294
295static int get_next_block(struct thread_data *td, struct io_u *io_u,
296 enum fio_ddir ddir, int rw_seq)
297{
298 struct fio_file *f = io_u->file;
299 uint64_t b, offset;
300 int ret;
301
302 assert(ddir_rw(ddir));
303
304 b = offset = -1ULL;
305
306 if (rw_seq) {
307 if (td_random(td)) {
308 if (should_do_random(td))
309 ret = get_next_rand_block(td, f, ddir, &b);
310 else {
311 io_u->flags |= IO_U_F_BUSY_OK;
312 ret = get_next_seq_offset(td, f, ddir, &offset);
313 if (ret)
314 ret = get_next_rand_block(td, f, ddir, &b);
315 }
316 } else
317 ret = get_next_seq_offset(td, f, ddir, &offset);
318 } else {
319 io_u->flags |= IO_U_F_BUSY_OK;
320
321 if (td->o.rw_seq == RW_SEQ_SEQ) {
322 ret = get_next_seq_offset(td, f, ddir, &offset);
323 if (ret)
324 ret = get_next_rand_block(td, f, ddir, &b);
325 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
326 if (f->last_start != -1ULL)
327 offset = f->last_start - f->file_offset;
328 else
329 offset = 0;
330 ret = 0;
331 } else {
332 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
333 ret = 1;
334 }
335 }
336
337 if (!ret) {
338 if (offset != -1ULL)
339 io_u->offset = offset;
340 else if (b != -1ULL)
341 io_u->offset = b * td->o.ba[ddir];
342 else {
343 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
344 ret = 1;
345 }
346 }
347
348 return ret;
349}
350
351/*
352 * For random io, generate a random new block and see if it's used. Repeat
353 * until we find a free one. For sequential io, just return the end of
354 * the last io issued.
355 */
356static int __get_next_offset(struct thread_data *td, struct io_u *io_u)
357{
358 struct fio_file *f = io_u->file;
359 enum fio_ddir ddir = io_u->ddir;
360 int rw_seq_hit = 0;
361
362 assert(ddir_rw(ddir));
363
364 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
365 rw_seq_hit = 1;
366 td->ddir_seq_nr = td->o.ddir_seq_nr;
367 }
368
369 if (get_next_block(td, io_u, ddir, rw_seq_hit))
370 return 1;
371
372 if (io_u->offset >= f->io_size) {
373 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
374 (unsigned long long) io_u->offset,
375 (unsigned long long) f->io_size);
376 return 1;
377 }
378
379 io_u->offset += f->file_offset;
380 if (io_u->offset >= f->real_file_size) {
381 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
382 (unsigned long long) io_u->offset,
383 (unsigned long long) f->real_file_size);
384 return 1;
385 }
386
387 return 0;
388}
389
390static int get_next_offset(struct thread_data *td, struct io_u *io_u)
391{
392 if (td->flags & TD_F_PROFILE_OPS) {
393 struct prof_io_ops *ops = &td->prof_io_ops;
394
395 if (ops->fill_io_u_off)
396 return ops->fill_io_u_off(td, io_u);
397 }
398
399 return __get_next_offset(td, io_u);
400}
401
402static inline int io_u_fits(struct thread_data *td, struct io_u *io_u,
403 unsigned int buflen)
404{
405 struct fio_file *f = io_u->file;
406
407 return io_u->offset + buflen <= f->io_size + get_start_offset(td);
408}
409
410static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u)
411{
412 const int ddir = io_u->ddir;
413 unsigned int buflen = 0;
414 unsigned int minbs, maxbs;
415 unsigned long r, rand_max;
416
417 assert(ddir_rw(ddir));
418
419 minbs = td->o.min_bs[ddir];
420 maxbs = td->o.max_bs[ddir];
421
422 if (minbs == maxbs)
423 return minbs;
424
425 /*
426 * If we can't satisfy the min block size from here, then fail
427 */
428 if (!io_u_fits(td, io_u, minbs))
429 return 0;
430
431 if (td->o.use_os_rand)
432 rand_max = OS_RAND_MAX;
433 else
434 rand_max = FRAND_MAX;
435
436 do {
437 if (td->o.use_os_rand)
438 r = os_random_long(&td->bsrange_state);
439 else
440 r = __rand(&td->__bsrange_state);
441
442 if (!td->o.bssplit_nr[ddir]) {
443 buflen = 1 + (unsigned int) ((double) maxbs *
444 (r / (rand_max + 1.0)));
445 if (buflen < minbs)
446 buflen = minbs;
447 } else {
448 long perc = 0;
449 unsigned int i;
450
451 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
452 struct bssplit *bsp = &td->o.bssplit[ddir][i];
453
454 buflen = bsp->bs;
455 perc += bsp->perc;
456 if ((r <= ((rand_max / 100L) * perc)) &&
457 io_u_fits(td, io_u, buflen))
458 break;
459 }
460 }
461
462 if (!td->o.bs_unaligned && is_power_of_2(minbs))
463 buflen = (buflen + minbs - 1) & ~(minbs - 1);
464
465 } while (!io_u_fits(td, io_u, buflen));
466
467 return buflen;
468}
469
470static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u)
471{
472 if (td->flags & TD_F_PROFILE_OPS) {
473 struct prof_io_ops *ops = &td->prof_io_ops;
474
475 if (ops->fill_io_u_size)
476 return ops->fill_io_u_size(td, io_u);
477 }
478
479 return __get_next_buflen(td, io_u);
480}
481
482static void set_rwmix_bytes(struct thread_data *td)
483{
484 unsigned int diff;
485
486 /*
487 * we do time or byte based switch. this is needed because
488 * buffered writes may issue a lot quicker than they complete,
489 * whereas reads do not.
