rand: cleanup rand_between() and helpers
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <string.h>
3#include <assert.h>
4
5#include "fio.h"
6#include "verify.h"
7#include "trim.h"
8#include "lib/rand.h"
9#include "lib/axmap.h"
10#include "err.h"
11#include "lib/pow2.h"
12#include "minmax.h"
13
14struct io_completion_data {
15 int nr; /* input */
16
17 int error; /* output */
18 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
19 struct timespec time; /* output */
20};
21
22/*
23 * The ->io_axmap contains a map of blocks we have or have not done io
24 * to yet. Used to make sure we cover the entire range in a fair fashion.
25 */
26static bool random_map_free(struct fio_file *f, const uint64_t block)
27{
28 return !axmap_isset(f->io_axmap, block);
29}
30
31/*
32 * Mark a given offset as used in the map.
33 */
34static void mark_random_map(struct thread_data *td, struct io_u *io_u)
35{
36 unsigned int min_bs = td->o.min_bs[io_u->ddir];
37 struct fio_file *f = io_u->file;
38 unsigned int nr_blocks;
39 uint64_t block;
40
41 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
42 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
43
44 if (!(io_u->flags & IO_U_F_BUSY_OK))
45 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
46
47 if ((nr_blocks * min_bs) < io_u->buflen)
48 io_u->buflen = nr_blocks * min_bs;
49}
50
51static uint64_t last_block(struct thread_data *td, struct fio_file *f,
52 enum fio_ddir ddir)
53{
54 uint64_t max_blocks;
55 uint64_t max_size;
56
57 assert(ddir_rw(ddir));
58
59 /*
60 * Hmm, should we make sure that ->io_size <= ->real_file_size?
61 * -> not for now since there is code assuming it could go either.
62 */
63 max_size = f->io_size;
64 if (max_size > f->real_file_size)
65 max_size = f->real_file_size;
66
67 if (td->o.zone_range)
68 max_size = td->o.zone_range;
69
70 if (td->o.min_bs[ddir] > td->o.ba[ddir])
71 max_size -= td->o.min_bs[ddir] - td->o.ba[ddir];
72
73 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
74 if (!max_blocks)
75 return 0;
76
77 return max_blocks;
78}
79
80static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
81 enum fio_ddir ddir, uint64_t *b,
82 uint64_t lastb)
83{
84 uint64_t r;
85
86 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
87 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64) {
88
89 r = __rand(&td->random_state);
90
91 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
92
93 *b = lastb * (r / (rand_max(&td->random_state) + 1.0));
94 } else {
95 uint64_t off = 0;
96
97 assert(fio_file_lfsr(f));
98
99 if (lfsr_next(&f->lfsr, &off))
100 return 1;
101
102 *b = off;
103 }
104
105 /*
106 * if we are not maintaining a random map, we are done.
107 */
108 if (!file_randommap(td, f))
109 goto ret;
110
111 /*
112 * calculate map offset and check if it's free
113 */
114 if (random_map_free(f, *b))
115 goto ret;
116
117 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
118 (unsigned long long) *b);
119
120 *b = axmap_next_free(f->io_axmap, *b);
121 if (*b == (uint64_t) -1ULL)
122 return 1;
123ret:
124 return 0;
125}
126
127static int __get_next_rand_offset_zipf(struct thread_data *td,
128 struct fio_file *f, enum fio_ddir ddir,
129 uint64_t *b)
130{
131 *b = zipf_next(&f->zipf);
132 return 0;
133}
134
135static int __get_next_rand_offset_pareto(struct thread_data *td,
136 struct fio_file *f, enum fio_ddir ddir,
137 uint64_t *b)
138{
139 *b = pareto_next(&f->zipf);
140 return 0;
141}
142
143static int __get_next_rand_offset_gauss(struct thread_data *td,
144 struct fio_file *f, enum fio_ddir ddir,
145 uint64_t *b)
146{
147 *b = gauss_next(&f->gauss);
148 return 0;
149}
150
151static int __get_next_rand_offset_zoned_abs(struct thread_data *td,
152 struct fio_file *f,
153 enum fio_ddir ddir, uint64_t *b)
154{
155 struct zone_split_index *zsi;
156 uint64_t lastb, send, stotal;
157 unsigned int v;
158
159 lastb = last_block(td, f, ddir);
160 if (!lastb)
161 return 1;
162
163 if (!td->o.zone_split_nr[ddir]) {
164bail:
165 return __get_next_rand_offset(td, f, ddir, b, lastb);
166 }
167
168 /*
169 * Generate a value, v, between 1 and 100, both inclusive
170 */
171 v = rand_between(&td->zone_state, 1, 100);
172
173 /*
174 * Find our generated table. 'send' is the end block of this zone,
175 * 'stotal' is our start offset.
176 */
177 zsi = &td->zone_state_index[ddir][v - 1];
178 stotal = zsi->size_prev / td->o.ba[ddir];
179 send = zsi->size / td->o.ba[ddir];
180
181 /*
182 * Should never happen
183 */
184 if (send == -1U) {
185 if (!fio_did_warn(FIO_WARN_ZONED_BUG))
186 log_err("fio: bug in zoned generation\n");
187 goto bail;
188 } else if (send > lastb) {
189 /*
190 * This happens if the user specifies ranges that exceed
191 * the file/device size. We can't handle that gracefully,
192 * so error and exit.
193 */
194 log_err("fio: zoned_abs sizes exceed file size\n");
195 return 1;
196 }
197
198 /*
199 * Generate index from 0..send-stotal
200 */
201 if (__get_next_rand_offset(td, f, ddir, b, send - stotal) == 1)
202 return 1;
203
204 *b += stotal;
205 return 0;
206}
207
208static int __get_next_rand_offset_zoned(struct thread_data *td,
209 struct fio_file *f, enum fio_ddir ddir,
210 uint64_t *b)
211{
212 unsigned int v, send, stotal;
213 uint64_t offset, lastb;
214 struct zone_split_index *zsi;
215
216 lastb = last_block(td, f, ddir);
217 if (!lastb)
218 return 1;
219
220 if (!td->o.zone_split_nr[ddir]) {
221bail:
222 return __get_next_rand_offset(td, f, ddir, b, lastb);
223 }
224
225 /*
226 * Generate a value, v, between 1 and 100, both inclusive
227 */
228 v = rand_between(&td->zone_state, 1, 100);
229
230 zsi = &td->zone_state_index[ddir][v - 1];
231 stotal = zsi->size_perc_prev;
232 send = zsi->size_perc;
233
234 /*
235 * Should never happen
236 */
237 if (send == -1U) {
238 if (!fio_did_warn(FIO_WARN_ZONED_BUG))
239 log_err("fio: bug in zoned generation\n");
240 goto bail;
241 }
242
243 /*
244 * 'send' is some percentage below or equal to 100 that
245 * marks the end of the current IO range. 'stotal' marks
246 * the start, in percent.