490 */
491 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
492 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
493}
494
495static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
496{
497 unsigned int v;
498 unsigned long r;
499
500 if (td->o.use_os_rand) {
501 r = os_random_long(&td->rwmix_state);
502 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0)));
503 } else {
504 r = __rand(&td->__rwmix_state);
505 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
506 }
507
508 if (v <= td->o.rwmix[DDIR_READ])
509 return DDIR_READ;
510
511 return DDIR_WRITE;
512}
513
514static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
515{
516 enum fio_ddir odir = ddir ^ 1;
517 struct timeval t;
518 long usec;
519
520 assert(ddir_rw(ddir));
521
522 if (td->rate_pending_usleep[ddir] <= 0)
523 return ddir;
524
525 /*
526 * We have too much pending sleep in this direction. See if we
527 * should switch.
528 */
529 if (td_rw(td) && td->o.rwmix[odir]) {
530 /*
531 * Other direction does not have too much pending, switch
532 */
533 if (td->rate_pending_usleep[odir] < 100000)
534 return odir;
535
536 /*
537 * Both directions have pending sleep. Sleep the minimum time
538 * and deduct from both.
539 */
540 if (td->rate_pending_usleep[ddir] <=
541 td->rate_pending_usleep[odir]) {
542 usec = td->rate_pending_usleep[ddir];
543 } else {
544 usec = td->rate_pending_usleep[odir];
545 ddir = odir;
546 }
547 } else
548 usec = td->rate_pending_usleep[ddir];
549
550 /*
551 * We are going to sleep, ensure that we flush anything pending as
552 * not to skew our latency numbers.
553 *
554 * Changed to only monitor 'in flight' requests here instead of the
555 * td->cur_depth, b/c td->cur_depth does not accurately represent
556 * io's that have been actually submitted to an async engine,
557 * and cur_depth is meaningless for sync engines.
558 */
559 while (td->io_u_in_flight) {
560 int fio_unused ret;
561
562 ret = io_u_queued_complete(td, 1, NULL);
563 }
564
565 fio_gettime(&t, NULL);
566 usec_sleep(td, usec);
567 usec = utime_since_now(&t);
568
569 td->rate_pending_usleep[ddir] -= usec;
570
571 odir = ddir ^ 1;
572 if (td_rw(td) && __should_check_rate(td, odir))
573 td->rate_pending_usleep[odir] -= usec;
574
575 if (ddir_trim(ddir))
576 return ddir;
577
578 return ddir;
579}
580
581/*
582 * Return the data direction for the next io_u. If the job is a
583 * mixed read/write workload, check the rwmix cycle and switch if
584 * necessary.
585 */
586static enum fio_ddir get_rw_ddir(struct thread_data *td)
587{
588 enum fio_ddir ddir;
589
590 /*
591 * see if it's time to fsync
592 */
593 if (td->o.fsync_blocks &&
594 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
595 td->io_issues[DDIR_WRITE] && should_fsync(td))
596 return DDIR_SYNC;
597
598 /*
599 * see if it's time to fdatasync
600 */
601 if (td->o.fdatasync_blocks &&
602 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) &&
603 td->io_issues[DDIR_WRITE] && should_fsync(td))
604 return DDIR_DATASYNC;
605
606 /*
607 * see if it's time to sync_file_range
608 */
609 if (td->sync_file_range_nr &&
610 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) &&
611 td->io_issues[DDIR_WRITE] && should_fsync(td))
612 return DDIR_SYNC_FILE_RANGE;
613
614 if (td_rw(td)) {
615 /*
616 * Check if it's time to seed a new data direction.