247 */
248 if (stotal)
249 offset = stotal * lastb / 100ULL;
250 else
251 offset = 0;
252
253 lastb = lastb * (send - stotal) / 100ULL;
254
255 /*
256 * Generate index from 0..send-of-lastb
257 */
258 if (__get_next_rand_offset(td, f, ddir, b, lastb) == 1)
259 return 1;
260
261 /*
262 * Add our start offset, if any
263 */
264 if (offset)
265 *b += offset;
266
267 return 0;
268}
269
270static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
271 enum fio_ddir ddir, uint64_t *b)
272{
273 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM) {
274 uint64_t lastb;
275
276 lastb = last_block(td, f, ddir);
277 if (!lastb)
278 return 1;
279
280 return __get_next_rand_offset(td, f, ddir, b, lastb);
281 } else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
282 return __get_next_rand_offset_zipf(td, f, ddir, b);
283 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
284 return __get_next_rand_offset_pareto(td, f, ddir, b);
285 else if (td->o.random_distribution == FIO_RAND_DIST_GAUSS)
286 return __get_next_rand_offset_gauss(td, f, ddir, b);
287 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED)
288 return __get_next_rand_offset_zoned(td, f, ddir, b);
289 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED_ABS)
290 return __get_next_rand_offset_zoned_abs(td, f, ddir, b);
291
292 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
293 return 1;
294}
295
296static bool should_do_random(struct thread_data *td, enum fio_ddir ddir)
297{
298 unsigned int v;
299
300 if (td->o.perc_rand[ddir] == 100)
301 return true;
302
303 v = rand_between(&td->seq_rand_state[ddir], 1, 100);
304
305 return v <= td->o.perc_rand[ddir];
306}
307
308static void loop_cache_invalidate(struct thread_data *td, struct fio_file *f)
309{
310 struct thread_options *o = &td->o;
311
312 if (o->invalidate_cache && !o->odirect) {
313 int fio_unused ret;
314
315 ret = file_invalidate_cache(td, f);
316 }
317}
318
319static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
320 enum fio_ddir ddir, uint64_t *b)
321{
322 if (!get_next_rand_offset(td, f, ddir, b))
323 return 0;
324
325 if (td->o.time_based ||
326 (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)) {
327 fio_file_reset(td, f);
328 loop_cache_invalidate(td, f);
329 if (!get_next_rand_offset(td, f, ddir, b))
330 return 0;
331 }
332
333 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
334 f->file_name, (unsigned long long) f->last_pos[ddir],
335 (unsigned long long) f->real_file_size);
336 return 1;
337}
338
339static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
340 enum fio_ddir ddir, uint64_t *offset)
341{
342 struct thread_options *o = &td->o;
343
344 assert(ddir_rw(ddir));
345
346 /*
347 * If we reach the end for a time based run, reset us back to 0
348 * and invalidate the cache, if we need to.
349 */
350 if (f->last_pos[ddir] >= f->io_size + get_start_offset(td, f) &&
351 o->time_based) {
352 f->last_pos[ddir] = f->file_offset;
353 loop_cache_invalidate(td, f);
354 }
355
356 if (f->last_pos[ddir] < f->real_file_size) {
357 uint64_t pos;
358
359 /*
360 * Only rewind if we already hit the end
361 */
362 if (f->last_pos[ddir] == f->file_offset &&
363 f->file_offset && o->ddir_seq_add < 0) {
364 if (f->real_file_size > f->io_size)
365 f->last_pos[ddir] = f->io_size;
366 else
367 f->last_pos[ddir] = f->real_file_size;
368 }
369
370 pos = f->last_pos[ddir] - f->file_offset;
371 if (pos && o->ddir_seq_add) {
372 pos += o->ddir_seq_add;
373
374 /*
375 * If we reach beyond the end of the file
376 * with holed IO, wrap around to the
377 * beginning again. If we're doing backwards IO,
378 * wrap to the end.
379 */
380 if (pos >= f->real_file_size) {
381 if (o->ddir_seq_add > 0)
382 pos = f->file_offset;
383 else {
384 if (f->real_file_size > f->io_size)
385 pos = f->io_size;
386 else
387 pos = f->real_file_size;
388
389 pos += o->ddir_seq_add;
390 }
391 }
392 }
393
394 *offset = pos;
395 return 0;
396 }
397
398 return 1;
399}
400
401static int get_next_block(struct thread_data *td, struct io_u *io_u,
402 enum fio_ddir ddir, int rw_seq,
403 bool *is_random)
404{
405 struct fio_file *f = io_u->file;
406 uint64_t b, offset;
407 int ret;
408
409 assert(ddir_rw(ddir));
410
411 b = offset = -1ULL;
412
413 if (rw_seq) {
414 if (td_random(td)) {
415 if (should_do_random(td, ddir)) {
416 ret = get_next_rand_block(td, f, ddir, &b);
417 *is_random = true;
418 } else {
419 *is_random = false;
420 io_u_set(td, io_u, IO_U_F_BUSY_OK);
421 ret = get_next_seq_offset(td, f, ddir, &offset);
422 if (ret)
423 ret = get_next_rand_block(td, f, ddir, &b);
424 }
425 } else {
426 *is_random = false;
427 ret = get_next_seq_offset(td, f, ddir, &offset);
428 }
429 } else {
430 io_u_set(td, io_u, IO_U_F_BUSY_OK);
431 *is_random = false;
432
433 if (td->o.rw_seq == RW_SEQ_SEQ) {
434 ret = get_next_seq_offset(td, f, ddir, &offset);
435 if (ret) {
436 ret = get_next_rand_block(td, f, ddir, &b);
437 *is_random = false;
438 }
439 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
440 if (f->last_start[ddir] != -1ULL)
441 offset = f->last_start[ddir] - f->file_offset;
442 else
443 offset = 0;
444 ret = 0;
445 } else {
446 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
447 ret = 1;
448 }
449 }
450
451 if (!ret) {
452 if (offset != -1ULL)
453 io_u->offset = offset;
454 else if (b != -1ULL)
455 io_u->offset = b * td->o.ba[ddir];
456 else {
457 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
458 ret = 1;
459 }
460 }
461
462 return ret;
463}
464
465/*
466 * For random io, generate a random new block and see if it's used. Repeat
467 * until we find a free one. For sequential io, just return the end of
468 * the last io issued.
469 */
470static int get_next_offset(struct thread_data *td, struct io_u *io_u,
471 bool *is_random)
472{
473 struct fio_file *f = io_u->file;
474 enum fio_ddir ddir = io_u->ddir;
475 int rw_seq_hit = 0;
476
477 assert(ddir_rw(ddir));
478
479 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
480 rw_seq_hit = 1;
481 td->ddir_seq_nr = td->o.ddir_seq_nr;
482 }
483
484 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
485 return 1;
486
487 if (io_u->offset >= f->io_size) {
488 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
489 (unsigned long long) io_u->offset,
490 (unsigned long long) f->io_size);
491 return 1;
492 }
493
494 io_u->offset += f->file_offset;
495 if (io_u->offset >= f->real_file_size) {
496 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
497 (unsigned long long) io_u->offset,
498 (unsigned long long) f->real_file_size);
499 return 1;
500 }
501
502 return 0;
503}
504
505static inline bool io_u_fits(struct thread_data *td, struct io_u *io_u,
506 unsigned int buflen)
507{
508 struct fio_file *f = io_u->file;
509
510 return io_u->offset + buflen <= f->io_size + get_start_offset(td, f);
511}
512
513static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u,
514 bool is_random)
515{
516 int ddir = io_u->ddir;
517 unsigned int buflen = 0;
518 unsigned int minbs, maxbs;
519 uint64_t frand_max, r;
520 bool power_2;
521
522 assert(ddir_rw(ddir));
523
524 if (td->o.bs_is_seq_rand)
525 ddir = is_random ? DDIR_WRITE : DDIR_READ;
526
527 minbs = td->o.min_bs[ddir];
528 maxbs = td->o.max_bs[ddir];
529
530 if (minbs == maxbs)
531 return minbs;
532
533 /*
534 * If we can't satisfy the min block size from here, then fail
535 */
536 if (!io_u_fits(td, io_u, minbs))
537 return 0;
538
539 frand_max = rand_max(&td->bsrange_state[ddir]);
540 do {
541 r = __rand(&td->bsrange_state[ddir]);
542
543 if (!td->o.bssplit_nr[ddir]) {
544 buflen = 1 + (unsigned int) ((double) maxbs *
545 (r / (frand_max + 1.0)));
546 if (buflen < minbs)
547 buflen = minbs;
548 } else {
549 long long perc = 0;
550 unsigned int i;
551
552 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
553 struct bssplit *bsp = &td->o.bssplit[ddir][i];
554
555 buflen = bsp->bs;
556 perc += bsp->perc;
557 if (!perc)
558 break;
559 if ((r / perc <= frand_max / 100ULL) &&
560 io_u_fits(td, io_u, buflen))
561 break;
562 }
563 }
564
565 power_2 = is_power_of_2(minbs);
566 if (!td->o.bs_unaligned && power_2)
567 buflen &= ~(minbs - 1);
568 else if (!td->o.bs_unaligned && !power_2)
569 buflen -= buflen % minbs;
570 } while (!io_u_fits(td, io_u, buflen));
571
572 return buflen;
573}
574
575static void set_rwmix_bytes(struct thread_data *td)
576{
577 unsigned int diff;
578
579 /*
580 * we do time or byte based switch. this is needed because
581 * buffered writes may issue a lot quicker than they complete,
582 * whereas reads do not.
583 */
584 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
585 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
586}
587
588static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
589{
590 unsigned int v;
591
592 v = rand_between(&td->rwmix_state, 1, 100);
593
594 if (v <= td->o.rwmix[DDIR_READ])
595 return DDIR_READ;
596
597 return DDIR_WRITE;
598}
599
600int io_u_quiesce(struct thread_data *td)
601{
602 int completed = 0;
603
604 /*
605 * We are going to sleep, ensure that we flush anything pending as
606 * not to skew our latency numbers.
607 *
608 * Changed to only monitor 'in flight' requests here instead of the
609 * td->cur_depth, b/c td->cur_depth does not accurately represent
610 * io's that have been actually submitted to an async engine,
611 * and cur_depth is meaningless for sync engines.
612 */
613 if (td->io_u_queued || td->cur_depth)
614 td_io_commit(td);
615
616 while (td->io_u_in_flight) {
617 int ret;
618
619 ret = io_u_queued_complete(td, 1);
620 if (ret > 0)
621 completed += ret;
622 }
623
624 if (td->flags & TD_F_REGROW_LOGS)
625 regrow_logs(td);
626
627 return completed;
628}
629
630static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
631{
632 enum fio_ddir odir = ddir ^ 1;
633 uint64_t usec;
634 uint64_t now;
635
636 assert(ddir_rw(ddir));
637 now = utime_since_now(&td->start);
638
639 /*
640 * if rate_next_io_time is in the past, need to catch up to rate
641 */
642 if (td->rate_next_io_time[ddir] <= now)
643 return ddir;
644
645 /*
646 * We are ahead of rate in this direction. See if we
647 * should switch.
648 */
649 if (td_rw(td) && td->o.rwmix[odir]) {
650 /*
651 * Other direction is behind rate, switch
652 */
653 if (td->rate_next_io_time[odir] <= now)
654 return odir;
655
656 /*
657 * Both directions are ahead of rate. sleep the min,
658 * switch if necessary
659 */
660 if (td->rate_next_io_time[ddir] <=
661 td->rate_next_io_time[odir]) {
662 usec = td->rate_next_io_time[ddir] - now;
663 } else {
664 usec = td->rate_next_io_time[odir] - now;
665 ddir = odir;
666 }
667 } else
668 usec = td->rate_next_io_time[ddir] - now;
669
670 if (td->o.io_submit_mode == IO_MODE_INLINE)
671 io_u_quiesce(td);
672
673 usec_sleep(td, usec);
674 return ddir;
675}
676
677/*
678 * Return the data direction for the next io_u. If the job is a
679 * mixed read/write workload, check the rwmix cycle and switch if
680 * necessary.
681 */
682static enum fio_ddir get_rw_ddir(struct thread_data *td)
683{
684 enum fio_ddir ddir;
685
686 /*
687 * See if it's time to fsync/fdatasync/sync_file_range first,
688 * and if not then move on to check regular I/Os.
689 */
690 if (should_fsync(td)) {
691 if (td->o.fsync_blocks && td->io_issues[DDIR_WRITE] &&
692 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks))
693 return DDIR_SYNC;
694
695 if (td->o.fdatasync_blocks && td->io_issues[DDIR_WRITE] &&
696 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks))
697 return DDIR_DATASYNC;
698
699 if (td->sync_file_range_nr && td->io_issues[DDIR_WRITE] &&
700 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr))
701 return DDIR_SYNC_FILE_RANGE;
702 }
703
704 if (td_rw(td)) {
705 /*
706 * Check if it's time to seed a new data direction.
707 */
708 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
709 /*
710 * Put a top limit on how many bytes we do for
711 * one data direction, to avoid overflowing the
712 * ranges too much
713 */
714 ddir = get_rand_ddir(td);
715
716 if (ddir != td->rwmix_ddir)
717 set_rwmix_bytes(td);
718
719 td->rwmix_ddir = ddir;
720 }
721 ddir = td->rwmix_ddir;
722 } else if (td_read(td))
723 ddir = DDIR_READ;
724 else if (td_write(td))
725 ddir = DDIR_WRITE;
726 else if (td_trim(td))
727 ddir = DDIR_TRIM;
728 else
729 ddir = DDIR_INVAL;
730
731 td->rwmix_ddir = rate_ddir(td, ddir);
732 return td->rwmix_ddir;
733}
734
735static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
736{
737 enum fio_ddir ddir = get_rw_ddir(td);
738
739 if (td_trimwrite(td)) {
740 struct fio_file *f = io_u->file;
741 if (f->last_pos[DDIR_WRITE] == f->last_pos[DDIR_TRIM])
742 ddir = DDIR_TRIM;
743 else
744 ddir = DDIR_WRITE;
745 }
746
747 io_u->ddir = io_u->acct_ddir = ddir;
748
749 if (io_u->ddir == DDIR_WRITE && td_ioengine_flagged(td, FIO_BARRIER) &&
750 td->o.barrier_blocks &&
751 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
752 td->io_issues[DDIR_WRITE])
753 io_u_set(td, io_u, IO_U_F_BARRIER);
754}
755
756void put_file_log(struct thread_data *td, struct fio_file *f)
757{
758 unsigned int ret = put_file(td, f);
759
760 if (ret)
761 td_verror(td, ret, "file close");
762}
763
764void put_io_u(struct thread_data *td, struct io_u *io_u)
765{
766 if (td->parent)
767 td = td->parent;
768
769 td_io_u_lock(td);
770
771 if (io_u->file && !(io_u->flags & IO_U_F_NO_FILE_PUT))
772 put_file_log(td, io_u->file);
773
774 io_u->file = NULL;
775 io_u_set(td, io_u, IO_U_F_FREE);
776
777 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) {
778 td->cur_depth--;
779 assert(!(td->flags & TD_F_CHILD));
780 }
781 io_u_qpush(&td->io_u_freelist, io_u);
782 td_io_u_free_notify(td);
783 td_io_u_unlock(td);
784}
785
786void clear_io_u(struct thread_data *td, struct io_u *io_u)
787{
788 io_u_clear(td, io_u, IO_U_F_FLIGHT);
789 put_io_u(td, io_u);
790}
791
792void requeue_io_u(struct thread_data *td, struct io_u **io_u)
793{
794 struct io_u *__io_u = *io_u;
795 enum fio_ddir ddir = acct_ddir(__io_u);
796
797 dprint(FD_IO, "requeue %p\n", __io_u);
798
799 if (td->parent)
800 td = td->parent;
801
802 td_io_u_lock(td);
803
804 io_u_set(td, __io_u, IO_U_F_FREE);
805 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
806 td->io_issues[ddir]--;
807
808 io_u_clear(td, __io_u, IO_U_F_FLIGHT);
809 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) {
810 td->cur_depth--;
811 assert(!(td->flags & TD_F_CHILD));
812 }
813
814 io_u_rpush(&td->io_u_requeues, __io_u);
815 td_io_u_free_notify(td);
816 td_io_u_unlock(td);
817 *io_u = NULL;
818}
819
820static void __fill_io_u_zone(struct thread_data *td, struct io_u *io_u)
821{
822 struct fio_file *f = io_u->file;
823
824 /*
825 * See if it's time to switch to a new zone
826 */
827 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
828 td->zone_bytes = 0;
829 f->file_offset += td->o.zone_range + td->o.zone_skip;
830
831 /*
832 * Wrap from the beginning, if we exceed the file size
833 */
834 if (f->file_offset >= f->real_file_size)
835 f->file_offset = f->real_file_size - f->file_offset;
836 f->last_pos[io_u->ddir] = f->file_offset;
837 td->io_skip_bytes += td->o.zone_skip;
838 }
839
840 /*
841 * If zone_size > zone_range, then maintain the same zone until
842 * zone_bytes >= zone_size.