617 */
618 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
619 /*
620 * Put a top limit on how many bytes we do for
621 * one data direction, to avoid overflowing the
622 * ranges too much
623 */
624 ddir = get_rand_ddir(td);
625
626 if (ddir != td->rwmix_ddir)
627 set_rwmix_bytes(td);
628
629 td->rwmix_ddir = ddir;
630 }
631 ddir = td->rwmix_ddir;
632 } else if (td_read(td))
633 ddir = DDIR_READ;
634 else if (td_write(td))
635 ddir = DDIR_WRITE;
636 else
637 ddir = DDIR_TRIM;
638
639 td->rwmix_ddir = rate_ddir(td, ddir);
640 return td->rwmix_ddir;
641}
642
643static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
644{
645 io_u->ddir = io_u->acct_ddir = get_rw_ddir(td);
646
647 if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) &&
648 td->o.barrier_blocks &&
649 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
650 td->io_issues[DDIR_WRITE])
651 io_u->flags |= IO_U_F_BARRIER;
652}
653
654void put_file_log(struct thread_data *td, struct fio_file *f)
655{
656 int ret = put_file(td, f);
657
658 if (ret)
659 td_verror(td, ret, "file close");
660}
661
662void put_io_u(struct thread_data *td, struct io_u *io_u)
663{
664 td_io_u_lock(td);
665
666 if (io_u->file && !(io_u->flags & IO_U_F_FREE_DEF))
667 put_file_log(td, io_u->file);
668 io_u->file = NULL;
669 io_u->flags &= ~IO_U_F_FREE_DEF;
670 io_u->flags |= IO_U_F_FREE;
671
672 if (io_u->flags & IO_U_F_IN_CUR_DEPTH)
673 td->cur_depth--;
674 flist_del_init(&io_u->list);
675 flist_add(&io_u->list, &td->io_u_freelist);
676 td_io_u_unlock(td);
677 td_io_u_free_notify(td);
678}
679
680void clear_io_u(struct thread_data *td, struct io_u *io_u)
681{
682 io_u->flags &= ~IO_U_F_FLIGHT;
683 put_io_u(td, io_u);
684}
685
686void requeue_io_u(struct thread_data *td, struct io_u **io_u)
687{
688 struct io_u *__io_u = *io_u;
689 enum fio_ddir ddir = acct_ddir(__io_u);
690
691 dprint(FD_IO, "requeue %p\n", __io_u);
692
693 td_io_u_lock(td);
694
695 __io_u->flags |= IO_U_F_FREE;
696 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
697 td->io_issues[ddir]--;
698
699 __io_u->flags &= ~IO_U_F_FLIGHT;
700 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH)
701 td->cur_depth--;
702 flist_del(&__io_u->list);
703 flist_add_tail(&__io_u->list, &td->io_u_requeues);
704 td_io_u_unlock(td);
705 *io_u = NULL;
706}
707
708static int fill_io_u(struct thread_data *td, struct io_u *io_u)
709{
710 if (td->io_ops->flags & FIO_NOIO)
711 goto out;
712
713 set_rw_ddir(td, io_u);
714
715 /*
716 * fsync() or fdatasync() or trim etc, we are done
717 */
718 if (!ddir_rw(io_u->ddir))
719 goto out;
720
721 /*
722 * See if it's time to switch to a new zone
723 */
724 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
725 td->zone_bytes = 0;
726 io_u->file->file_offset += td->o.zone_range + td->o.zone_skip;
727 io_u->file->last_pos = io_u->file->file_offset;
728 td->io_skip_bytes += td->o.zone_skip;
729 }
730
731 /*
732 * No log, let the seq/rand engine retrieve the next buflen and
733 * position.