843 */
844 if (f->last_pos[io_u->ddir] >= (f->file_offset + td->o.zone_range)) {
845 dprint(FD_IO, "io_u maintain zone offset=%" PRIu64 "/last_pos=%" PRIu64 "\n",
846 f->file_offset, f->last_pos[io_u->ddir]);
847 f->last_pos[io_u->ddir] = f->file_offset;
848 }
849
850 /*
851 * For random: if 'norandommap' is not set and zone_size > zone_range,
852 * map needs to be reset as it's done with zone_range everytime.
853 */
854 if ((td->zone_bytes % td->o.zone_range) == 0) {
855 fio_file_reset(td, f);
856 }
857}
858
859static int fill_io_u(struct thread_data *td, struct io_u *io_u)
860{
861 bool is_random;
862
863 if (td_ioengine_flagged(td, FIO_NOIO))
864 goto out;
865
866 set_rw_ddir(td, io_u);
867
868 /*
869 * fsync() or fdatasync() or trim etc, we are done
870 */
871 if (!ddir_rw(io_u->ddir))
872 goto out;
873
874 /*
875 * When file is zoned zone_range is always positive
876 */
877 if (td->o.zone_range) {
878 __fill_io_u_zone(td, io_u);
879 }
880
881 /*
882 * No log, let the seq/rand engine retrieve the next buflen and
883 * position.
884 */
885 if (get_next_offset(td, io_u, &is_random)) {
886 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
887 return 1;
888 }
889
890 io_u->buflen = get_next_buflen(td, io_u, is_random);
891 if (!io_u->buflen) {
892 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
893 return 1;
894 }
895
896 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
897 dprint(FD_IO, "io_u %p, off=0x%llx + len=0x%lx exceeds file size=0x%llx\n",
898 io_u,
899 (unsigned long long) io_u->offset, io_u->buflen,
900 (unsigned long long) io_u->file->real_file_size);
901 return 1;
902 }
903
904 /*
905 * mark entry before potentially trimming io_u
906 */
907 if (td_random(td) && file_randommap(td, io_u->file))
908 mark_random_map(td, io_u);
909
910out:
911 dprint_io_u(io_u, "fill");
912 td->zone_bytes += io_u->buflen;
913 return 0;
914}
915
916static void __io_u_mark_map(uint64_t *map, unsigned int nr)
917{
918 int idx = 0;
919
920 switch (nr) {
921 default:
922 idx = 6;
923 break;
924 case 33 ... 64:
925 idx = 5;
926 break;
927 case 17 ... 32:
928 idx = 4;
929 break;
930 case 9 ... 16:
931 idx = 3;
932 break;
933 case 5 ... 8:
934 idx = 2;
935 break;
936 case 1 ... 4:
937 idx = 1;
938 case 0:
939 break;
940 }
941
942 map[idx]++;
943}
944
945void io_u_mark_submit(struct thread_data *td, unsigned int nr)
946{
947 __io_u_mark_map(td->ts.io_u_submit, nr);
948 td->ts.total_submit++;
949}
950
951void io_u_mark_complete(struct thread_data *td, unsigned int nr)
952{
953 __io_u_mark_map(td->ts.io_u_complete, nr);
954 td->ts.total_complete++;
955}
956
957void io_u_mark_depth(struct thread_data *td, unsigned int nr)
958{
959 int idx = 0;
960
961 switch (td->cur_depth) {
962 default:
963 idx = 6;
964 break;
965 case 32 ... 63:
966 idx = 5;
967 break;
968 case 16 ... 31:
969 idx = 4;
970 break;
971 case 8 ... 15:
972 idx = 3;
973 break;
974 case 4 ... 7:
975 idx = 2;
976 break;
977 case 2 ... 3:
978 idx = 1;
979 case 1:
980 break;
981 }
982
983 td->ts.io_u_map[idx] += nr;
984}
985
986static void io_u_mark_lat_nsec(struct thread_data *td, unsigned long long nsec)
987{
988 int idx = 0;
989
990 assert(nsec < 1000);
991
992 switch (nsec) {
993 case 750 ... 999:
994 idx = 9;
995 break;
996 case 500 ... 749:
997 idx = 8;
998 break;
999 case 250 ... 499:
1000 idx = 7;
1001 break;
1002 case 100 ... 249:
1003 idx = 6;
1004 break;
1005 case 50 ... 99:
1006 idx = 5;
1007 break;
1008 case 20 ... 49:
1009 idx = 4;
1010 break;
1011 case 10 ... 19:
1012 idx = 3;
1013 break;
1014 case 4 ... 9:
1015 idx = 2;
1016 break;
1017 case 2 ... 3:
1018 idx = 1;
1019 case 0 ... 1:
1020 break;
1021 }
1022
1023 assert(idx < FIO_IO_U_LAT_N_NR);
1024 td->ts.io_u_lat_n[idx]++;
1025}
1026
1027static void io_u_mark_lat_usec(struct thread_data *td, unsigned long long usec)
1028{
1029 int idx = 0;
1030
1031 assert(usec < 1000 && usec >= 1);
1032
1033 switch (usec) {
1034 case 750 ... 999:
1035 idx = 9;
1036 break;
1037 case 500 ... 749:
1038 idx = 8;
1039 break;
1040 case 250 ... 499:
1041 idx = 7;
1042 break;
1043 case 100 ... 249:
1044 idx = 6;
1045 break;
1046 case 50 ... 99:
1047 idx = 5;
1048 break;
1049 case 20 ... 49:
1050 idx = 4;
1051 break;
1052 case 10 ... 19:
1053 idx = 3;
1054 break;
1055 case 4 ... 9:
1056 idx = 2;
1057 break;
1058 case 2 ... 3:
1059 idx = 1;
1060 case 0 ... 1:
1061 break;
1062 }
1063
1064 assert(idx < FIO_IO_U_LAT_U_NR);
1065 td->ts.io_u_lat_u[idx]++;
1066}
1067
1068static void io_u_mark_lat_msec(struct thread_data *td, unsigned long long msec)
1069{
1070 int idx = 0;
1071
1072 assert(msec >= 1);
1073
1074 switch (msec) {
1075 default:
1076 idx = 11;
1077 break;
1078 case 1000 ... 1999:
1079 idx = 10;
1080 break;
1081 case 750 ... 999:
1082 idx = 9;
1083 break;
1084 case 500 ... 749:
1085 idx = 8;
1086 break;
1087 case 250 ... 499:
1088 idx = 7;
1089 break;
1090 case 100 ... 249:
1091 idx = 6;
1092 break;
1093 case 50 ... 99:
1094 idx = 5;
1095 break;
1096 case 20 ... 49:
1097 idx = 4;
1098 break;
1099 case 10 ... 19:
1100 idx = 3;
1101 break;
1102 case 4 ... 9:
1103 idx = 2;
1104 break;
1105 case 2 ... 3:
1106 idx = 1;
1107 case 0 ... 1:
1108 break;
1109 }
1110
1111 assert(idx < FIO_IO_U_LAT_M_NR);
1112 td->ts.io_u_lat_m[idx]++;
1113}
1114
1115static void io_u_mark_latency(struct thread_data *td, unsigned long long nsec)
1116{
1117 if (nsec < 1000)
1118 io_u_mark_lat_nsec(td, nsec);
1119 else if (nsec < 1000000)
1120 io_u_mark_lat_usec(td, nsec / 1000);
1121 else
1122 io_u_mark_lat_msec(td, nsec / 1000000);
1123}
1124
1125static unsigned int __get_next_fileno_rand(struct thread_data *td)
1126{
1127 unsigned long fileno;
1128
1129 if (td->o.file_service_type == FIO_FSERVICE_RANDOM) {
1130 uint64_t frand_max = rand_max(&td->next_file_state);
1131 unsigned long r;
1132
1133 r = __rand(&td->next_file_state);
1134 return (unsigned int) ((double) td->o.nr_files
1135 * (r / (frand_max + 1.0)));
1136 }
1137
1138 if (td->o.file_service_type == FIO_FSERVICE_ZIPF)
1139 fileno = zipf_next(&td->next_file_zipf);
1140 else if (td->o.file_service_type == FIO_FSERVICE_PARETO)
1141 fileno = pareto_next(&td->next_file_zipf);
1142 else if (td->o.file_service_type == FIO_FSERVICE_GAUSS)
1143 fileno = gauss_next(&td->next_file_gauss);
1144 else {
1145 log_err("fio: bad file service type: %d\n", td->o.file_service_type);
1146 assert(0);
1147 return 0;
1148 }
1149
1150 return fileno >> FIO_FSERVICE_SHIFT;
1151}
1152
1153/*
1154 * Get next file to service by choosing one at random
1155 */
1156static struct fio_file *get_next_file_rand(struct thread_data *td,
1157 enum fio_file_flags goodf,
1158 enum fio_file_flags badf)
1159{
1160 struct fio_file *f;