734 */
735 if (get_next_offset(td, io_u)) {
736 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
737 return 1;
738 }
739
740 io_u->buflen = get_next_buflen(td, io_u);
741 if (!io_u->buflen) {
742 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
743 return 1;
744 }
745
746 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
747 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
748 dprint(FD_IO, " off=%llu/%lu > %llu\n",
749 (unsigned long long) io_u->offset, io_u->buflen,
750 (unsigned long long) io_u->file->real_file_size);
751 return 1;
752 }
753
754 /*
755 * mark entry before potentially trimming io_u
756 */
757 if (td_random(td) && file_randommap(td, io_u->file))
758 mark_random_map(td, io_u);
759
760out:
761 dprint_io_u(io_u, "fill_io_u");
762 td->zone_bytes += io_u->buflen;
763 return 0;
764}
765
766static void __io_u_mark_map(unsigned int *map, unsigned int nr)
767{
768 int idx = 0;
769
770 switch (nr) {
771 default:
772 idx = 6;
773 break;
774 case 33 ... 64:
775 idx = 5;
776 break;
777 case 17 ... 32:
778 idx = 4;
779 break;
780 case 9 ... 16:
781 idx = 3;
782 break;
783 case 5 ... 8:
784 idx = 2;
785 break;
786 case 1 ... 4:
787 idx = 1;
788 case 0:
789 break;
790 }
791
792 map[idx]++;
793}
794
795void io_u_mark_submit(struct thread_data *td, unsigned int nr)
796{
797 __io_u_mark_map(td->ts.io_u_submit, nr);
798 td->ts.total_submit++;
799}
800
801void io_u_mark_complete(struct thread_data *td, unsigned int nr)
802{
803 __io_u_mark_map(td->ts.io_u_complete, nr);
804 td->ts.total_complete++;
805}
806
807void io_u_mark_depth(struct thread_data *td, unsigned int nr)
808{
809 int idx = 0;
810
811 switch (td->cur_depth) {
812 default:
813 idx = 6;
814 break;
815 case 32 ... 63:
816 idx = 5;
817 break;
818 case 16 ... 31:
819 idx = 4;
820 break;
821 case 8 ... 15:
822 idx = 3;
823 break;
824 case 4 ... 7:
825 idx = 2;
826 break;
827 case 2 ... 3:
828 idx = 1;
829 case 1:
830 break;
831 }
832
833 td->ts.io_u_map[idx] += nr;
834}
835
836static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
837{
838 int idx = 0;
839
840 assert(usec < 1000);
841
842 switch (usec) {
843 case 750 ... 999:
844 idx = 9;
845 break;
846 case 500 ... 749:
847 idx = 8;
848 break;
849 case 250 ... 499:
850 idx = 7;
851 break;
852 case 100 ... 249:
853 idx = 6;
854 break;
855 case 50 ... 99:
856 idx = 5;
857 break;
858 case 20 ... 49:
859 idx = 4;
860 break;
861 case 10 ... 19:
862 idx = 3;
863 break;
864 case 4 ... 9:
865 idx = 2;
866 break;
867 case 2 ... 3:
868 idx = 1;
869 case 0 ... 1:
870 break;
871 }
872
873 assert(idx < FIO_IO_U_LAT_U_NR);
874 td->ts.io_u_lat_u[idx]++;
875}
876
877static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
878{
879 int idx = 0;
880
881 switch (msec) {
882 default:
883 idx = 11;
884 break;
885 case 1000 ... 1999:
886 idx = 10;
887 break;
888 case 750 ... 999:
889 idx = 9;
890 break;
891 case 500 ... 749:
892 idx = 8;
893 break;
894 case 250 ... 499:
895 idx = 7;
896 break;
897 case 100 ... 249:
898 idx = 6;
899 break;
900 case 50 ... 99:
901 idx = 5;
902 break;
903 case 20 ... 49:
904 idx = 4;
905 break;
906 case 10 ... 19:
907 idx = 3;
908 break;
909 case 4 ... 9:
910 idx = 2;
911 break;
912 case 2 ... 3:
913 idx = 1;
914 case 0 ... 1:
915 break;
916 }
917
918 assert(idx < FIO_IO_U_LAT_M_NR);
919 td->ts.io_u_lat_m[idx]++;
920}
921
922static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
923{
924 if (usec < 1000)
925 io_u_mark_lat_usec(td, usec);
926 else
927 io_u_mark_lat_msec(td, usec / 1000);
928}
929
930/*
931 * Get next file to service by choosing one at random
932 */
933static struct fio_file *get_next_file_rand(struct thread_data *td,
934 enum fio_file_flags goodf,
935 enum fio_file_flags badf)
936{
937 struct fio_file *f;
938 int fno;
939
940 do {
941 int opened = 0;
942 unsigned long r;
943
944 if (td->o.use_os_rand) {
945 r = os_random_long(&td->next_file_state);
946 fno = (unsigned int) ((double) td->o.nr_files
947 * (r / (OS_RAND_MAX + 1.0)));
948 } else {
949 r = __rand(&td->__next_file_state);
950 fno = (unsigned int) ((double) td->o.nr_files
951 * (r / (FRAND_MAX + 1.0)));
952 }
953
954 f = td->files[fno];
955 if (fio_file_done(f))
956 continue;
957
958 if (!fio_file_open(f)) {
959 int err;
960
961 err = td_io_open_file(td, f);
962 if (err)
963 continue;
964 opened = 1;
965 }
966
967 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
968 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
969 return f;
970 }
971 if (opened)
972 td_io_close_file(td, f);
973 } while (1);
974}
975
976/*
977 * Get next file to service by doing round robin between all available ones
978 */
979static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
980 int badf)
981{
982 unsigned int old_next_file = td->next_file;
983 struct fio_file *f;
984
985 do {
986 int opened = 0;
987
988 f = td->files[td->next_file];
989
990 td->next_file++;
991 if (td->next_file >= td->o.nr_files)
992 td->next_file = 0;
993
994 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
995 if (fio_file_done(f)) {
996 f = NULL;
997 continue;
998 }
999
1000 if (!fio_file_open(f)) {