1161 int fno;
1162
1163 do {
1164 int opened = 0;
1165
1166 fno = __get_next_fileno_rand(td);
1167
1168 f = td->files[fno];
1169 if (fio_file_done(f))
1170 continue;
1171
1172 if (!fio_file_open(f)) {
1173 int err;
1174
1175 if (td->nr_open_files >= td->o.open_files)
1176 return ERR_PTR(-EBUSY);
1177
1178 err = td_io_open_file(td, f);
1179 if (err)
1180 continue;
1181 opened = 1;
1182 }
1183
1184 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
1185 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
1186 return f;
1187 }
1188 if (opened)
1189 td_io_close_file(td, f);
1190 } while (1);
1191}
1192
1193/*
1194 * Get next file to service by doing round robin between all available ones
1195 */
1196static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
1197 int badf)
1198{
1199 unsigned int old_next_file = td->next_file;
1200 struct fio_file *f;
1201
1202 do {
1203 int opened = 0;
1204
1205 f = td->files[td->next_file];
1206
1207 td->next_file++;
1208 if (td->next_file >= td->o.nr_files)
1209 td->next_file = 0;
1210
1211 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
1212 if (fio_file_done(f)) {
1213 f = NULL;
1214 continue;
1215 }
1216
1217 if (!fio_file_open(f)) {
1218 int err;
1219
1220 if (td->nr_open_files >= td->o.open_files)
1221 return ERR_PTR(-EBUSY);
1222
1223 err = td_io_open_file(td, f);
1224 if (err) {
1225 dprint(FD_FILE, "error %d on open of %s\n",
1226 err, f->file_name);
1227 f = NULL;
1228 continue;
1229 }
1230 opened = 1;
1231 }
1232
1233 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1234 f->flags);
1235 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1236 break;
1237
1238 if (opened)
1239 td_io_close_file(td, f);
1240
1241 f = NULL;
1242 } while (td->next_file != old_next_file);
1243
1244 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1245 return f;
1246}
1247
1248static struct fio_file *__get_next_file(struct thread_data *td)
1249{
1250 struct fio_file *f;
1251
1252 assert(td->o.nr_files <= td->files_index);
1253
1254 if (td->nr_done_files >= td->o.nr_files) {
1255 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1256 " nr_files=%d\n", td->nr_open_files,
1257 td->nr_done_files,
1258 td->o.nr_files);
1259 return NULL;
1260 }
1261
1262 f = td->file_service_file;
1263 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1264 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1265 goto out;
1266 if (td->file_service_left--)
1267 goto out;
1268 }
1269
1270 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1271 td->o.file_service_type == FIO_FSERVICE_SEQ)
1272 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1273 else
1274 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1275
1276 if (IS_ERR(f))
1277 return f;
1278
1279 td->file_service_file = f;
1280 td->file_service_left = td->file_service_nr - 1;
1281out:
1282 if (f)
1283 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1284 else
1285 dprint(FD_FILE, "get_next_file: NULL\n");
1286 return f;
1287}
1288
1289static struct fio_file *get_next_file(struct thread_data *td)
1290{
1291 return __get_next_file(td);
1292}
1293
1294static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
1295{
1296 struct fio_file *f;
1297
1298 do {
1299 f = get_next_file(td);
1300 if (IS_ERR_OR_NULL(f))
1301 return PTR_ERR(f);
1302
1303 io_u->file = f;
1304 get_file(f);
1305
1306 if (!fill_io_u(td, io_u))
1307 break;
1308
1309 put_file_log(td, f);
1310 td_io_close_file(td, f);
1311 io_u->file = NULL;
1312 if (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)
1313 fio_file_reset(td, f);
1314 else {
1315 fio_file_set_done(f);
1316 td->nr_done_files++;
1317 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1318 td->nr_done_files, td->o.nr_files);
1319 }
1320 } while (1);
1321
1322 return 0;
1323}
1324
1325static void lat_fatal(struct thread_data *td, struct io_completion_data *icd,
1326 unsigned long long tnsec, unsigned long long max_nsec)
1327{
1328 if (!td->error)
1329 log_err("fio: latency of %llu nsec exceeds specified max (%llu nsec)\n", tnsec, max_nsec);
1330 td_verror(td, ETIMEDOUT, "max latency exceeded");
1331 icd->error = ETIMEDOUT;
1332}
1333
1334static void lat_new_cycle(struct thread_data *td)
1335{
1336 fio_gettime(&td->latency_ts, NULL);
1337 td->latency_ios = ddir_rw_sum(td->io_blocks);
1338 td->latency_failed = 0;
1339}
1340
1341/*
1342 * We had an IO outside the latency target. Reduce the queue depth. If we
1343 * are at QD=1, then it's time to give up.
1344 */
1345static bool __lat_target_failed(struct thread_data *td)
1346{
1347 if (td->latency_qd == 1)
1348 return true;
1349
1350 td->latency_qd_high = td->latency_qd;
1351
1352 if (td->latency_qd == td->latency_qd_low)
1353 td->latency_qd_low--;
1354
1355 td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
1356
1357 dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1358
1359 /*
1360 * When we ramp QD down, quiesce existing IO to prevent
1361 * a storm of ramp downs due to pending higher depth.
1362 */
1363 io_u_quiesce(td);
1364 lat_new_cycle(td);
1365 return false;
1366}
1367
1368static bool lat_target_failed(struct thread_data *td)
1369{
1370 if (td->o.latency_percentile.u.f == 100.0)
1371 return __lat_target_failed(td);
1372
1373 td->latency_failed++;
1374 return false;
1375}
1376
1377void lat_target_init(struct thread_data *td)
1378{
1379 td->latency_end_run = 0;
1380
1381 if (td->o.latency_target) {
1382 dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
1383 fio_gettime(&td->latency_ts, NULL);
1384 td->latency_qd = 1;
1385 td->latency_qd_high = td->o.iodepth;
1386 td->latency_qd_low = 1;
1387 td->latency_ios = ddir_rw_sum(td->io_blocks);
1388 } else
1389 td->latency_qd = td->o.iodepth;
1390}
1391
1392void lat_target_reset(struct thread_data *td)
1393{
1394 if (!td->latency_end_run)
1395 lat_target_init(td);
1396}
1397
1398static void lat_target_success(struct thread_data *td)
1399{
1400 const unsigned int qd = td->latency_qd;
1401 struct thread_options *o = &td->o;
1402
1403 td->latency_qd_low = td->latency_qd;
1404
1405 /*
1406 * If we haven't failed yet, we double up to a failing value instead
1407 * of bisecting from highest possible queue depth. If we have set
1408 * a limit other than td->o.iodepth, bisect between that.
1409 */
1410 if (td->latency_qd_high != o->iodepth)
1411 td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
1412 else
1413 td->latency_qd *= 2;
1414
1415 if (td->latency_qd > o->iodepth)
1416 td->latency_qd = o->iodepth;
1417
1418 dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1419
1420 /*
1421 * Same as last one, we are done. Let it run a latency cycle, so
1422 * we get only the results from the targeted depth.