1001 int err;
1002
1003 err = td_io_open_file(td, f);
1004 if (err) {
1005 dprint(FD_FILE, "error %d on open of %s\n",
1006 err, f->file_name);
1007 f = NULL;
1008 continue;
1009 }
1010 opened = 1;
1011 }
1012
1013 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1014 f->flags);
1015 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1016 break;
1017
1018 if (opened)
1019 td_io_close_file(td, f);
1020
1021 f = NULL;
1022 } while (td->next_file != old_next_file);
1023
1024 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1025 return f;
1026}
1027
1028static struct fio_file *__get_next_file(struct thread_data *td)
1029{
1030 struct fio_file *f;
1031
1032 assert(td->o.nr_files <= td->files_index);
1033
1034 if (td->nr_done_files >= td->o.nr_files) {
1035 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1036 " nr_files=%d\n", td->nr_open_files,
1037 td->nr_done_files,
1038 td->o.nr_files);
1039 return NULL;
1040 }
1041
1042 f = td->file_service_file;
1043 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1044 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1045 goto out;
1046 if (td->file_service_left--)
1047 goto out;
1048 }
1049
1050 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1051 td->o.file_service_type == FIO_FSERVICE_SEQ)
1052 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1053 else
1054 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1055
1056 td->file_service_file = f;
1057 td->file_service_left = td->file_service_nr - 1;
1058out:
1059 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1060 return f;
1061}
1062
1063static struct fio_file *get_next_file(struct thread_data *td)
1064{
1065 if (!(td->flags & TD_F_PROFILE_OPS)) {
1066 struct prof_io_ops *ops = &td->prof_io_ops;
1067
1068 if (ops->get_next_file)
1069 return ops->get_next_file(td);
1070 }
1071
1072 return __get_next_file(td);
1073}
1074
1075static int set_io_u_file(struct thread_data *td, struct io_u *io_u)
1076{
1077 struct fio_file *f;
1078
1079 do {
1080 f = get_next_file(td);
1081 if (!f)
1082 return 1;
1083
1084 io_u->file = f;
1085 get_file(f);
1086
1087 if (!fill_io_u(td, io_u))
1088 break;
1089
1090 put_file_log(td, f);
1091 td_io_close_file(td, f);
1092 io_u->file = NULL;
1093 fio_file_set_done(f);
1094 td->nr_done_files++;
1095 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1096 td->nr_done_files, td->o.nr_files);
1097 } while (1);
1098
1099 return 0;
1100}
1101
1102
1103struct io_u *__get_io_u(struct thread_data *td)
1104{
1105 struct io_u *io_u = NULL;
1106
1107 td_io_u_lock(td);
1108
1109again:
1110 if (!flist_empty(&td->io_u_requeues))
1111 io_u = flist_entry(td->io_u_requeues.next, struct io_u, list);
1112 else if (!queue_full(td)) {
1113 io_u = flist_entry(td->io_u_freelist.next, struct io_u, list);
1114
1115 io_u->buflen = 0;
1116 io_u->resid = 0;
1117 io_u->file = NULL;
1118 io_u->end_io = NULL;
1119 }
1120
1121 if (io_u) {
1122 assert(io_u->flags & IO_U_F_FREE);
1123 io_u->flags &= ~(IO_U_F_FREE | IO_U_F_FREE_DEF);
1124 io_u->flags &= ~(IO_U_F_TRIMMED | IO_U_F_BARRIER);
1125 io_u->flags &= ~IO_U_F_VER_LIST;
1126
1127 io_u->error = 0;
1128 io_u->acct_ddir = -1;
1129 flist_del(&io_u->list);
1130 flist_add_tail(&io_u->list, &td->io_u_busylist);
1131 td->cur_depth++;
1132 io_u->flags |= IO_U_F_IN_CUR_DEPTH;
1133 } else if (td->o.verify_async) {
1134 /*
1135 * We ran out, wait for async verify threads to finish and
1136 * return one
1137 */
1138 pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1139 goto again;
1140 }
1141
1142 td_io_u_unlock(td);
1143 return io_u;
1144}
1145
1146static int check_get_trim(struct thread_data *td, struct io_u *io_u)
1147{
1148 if (!(td->flags & TD_F_TRIM_BACKLOG))
1149 return 0;
1150
1151 if (td->trim_entries) {
1152 int get_trim = 0;
1153
1154 if (td->trim_batch) {
1155 td->trim_batch--;
1156 get_trim = 1;
1157 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1158 td->last_ddir != DDIR_READ) {
1159 td->trim_batch = td->o.trim_batch;
1160 if (!td->trim_batch)
1161 td->trim_batch = td->o.trim_backlog;
1162 get_trim = 1;
1163 }
1164
1165 if (get_trim && !get_next_trim(td, io_u))
1166 return 1;
1167 }
1168
1169 return 0;
1170}
1171
1172static int check_get_verify(struct thread_data *td, struct io_u *io_u)
1173{
1174 if (!(td->flags & TD_F_VER_BACKLOG))
1175 return 0;
1176
1177 if (td->io_hist_len) {
1178 int get_verify = 0;
1179
1180 if (td->verify_batch)
1181 get_verify = 1;
1182 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1183 td->last_ddir != DDIR_READ) {
1184 td->verify_batch = td->o.verify_batch;
1185 if (!td->verify_batch)
1186 td->verify_batch = td->o.verify_backlog;
1187 get_verify = 1;
1188 }
1189
1190 if (get_verify && !get_next_verify(td, io_u)) {
1191 td->verify_batch--;
1192 return 1;
1193 }
1194 }
1195
1196 return 0;
1197}
1198
1199/*
1200 * Fill offset and start time into the buffer content, to prevent too
1201 * easy compressible data for simple de-dupe attempts. Do this for every
1202 * 512b block in the range, since that should be the smallest block size
1203 * we can expect from a device.
1204 */
1205static void small_content_scramble(struct io_u *io_u)
1206{
1207 unsigned int i, nr_blocks = io_u->buflen / 512;
1208 uint64_t boffset;
1209 unsigned int offset;
1210 void *p, *end;
1211
1212 if (!nr_blocks)
1213 return;
1214
1215 p = io_u->xfer_buf;
1216 boffset = io_u->offset;
1217 io_u->buf_filled_len = 0;
1218
1219 for (i = 0; i < nr_blocks; i++) {
1220 /*
1221 * Fill the byte offset into a "random" start offset of
1222 * the buffer, given by the product of the usec time
1223 * and the actual offset.
1224 */
1225 offset = (io_u->start_time.tv_usec ^ boffset) & 511;
1226 offset &= ~(sizeof(uint64_t) - 1);
1227 if (offset >= 512 - sizeof(uint64_t))
1228 offset -= sizeof(uint64_t);
1229 memcpy(p + offset, &boffset, sizeof(boffset));
1230
1231 end = p + 512 - sizeof(io_u->start_time);
1232 memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
1233 p += 512;
1234 boffset += 512;
1235 }
1236}
1237
1238/*
1239 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1240 * etc. The returned io_u is fully ready to be prepped and submitted.
1241 */
1242struct io_u *get_io_u(struct thread_data *td)
1243{
1244 struct fio_file *f;
1245 struct io_u *io_u;
1246 int do_scramble = 0;
1247
1248 io_u = __get_io_u(td);
1249 if (!io_u) {
1250 dprint(FD_IO, "__get_io_u failed\n");
1251 return NULL;
1252 }
1253
1254 if (check_get_verify(td, io_u))
1255 goto out;
1256 if (check_get_trim(td, io_u))
1257 goto out;
1258
1259 /*
1260 * from a requeue, io_u already setup
1261 */
1262 if (io_u->file)
1263 goto out;
1264
1265 /*
1266 * If using an iolog, grab next piece if any available.
1267 */
1268 if (td->flags & TD_F_READ_IOLOG) {
1269 if (read_iolog_get(td, io_u))
1270 goto err_put;
1271 } else if (set_io_u_file(td, io_u)) {
1272 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1273 goto err_put;
1274 }
1275
1276 f = io_u->file;
1277 assert(fio_file_open(f));
1278
1279 if (ddir_rw(io_u->ddir)) {
1280 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) {
1281 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1282 goto err_put;
1283 }
1284
1285 f->last_start = io_u->offset;
1286 f->last_pos = io_u->offset + io_u->buflen;
1287
1288 if (io_u->ddir == DDIR_WRITE) {
1289 if (td->flags & TD_F_REFILL_BUFFERS) {
1290 io_u_fill_buffer(td, io_u,
1291 io_u->xfer_buflen, io_u->xfer_buflen);
1292 } else if (td->flags & TD_F_SCRAMBLE_BUFFERS)
1293 do_scramble = 1;
1294 if (td->flags & TD_F_VER_NONE) {
1295 populate_verify_io_u(td, io_u);
1296 do_scramble = 0;
1297 }
1298 } else if (io_u->ddir == DDIR_READ) {
1299 /*
1300 * Reset the buf_filled parameters so next time if the
1301 * buffer is used for writes it is refilled.
1302 */
1303 io_u->buf_filled_len = 0;
1304 }
1305 }
1306
1307 /*
1308 * Set io data pointers.