1423 */
1424 if (td->latency_qd == qd) {
1425 if (td->latency_end_run) {
1426 dprint(FD_RATE, "We are done\n");
1427 td->done = 1;
1428 } else {
1429 dprint(FD_RATE, "Quiesce and final run\n");
1430 io_u_quiesce(td);
1431 td->latency_end_run = 1;
1432 reset_all_stats(td);
1433 reset_io_stats(td);
1434 }
1435 }
1436
1437 lat_new_cycle(td);
1438}
1439
1440/*
1441 * Check if we can bump the queue depth
1442 */
1443void lat_target_check(struct thread_data *td)
1444{
1445 uint64_t usec_window;
1446 uint64_t ios;
1447 double success_ios;
1448
1449 usec_window = utime_since_now(&td->latency_ts);
1450 if (usec_window < td->o.latency_window)
1451 return;
1452
1453 ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
1454 success_ios = (double) (ios - td->latency_failed) / (double) ios;
1455 success_ios *= 100.0;
1456
1457 dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
1458
1459 if (success_ios >= td->o.latency_percentile.u.f)
1460 lat_target_success(td);
1461 else
1462 __lat_target_failed(td);
1463}
1464
1465/*
1466 * If latency target is enabled, we might be ramping up or down and not
1467 * using the full queue depth available.
1468 */
1469bool queue_full(const struct thread_data *td)
1470{
1471 const int qempty = io_u_qempty(&td->io_u_freelist);
1472
1473 if (qempty)
1474 return true;
1475 if (!td->o.latency_target)
1476 return false;
1477
1478 return td->cur_depth >= td->latency_qd;
1479}
1480
1481struct io_u *__get_io_u(struct thread_data *td)
1482{
1483 struct io_u *io_u = NULL;
1484 int ret;
1485
1486 if (td->stop_io)
1487 return NULL;
1488
1489 td_io_u_lock(td);
1490
1491again:
1492 if (!io_u_rempty(&td->io_u_requeues))
1493 io_u = io_u_rpop(&td->io_u_requeues);
1494 else if (!queue_full(td)) {
1495 io_u = io_u_qpop(&td->io_u_freelist);
1496
1497 io_u->file = NULL;
1498 io_u->buflen = 0;
1499 io_u->resid = 0;
1500 io_u->end_io = NULL;
1501 }
1502
1503 if (io_u) {
1504 assert(io_u->flags & IO_U_F_FREE);
1505 io_u_clear(td, io_u, IO_U_F_FREE | IO_U_F_NO_FILE_PUT |
1506 IO_U_F_TRIMMED | IO_U_F_BARRIER |
1507 IO_U_F_VER_LIST);
1508
1509 io_u->error = 0;
1510 io_u->acct_ddir = -1;
1511 td->cur_depth++;
1512 assert(!(td->flags & TD_F_CHILD));
1513 io_u_set(td, io_u, IO_U_F_IN_CUR_DEPTH);
1514 io_u->ipo = NULL;
1515 } else if (td_async_processing(td)) {
1516 /*
1517 * We ran out, wait for async verify threads to finish and
1518 * return one
1519 */
1520 assert(!(td->flags & TD_F_CHILD));
1521 ret = pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1522 assert(ret == 0);
1523 goto again;
1524 }
1525
1526 td_io_u_unlock(td);
1527 return io_u;
1528}
1529
1530static bool check_get_trim(struct thread_data *td, struct io_u *io_u)
1531{
1532 if (!(td->flags & TD_F_TRIM_BACKLOG))
1533 return false;
1534 if (!td->trim_entries)
1535 return false;
1536
1537 if (td->trim_batch) {
1538 td->trim_batch--;
1539 if (get_next_trim(td, io_u))
1540 return true;
1541 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1542 td->last_ddir != DDIR_READ) {
1543 td->trim_batch = td->o.trim_batch;
1544 if (!td->trim_batch)
1545 td->trim_batch = td->o.trim_backlog;
1546 if (get_next_trim(td, io_u))
1547 return true;
1548 }
1549
1550 return false;
1551}
1552
1553static bool check_get_verify(struct thread_data *td, struct io_u *io_u)
1554{
1555 if (!(td->flags & TD_F_VER_BACKLOG))
1556 return false;
1557
1558 if (td->io_hist_len) {
1559 int get_verify = 0;
1560
1561 if (td->verify_batch)
1562 get_verify = 1;
1563 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1564 td->last_ddir != DDIR_READ) {
1565 td->verify_batch = td->o.verify_batch;
1566 if (!td->verify_batch)
1567 td->verify_batch = td->o.verify_backlog;
1568 get_verify = 1;
1569 }
1570
1571 if (get_verify && !get_next_verify(td, io_u)) {
1572 td->verify_batch--;
1573 return true;
1574 }
1575 }
1576
1577 return false;
1578}
1579
1580/*
1581 * Fill offset and start time into the buffer content, to prevent too
1582 * easy compressible data for simple de-dupe attempts. Do this for every
1583 * 512b block in the range, since that should be the smallest block size
1584 * we can expect from a device.
1585 */
1586static void small_content_scramble(struct io_u *io_u)
1587{
1588 unsigned int i, nr_blocks = io_u->buflen >> 9;
1589 unsigned int offset;
1590 uint64_t boffset, *iptr;
1591 char *p;
1592
1593 if (!nr_blocks)
1594 return;
1595
1596 p = io_u->xfer_buf;
1597 boffset = io_u->offset;
1598
1599 if (io_u->buf_filled_len)
1600 io_u->buf_filled_len = 0;
1601
1602 /*
1603 * Generate random index between 0..7. We do chunks of 512b, if
1604 * we assume a cacheline is 64 bytes, then we have 8 of those.
1605 * Scramble content within the blocks in the same cacheline to
1606 * speed things up.
1607 */
1608 offset = (io_u->start_time.tv_nsec ^ boffset) & 7;
1609
1610 for (i = 0; i < nr_blocks; i++) {
1611 /*
1612 * Fill offset into start of cacheline, time into end
1613 * of cacheline
1614 */
1615 iptr = (void *) p + (offset << 6);
1616 *iptr = boffset;
1617
1618 iptr = (void *) p + 64 - 2 * sizeof(uint64_t);
1619 iptr[0] = io_u->start_time.tv_sec;
1620 iptr[1] = io_u->start_time.tv_nsec;
1621
1622 p += 512;
1623 boffset += 512;
1624 }
1625}
1626
1627/*
1628 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1629 * etc. The returned io_u is fully ready to be prepped, populated and submitted.
1630 */
1631struct io_u *get_io_u(struct thread_data *td)
1632{
1633 struct fio_file *f;
1634 struct io_u *io_u;
1635 int do_scramble = 0;
1636 long ret = 0;
1637
1638 io_u = __get_io_u(td);
1639 if (!io_u) {
1640 dprint(FD_IO, "__get_io_u failed\n");
1641 return NULL;
1642 }
1643
1644 if (check_get_verify(td, io_u))
1645 goto out;
1646 if (check_get_trim(td, io_u))
1647 goto out;
1648
1649 /*
1650 * from a requeue, io_u already setup
1651 */
1652 if (io_u->file)
1653 goto out;
1654
1655 /*
1656 * If using an iolog, grab next piece if any available.
1657 */
1658 if (td->flags & TD_F_READ_IOLOG) {
1659 if (read_iolog_get(td, io_u))
1660 goto err_put;
1661 } else if (set_io_u_file(td, io_u)) {
1662 ret = -EBUSY;
1663 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1664 goto err_put;
1665 }
1666
1667 f = io_u->file;
1668 if (!f) {
1669 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1670 goto err_put;
1671 }
1672
1673 assert(fio_file_open(f));
1674
1675 if (ddir_rw(io_u->ddir)) {
1676 if (!io_u->buflen && !td_ioengine_flagged(td, FIO_NOIO)) {
1677 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1678 goto err_put;
1679 }
1680
1681 f->last_start[io_u->ddir] = io_u->offset;
1682 f->last_pos[io_u->ddir] = io_u->offset + io_u->buflen;
1683
1684 if (io_u->ddir == DDIR_WRITE) {
1685 if (td->flags & TD_F_REFILL_BUFFERS) {
1686 io_u_fill_buffer(td, io_u,
1687 td->o.min_bs[DDIR_WRITE],
1688 io_u->buflen);
1689 } else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) &&
1690 !(td->flags & TD_F_COMPRESS) &&
1691 !(td->flags & TD_F_DO_VERIFY))
1692 do_scramble = 1;
1693 } else if (io_u->ddir == DDIR_READ) {
1694 /*
1695 * Reset the buf_filled parameters so next time if the
1696 * buffer is used for writes it is refilled.