1309 */
1310 io_u->xfer_buf = io_u->buf;
1311 io_u->xfer_buflen = io_u->buflen;
1312
1313out:
1314 assert(io_u->file);
1315 if (!td_io_prep(td, io_u)) {
1316 if (!td->o.disable_slat)
1317 fio_gettime(&io_u->start_time, NULL);
1318 if (do_scramble)
1319 small_content_scramble(io_u);
1320 return io_u;
1321 }
1322err_put:
1323 dprint(FD_IO, "get_io_u failed\n");
1324 put_io_u(td, io_u);
1325 return NULL;
1326}
1327
1328void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1329{
1330 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1331 const char *msg[] = { "read", "write", "sync", "datasync",
1332 "sync_file_range", "wait", "trim" };
1333
1334 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1335 return;
1336
1337 log_err("fio: io_u error");
1338
1339 if (io_u->file)
1340 log_err(" on file %s", io_u->file->file_name);
1341
1342 log_err(": %s\n", strerror(io_u->error));
1343
1344 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir],
1345 io_u->offset, io_u->xfer_buflen);
1346
1347 if (!td->error)
1348 td_verror(td, io_u->error, "io_u error");
1349}
1350
1351static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1352 struct io_completion_data *icd,
1353 const enum fio_ddir idx, unsigned int bytes)
1354{
1355 unsigned long lusec = 0;
1356
1357 if (!td->o.disable_clat || !td->o.disable_bw)
1358 lusec = utime_since(&io_u->issue_time, &icd->time);
1359
1360 if (!td->o.disable_lat) {
1361 unsigned long tusec;
1362
1363 tusec = utime_since(&io_u->start_time, &icd->time);
1364 add_lat_sample(td, idx, tusec, bytes);
1365
1366 if (td->o.max_latency && tusec > td->o.max_latency) {
1367 if (!td->error)
1368 log_err("fio: latency of %lu usec exceeds specified max (%u usec)\n", tusec, td->o.max_latency);
1369 td_verror(td, ETIMEDOUT, "max latency exceeded");
1370 icd->error = ETIMEDOUT;
1371 }
1372 }
1373
1374 if (!td->o.disable_clat) {
1375 add_clat_sample(td, idx, lusec, bytes);
1376 io_u_mark_latency(td, lusec);
1377 }
1378
1379 if (!td->o.disable_bw)
1380 add_bw_sample(td, idx, bytes, &icd->time);
1381
1382 add_iops_sample(td, idx, &icd->time);
1383}
1384
1385static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
1386{
1387 uint64_t secs, remainder, bps, bytes;
1388
1389 bytes = td->this_io_bytes[ddir];
1390 bps = td->rate_bps[ddir];
1391 secs = bytes / bps;
1392 remainder = bytes % bps;
1393 return remainder * 1000000 / bps + secs * 1000000;
1394}
1395
1396static void io_completed(struct thread_data *td, struct io_u *io_u,
1397 struct io_completion_data *icd)
1398{
1399 struct fio_file *f;
1400
1401 dprint_io_u(io_u, "io complete");
1402
1403 td_io_u_lock(td);
1404 assert(io_u->flags & IO_U_F_FLIGHT);
1405 io_u->flags &= ~(IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1406 td_io_u_unlock(td);
1407
1408 if (ddir_sync(io_u->ddir)) {
1409 td->last_was_sync = 1;
1410 f = io_u->file;
1411 if (f) {
1412 f->first_write = -1ULL;
1413 f->last_write = -1ULL;
1414 }
1415 return;
1416 }
1417
1418 td->last_was_sync = 0;
1419 td->last_ddir = io_u->ddir;
1420
1421 if (!io_u->error && ddir_rw(io_u->ddir)) {
1422 unsigned int bytes = io_u->buflen - io_u->resid;
1423 const enum fio_ddir idx = io_u->ddir;
1424 const enum fio_ddir odx = io_u->ddir ^ 1;
1425 int ret;
1426
1427 td->io_blocks[idx]++;
1428 td->this_io_blocks[idx]++;
1429 td->io_bytes[idx] += bytes;
1430
1431 if (!(io_u->flags & IO_U_F_VER_LIST))
1432 td->this_io_bytes[idx] += bytes;
1433
1434 if (idx == DDIR_WRITE) {
1435 f = io_u->file;
1436 if (f) {
1437 if (f->first_write == -1ULL ||
1438 io_u->offset < f->first_write)
1439 f->first_write = io_u->offset;
1440 if (f->last_write == -1ULL ||
1441 ((io_u->offset + bytes) > f->last_write))
1442 f->last_write = io_u->offset + bytes;
1443 }
1444 }
1445
1446 if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1447 td->runstate == TD_VERIFYING)) {
1448 account_io_completion(td, io_u, icd, idx, bytes);
1449
1450 if (__should_check_rate(td, idx)) {
1451 td->rate_pending_usleep[idx] =
1452 (usec_for_io(td, idx) -
1453 utime_since_now(&td->start));
1454 }
1455 if (idx != DDIR_TRIM && __should_check_rate(td, odx))
1456 td->rate_pending_usleep[odx] =
1457 (usec_for_io(td, odx) -
1458 utime_since_now(&td->start));
1459 }
1460
1461 if (td_write(td) && idx == DDIR_WRITE &&
1462 td->o.do_verify &&
1463 td->o.verify != VERIFY_NONE &&
1464 !td->o.experimental_verify)
1465 log_io_piece(td, io_u);
1466
1467 icd->bytes_done[idx] += bytes;
1468
1469 if (io_u->end_io) {
1470 ret = io_u->end_io(td, io_u);
1471 if (ret && !icd->error)
1472 icd->error = ret;
1473 }
1474 } else if (io_u->error) {
1475 icd->error = io_u->error;
1476 io_u_log_error(td, io_u);
1477 }
1478 if (icd->error) {
1479 enum error_type_bit eb = td_error_type(io_u->ddir, icd->error);
1480 if (!td_non_fatal_error(td, eb, icd->error))
1481 return;
1482 /*
1483 * If there is a non_fatal error, then add to the error count
1484 * and clear all the errors.