1697 */
1698 io_u->buf_filled_len = 0;
1699 }
1700 }
1701
1702 /*
1703 * Set io data pointers.
1704 */
1705 io_u->xfer_buf = io_u->buf;
1706 io_u->xfer_buflen = io_u->buflen;
1707
1708out:
1709 assert(io_u->file);
1710 if (!td_io_prep(td, io_u)) {
1711 if (!td->o.disable_lat)
1712 fio_gettime(&io_u->start_time, NULL);
1713
1714 if (do_scramble)
1715 small_content_scramble(io_u);
1716
1717 return io_u;
1718 }
1719err_put:
1720 dprint(FD_IO, "get_io_u failed\n");
1721 put_io_u(td, io_u);
1722 return ERR_PTR(ret);
1723}
1724
1725static void __io_u_log_error(struct thread_data *td, struct io_u *io_u)
1726{
1727 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1728
1729 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1730 return;
1731
1732 log_err("fio: io_u error%s%s: %s: %s offset=%llu, buflen=%lu\n",
1733 io_u->file ? " on file " : "",
1734 io_u->file ? io_u->file->file_name : "",
1735 strerror(io_u->error),
1736 io_ddir_name(io_u->ddir),
1737 io_u->offset, io_u->xfer_buflen);
1738
1739 if (td->io_ops->errdetails) {
1740 char *err = td->io_ops->errdetails(io_u);
1741
1742 log_err("fio: %s\n", err);
1743 free(err);
1744 }
1745
1746 if (!td->error)
1747 td_verror(td, io_u->error, "io_u error");
1748}
1749
1750void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1751{
1752 __io_u_log_error(td, io_u);
1753 if (td->parent)
1754 __io_u_log_error(td->parent, io_u);
1755}
1756
1757static inline bool gtod_reduce(struct thread_data *td)
1758{
1759 return (td->o.disable_clat && td->o.disable_slat && td->o.disable_bw)
1760 || td->o.gtod_reduce;
1761}
1762
1763static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1764 struct io_completion_data *icd,
1765 const enum fio_ddir idx, unsigned int bytes)
1766{
1767 const int no_reduce = !gtod_reduce(td);
1768 unsigned long long llnsec = 0;
1769
1770 if (td->parent)
1771 td = td->parent;
1772
1773 if (!td->o.stats || td_ioengine_flagged(td, FIO_NOSTATS))
1774 return;
1775
1776 if (no_reduce)
1777 llnsec = ntime_since(&io_u->issue_time, &icd->time);
1778
1779 if (!td->o.disable_lat) {
1780 unsigned long long tnsec;
1781
1782 tnsec = ntime_since(&io_u->start_time, &icd->time);
1783 add_lat_sample(td, idx, tnsec, bytes, io_u->offset);
1784
1785 if (td->flags & TD_F_PROFILE_OPS) {
1786 struct prof_io_ops *ops = &td->prof_io_ops;
1787
1788 if (ops->io_u_lat)
1789 icd->error = ops->io_u_lat(td, tnsec);
1790 }
1791
1792 if (td->o.max_latency && tnsec > td->o.max_latency)
1793 lat_fatal(td, icd, tnsec, td->o.max_latency);
1794 if (td->o.latency_target && tnsec > td->o.latency_target) {
1795 if (lat_target_failed(td))
1796 lat_fatal(td, icd, tnsec, td->o.latency_target);
1797 }
1798 }
1799
1800 if (ddir_rw(idx)) {
1801 if (!td->o.disable_clat) {
1802 add_clat_sample(td, idx, llnsec, bytes, io_u->offset);
1803 io_u_mark_latency(td, llnsec);
1804 }
1805
1806 if (!td->o.disable_bw && per_unit_log(td->bw_log))
1807 add_bw_sample(td, io_u, bytes, llnsec);
1808
1809 if (no_reduce && per_unit_log(td->iops_log))
1810 add_iops_sample(td, io_u, bytes);
1811 } else if (ddir_sync(idx) && !td->o.disable_clat)
1812 add_sync_clat_sample(&td->ts, llnsec);
1813
1814 if (td->ts.nr_block_infos && io_u->ddir == DDIR_TRIM) {
1815 uint32_t *info = io_u_block_info(td, io_u);
1816 if (BLOCK_INFO_STATE(*info) < BLOCK_STATE_TRIM_FAILURE) {
1817 if (io_u->ddir == DDIR_TRIM) {
1818 *info = BLOCK_INFO(BLOCK_STATE_TRIMMED,
1819 BLOCK_INFO_TRIMS(*info) + 1);
1820 } else if (io_u->ddir == DDIR_WRITE) {
1821 *info = BLOCK_INFO_SET_STATE(BLOCK_STATE_WRITTEN,
1822 *info);
1823 }
1824 }
1825 }
1826}
1827
1828static void file_log_write_comp(const struct thread_data *td, struct fio_file *f,
1829 uint64_t offset, unsigned int bytes)
1830{
1831 int idx;
1832
1833 if (!f)
1834 return;
1835
1836 if (f->first_write == -1ULL || offset < f->first_write)
1837 f->first_write = offset;
1838 if (f->last_write == -1ULL || ((offset + bytes) > f->last_write))
1839 f->last_write = offset + bytes;
1840
1841 if (!f->last_write_comp)
1842 return;
1843
1844 idx = f->last_write_idx++;
1845 f->last_write_comp[idx] = offset;
1846 if (f->last_write_idx == td->o.iodepth)
1847 f->last_write_idx = 0;
1848}
1849
1850static bool should_account(struct thread_data *td)
1851{
1852 return ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1853 td->runstate == TD_VERIFYING);
1854}
1855
1856static void io_completed(struct thread_data *td, struct io_u **io_u_ptr,
1857 struct io_completion_data *icd)
1858{
1859 struct io_u *io_u = *io_u_ptr;
1860 enum fio_ddir ddir = io_u->ddir;
1861 struct fio_file *f = io_u->file;
1862
1863 dprint_io_u(io_u, "complete");
1864
1865 assert(io_u->flags & IO_U_F_FLIGHT);
1866 io_u_clear(td, io_u, IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1867
1868 /*
1869 * Mark IO ok to verify
1870 */
1871 if (io_u->ipo) {
1872 /*
1873 * Remove errored entry from the verification list
1874 */
1875 if (io_u->error)
1876 unlog_io_piece(td, io_u);
1877 else {
1878 io_u->ipo->flags &= ~IP_F_IN_FLIGHT;
1879 write_barrier();
1880 }
1881 }
1882
1883 if (ddir_sync(ddir)) {
1884 td->last_was_sync = true;
1885 if (f) {
1886 f->first_write = -1ULL;
1887 f->last_write = -1ULL;
1888 }
1889 if (should_account(td))
1890 account_io_completion(td, io_u, icd, ddir, io_u->buflen);
1891 return;
1892 }
1893
1894 td->last_was_sync = false;
1895 td->last_ddir = ddir;
1896
1897 if (!io_u->error && ddir_rw(ddir)) {
1898 unsigned int bytes = io_u->buflen - io_u->resid;
1899 int ret;
1900
1901 td->io_blocks[ddir]++;
1902 td->io_bytes[ddir] += bytes;
1903
1904 if (!(io_u->flags & IO_U_F_VER_LIST)) {
1905 td->this_io_blocks[ddir]++;
1906 td->this_io_bytes[ddir] += bytes;
1907 }
1908
1909 if (ddir == DDIR_WRITE)
1910 file_log_write_comp(td, f, io_u->offset, bytes);
1911
1912 if (should_account(td))
1913 account_io_completion(td, io_u, icd, ddir, bytes);
1914
1915 icd->bytes_done[ddir] += bytes;
1916
1917 if (io_u->end_io) {
1918 ret = io_u->end_io(td, io_u_ptr);
1919 io_u = *io_u_ptr;
1920 if (ret && !icd->error)
1921 icd->error = ret;
1922 }
1923 } else if (io_u->error) {
1924 icd->error = io_u->error;
1925 io_u_log_error(td, io_u);
1926 }
1927 if (icd->error) {
1928 enum error_type_bit eb = td_error_type(ddir, icd->error);
1929
1930 if (!td_non_fatal_error(td, eb, icd->error))
1931 return;
1932
1933 /*
1934 * If there is a non_fatal error, then add to the error count
1935 * and clear all the errors.
1936 */
1937 update_error_count(td, icd->error);
1938 td_clear_error(td);
1939 icd->error = 0;
1940 if (io_u)
1941 io_u->error = 0;
1942 }
1943}
1944
1945static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1946 int nr)
1947{
1948 int ddir;
1949
1950 if (!gtod_reduce(td))
1951 fio_gettime(&icd->time, NULL);
1952
1953 icd->nr = nr;
1954
1955 icd->error = 0;
1956 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
1957 icd->bytes_done[ddir] = 0;
1958}
1959
1960static void ios_completed(struct thread_data *td,
1961 struct io_completion_data *icd)
1962{
1963 struct io_u *io_u;
1964 int i;
1965
1966 for (i = 0; i < icd->nr; i++) {
1967 io_u = td->io_ops->event(td, i);
1968
1969 io_completed(td, &io_u, icd);
1970
1971 if (io_u)
1972 put_io_u(td, io_u);
1973 }
1974}
1975
1976/*
1977 * Complete a single io_u for the sync engines.
1978 */
1979int io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
1980{
1981 struct io_completion_data icd;
1982 int ddir;
1983
1984 init_icd(td, &icd, 1);
1985 io_completed(td, &io_u, &icd);
1986
1987 if (io_u)
1988 put_io_u(td, io_u);
1989
1990 if (icd.error) {
1991 td_verror(td, icd.error, "io_u_sync_complete");
1992 return -1;
1993 }
1994
1995 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
1996 td->bytes_done[ddir] += icd.bytes_done[ddir];
1997
1998 return 0;
1999}
2000
2001/*
2002 * Called to complete min_events number of io for the async engines.
2003 */
2004int io_u_queued_complete(struct thread_data *td, int min_evts)
2005{
2006 struct io_completion_data icd;
2007 struct timespec *tvp = NULL;
2008 int ret, ddir;
2009 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
2010
2011 dprint(FD_IO, "io_u_queued_complete: min=%d\n", min_evts);
2012
2013 if (!min_evts)
2014 tvp = &ts;
2015 else if (min_evts > td->cur_depth)
2016 min_evts = td->cur_depth;
2017
2018 /* No worries, td_io_getevents fixes min and max if they are
2019 * set incorrectly */
2020 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete_max, tvp);
2021 if (ret < 0) {
2022 td_verror(td, -ret, "td_io_getevents");
2023 return ret;
2024 } else if (!ret)
2025 return ret;
2026
2027 init_icd(td, &icd, ret);
2028 ios_completed(td, &icd);
2029 if (icd.error) {
2030 td_verror(td, icd.error, "io_u_queued_complete");
2031 return -1;
2032 }
2033
2034 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2035 td->bytes_done[ddir] += icd.bytes_done[ddir];
2036
2037 return ret;
2038}
2039
2040/*
2041 * Call when io_u is really queued, to update the submission latency.
2042 */
2043void io_u_queued(struct thread_data *td, struct io_u *io_u)
2044{
2045 if (!td->o.disable_slat && ramp_time_over(td) && td->o.stats) {
2046 unsigned long slat_time;
2047
2048 slat_time = ntime_since(&io_u->start_time, &io_u->issue_time);
2049
2050 if (td->parent)
2051 td = td->parent;
2052
2053 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen,
2054 io_u->offset);
2055 }
2056}
2057
2058/*
2059 * See if we should reuse the last seed, if dedupe is enabled
2060 */
2061static struct frand_state *get_buf_state(struct thread_data *td)
2062{
2063 unsigned int v;
2064
2065 if (!td->o.dedupe_percentage)
2066 return &td->buf_state;
2067 else if (td->o.dedupe_percentage == 100) {
2068 frand_copy(&td->buf_state_prev, &td->buf_state);
2069 return &td->buf_state;
2070 }
2071
2072 v = rand_between(&td->dedupe_state, 1, 100);
2073
2074 if (v <= td->o.dedupe_percentage)
2075 return &td->buf_state_prev;
2076
2077 return &td->buf_state;
2078}
2079
2080static void save_buf_state(struct thread_data *td, struct frand_state *rs)
2081{
2082 if (td->o.dedupe_percentage == 100)
2083 frand_copy(rs, &td->buf_state_prev);
2084 else if (rs == &td->buf_state)
2085 frand_copy(&td->buf_state_prev, rs);
2086}
2087
2088void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write,
2089 unsigned int max_bs)
2090{
2091 struct thread_options *o = &td->o;
2092
2093 if (o->mem_type == MEM_CUDA_MALLOC)
2094 return;
2095
2096 if (o->compress_percentage || o->dedupe_percentage) {
2097 unsigned int perc = td->o.compress_percentage;
2098 struct frand_state *rs;
2099 unsigned int left = max_bs;
2100 unsigned int this_write;
2101
2102 do {
2103 rs = get_buf_state(td);
2104
2105 min_write = min(min_write, left);
2106
2107 if (perc) {
2108 this_write = min_not_zero(min_write,
2109 td->o.compress_chunk);
2110
2111 fill_random_buf_percentage(rs, buf, perc,
2112 this_write, this_write,
2113 o->buffer_pattern,
2114 o->buffer_pattern_bytes);
2115 } else {
2116 fill_random_buf(rs, buf, min_write);
2117 this_write = min_write;
2118 }
2119
2120 buf += this_write;
2121 left -= this_write;
2122 save_buf_state(td, rs);
2123 } while (left);
2124 } else if (o->buffer_pattern_bytes)
2125 fill_buffer_pattern(td, buf, max_bs);
2126 else if (o->zero_buffers)
2127 memset(buf, 0, max_bs);
2128 else
2129 fill_random_buf(get_buf_state(td), buf, max_bs);
2130}
2131
2132/*
2133 * "randomly" fill the buffer contents
2134 */
2135void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
2136 unsigned int min_write, unsigned int max_bs)
2137{
2138 io_u->buf_filled_len = 0;
2139 fill_io_buffer(td, io_u->buf, min_write, max_bs);
2140}
2141
2142static int do_sync_file_range(const struct thread_data *td,
2143 struct fio_file *f)
2144{
2145 off64_t offset, nbytes;
2146
2147 offset = f->first_write;
2148 nbytes = f->last_write - f->first_write;
2149
2150 if (!nbytes)
2151 return 0;
2152
2153 return sync_file_range(f->fd, offset, nbytes, td->o.sync_file_range);
2154}
2155
2156int do_io_u_sync(const struct thread_data *td, struct io_u *io_u)
2157{
2158 int ret;
2159
2160 if (io_u->ddir == DDIR_SYNC) {
2161 ret = fsync(io_u->file->fd);
2162 } else if (io_u->ddir == DDIR_DATASYNC) {
2163#ifdef CONFIG_FDATASYNC
2164 ret = fdatasync(io_u->file->fd);
2165#else
2166 ret = io_u->xfer_buflen;
2167 io_u->error = EINVAL;
2168#endif
2169 } else if (io_u->ddir == DDIR_SYNC_FILE_RANGE)
2170 ret = do_sync_file_range(td, io_u->file);
2171 else {
2172 ret = io_u->xfer_buflen;
2173 io_u->error = EINVAL;
2174 }
2175
2176 if (ret < 0)
2177 io_u->error = errno;
2178
2179 return ret;
2180}
2181
2182int do_io_u_trim(const struct thread_data *td, struct io_u *io_u)
2183{
2184#ifndef FIO_HAVE_TRIM
2185 io_u->error = EINVAL;
2186 return 0;
2187#else
2188 struct fio_file *f = io_u->file;
2189 int ret;
2190
2191 ret = os_trim(f, io_u->offset, io_u->xfer_buflen);
2192 if (!ret)
2193 return io_u->xfer_buflen;
2194
2195 io_u->error = ret;
2196 return 0;
2197#endif
2198}