1485 */
1486 update_error_count(td, icd->error);
1487 td_clear_error(td);
1488 icd->error = 0;
1489 io_u->error = 0;
1490 }
1491}
1492
1493static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1494 int nr)
1495{
1496 int ddir;
1497 if (!td->o.disable_clat || !td->o.disable_bw)
1498 fio_gettime(&icd->time, NULL);
1499
1500 icd->nr = nr;
1501
1502 icd->error = 0;
1503 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1504 icd->bytes_done[ddir] = 0;
1505}
1506
1507static void ios_completed(struct thread_data *td,
1508 struct io_completion_data *icd)
1509{
1510 struct io_u *io_u;
1511 int i;
1512
1513 for (i = 0; i < icd->nr; i++) {
1514 io_u = td->io_ops->event(td, i);
1515
1516 io_completed(td, io_u, icd);
1517
1518 if (!(io_u->flags & IO_U_F_FREE_DEF))
1519 put_io_u(td, io_u);
1520 }
1521}
1522
1523/*
1524 * Complete a single io_u for the sync engines.
1525 */
1526int io_u_sync_complete(struct thread_data *td, struct io_u *io_u,
1527 uint64_t *bytes)
1528{
1529 struct io_completion_data icd;
1530
1531 init_icd(td, &icd, 1);
1532 io_completed(td, io_u, &icd);
1533
1534 if (!(io_u->flags & IO_U_F_FREE_DEF))
1535 put_io_u(td, io_u);
1536
1537 if (icd.error) {
1538 td_verror(td, icd.error, "io_u_sync_complete");
1539 return -1;
1540 }
1541
1542 if (bytes) {
1543 int ddir;
1544
1545 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1546 bytes[ddir] += icd.bytes_done[ddir];
1547 }
1548
1549 return 0;
1550}
1551
1552/*
1553 * Called to complete min_events number of io for the async engines.
1554 */
1555int io_u_queued_complete(struct thread_data *td, int min_evts,
1556 uint64_t *bytes)
1557{
1558 struct io_completion_data icd;
1559 struct timespec *tvp = NULL;
1560 int ret;
1561 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
1562
1563 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts);
1564
1565 if (!min_evts)
1566 tvp = &ts;
1567
1568 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp);
1569 if (ret < 0) {
1570 td_verror(td, -ret, "td_io_getevents");
1571 return ret;
1572 } else if (!ret)
1573 return ret;
1574
1575 init_icd(td, &icd, ret);
1576 ios_completed(td, &icd);
1577 if (icd.error) {
1578 td_verror(td, icd.error, "io_u_queued_complete");
1579 return -1;
1580 }
1581
1582 if (bytes) {
1583 int ddir;
1584
1585 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1586 bytes[ddir] += icd.bytes_done[ddir];
1587 }
1588
1589 return 0;
1590}
1591
1592/*
1593 * Call when io_u is really queued, to update the submission latency.
1594 */
1595void io_u_queued(struct thread_data *td, struct io_u *io_u)
1596{
1597 if (!td->o.disable_slat) {
1598 unsigned long slat_time;
1599
1600 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
1601 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen);
1602 }
1603}
1604
1605/*
1606 * "randomly" fill the buffer contents
1607 */
1608void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
1609 unsigned int min_write, unsigned int max_bs)
1610{
1611 io_u->buf_filled_len = 0;
1612
1613 if (!td->o.zero_buffers) {
1614 unsigned int perc = td->o.compress_percentage;
1615
1616 if (perc) {
1617 unsigned int seg = min_write;
1618
1619 seg = min(min_write, td->o.compress_chunk);
1620 fill_random_buf_percentage(&td->buf_state, io_u->buf,
1621 perc, seg, max_bs);
1622 } else
1623 fill_random_buf(&td->buf_state, io_u->buf, max_bs);
1624 } else
1625 memset(io_u->buf, 0, max_bs);
1626}