Fix loop with multiple files
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "os.h"
10
11/*
12 * Change this define to play with the timeout handling
13 */
14#undef FIO_USE_TIMEOUT
15
16struct io_completion_data {
17 int nr; /* input */
18
19 int error; /* output */
20 unsigned long bytes_done[2]; /* output */
21 struct timeval time; /* output */
22};
23
24/*
25 * The ->file_map[] contains a map of blocks we have or have not done io
26 * to yet. Used to make sure we cover the entire range in a fair fashion.
27 */
28static int random_map_free(struct thread_data *td, struct fio_file *f,
29 unsigned long long block)
30{
31 unsigned int idx = RAND_MAP_IDX(td, f, block);
32 unsigned int bit = RAND_MAP_BIT(td, f, block);
33
34 return (f->file_map[idx] & (1UL << bit)) == 0;
35}
36
37/*
38 * Mark a given offset as used in the map.
39 */
40static void mark_random_map(struct thread_data *td, struct io_u *io_u)
41{
42 unsigned int min_bs = td->o.rw_min_bs;
43 struct fio_file *f = io_u->file;
44 unsigned long long block;
45 unsigned int blocks;
46 unsigned int nr_blocks;
47
48 block = io_u->offset / (unsigned long long) min_bs;
49 blocks = 0;
50 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
51
52 while (blocks < nr_blocks) {
53 unsigned int idx, bit;
54
55 /*
56 * If we have a mixed random workload, we may
57 * encounter blocks we already did IO to.
58 */
59 if (!td->o.ddir_nr && !random_map_free(td, f, block))
60 break;
61
62 idx = RAND_MAP_IDX(td, f, block);
63 bit = RAND_MAP_BIT(td, f, block);
64
65 fio_assert(td, idx < f->num_maps);
66
67 f->file_map[idx] |= (1UL << bit);
68 block++;
69 blocks++;
70 }
71
72 if ((blocks * min_bs) < io_u->buflen)
73 io_u->buflen = blocks * min_bs;
74}
75
76/*
77 * Return the next free block in the map.
78 */
79static int get_next_free_block(struct thread_data *td, struct fio_file *f,
80 unsigned long long *b)
81{
82 int i;
83
84 i = f->last_free_lookup;
85 *b = (i * BLOCKS_PER_MAP);
86 while ((*b) * td->o.rw_min_bs < f->real_file_size) {
87 if (f->file_map[i] != -1UL) {
88 *b += ffz(f->file_map[i]);
89 f->last_free_lookup = i;
90 return 0;
91 }
92
93 *b += BLOCKS_PER_MAP;
94 i++;
95 }
96
97 return 1;
98}
99
100static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
101 int ddir, unsigned long long *b)
102{
103 unsigned long long max_blocks = f->io_size / td->o.min_bs[ddir];
104 unsigned long long r, rb;
105 int loops = 5;
106
107 do {
108 r = os_random_long(&td->random_state);
109 if (!max_blocks)
110 *b = 0;
111 else
112 *b = ((max_blocks - 1) * r / (unsigned long long) (RAND_MAX+1.0));
113 if (td->o.norandommap)
114 break;
115 rb = *b + (f->file_offset / td->o.min_bs[ddir]);
116 loops--;
117 } while (!random_map_free(td, f, rb) && loops);
118
119 /*
120 * if we failed to retrieve a truly random offset within
121 * the loops assigned, see if there are free ones left at all
122 */
123 if (!loops && get_next_free_block(td, f, b))
124 return 1;
125
126 return 0;
127}
128
129/*
130 * For random io, generate a random new block and see if it's used. Repeat
131 * until we find a free one. For sequential io, just return the end of
132 * the last io issued.
133 */
134static int get_next_offset(struct thread_data *td, struct io_u *io_u)
135{
136 struct fio_file *f = io_u->file;
137 const int ddir = io_u->ddir;
138 unsigned long long b;
139
140 if (td_random(td) && (td->o.ddir_nr && !--td->ddir_nr)) {
141 td->ddir_nr = td->o.ddir_nr;
142
143 if (get_next_rand_offset(td, f, ddir, &b))
144 return 1;
145 } else {
146 if (f->last_pos >= f->real_file_size)
147 return 1;
148
149 b = f->last_pos / td->o.min_bs[ddir];
150 }
151
152 io_u->offset = (b * td->o.min_bs[ddir]) + f->file_offset;
153 if (io_u->offset >= f->real_file_size)
154 return 1;
155
156 return 0;
157}
158
159static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u)
160{
161 const int ddir = io_u->ddir;
162 unsigned int buflen;
163 long r;
164
165 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
166 buflen = td->o.min_bs[ddir];
167 else {
168 r = os_random_long(&td->bsrange_state);
169 buflen = (unsigned int) (1 + (double) (td->o.max_bs[ddir] - 1) * r / (RAND_MAX + 1.0));
170 if (!td->o.bs_unaligned)
171 buflen = (buflen + td->o.min_bs[ddir] - 1) & ~(td->o.min_bs[ddir] - 1);
172 }
173
174 return buflen;
175}
176
177static void set_rwmix_bytes(struct thread_data *td)
178{
179 unsigned long long rbytes;
180 unsigned int diff;
181
182 /*
183 * we do time or byte based switch. this is needed because
184 * buffered writes may issue a lot quicker than they complete,
185 * whereas reads do not.
186 */
187 rbytes = td->io_bytes[td->rwmix_ddir] - td->rwmix_bytes;
188 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
189
190 td->rwmix_bytes = td->io_bytes[td->rwmix_ddir] + (rbytes * ((100 - diff)) / diff);
191}
192
193static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
194{
195 unsigned int v;
196 long r;
197
198 r = os_random_long(&td->rwmix_state);
199 v = 1 + (int) (100.0 * (r / (RAND_MAX + 1.0)));
200 if (v < td->o.rwmix[DDIR_READ])
201 return DDIR_READ;
202
203 return DDIR_WRITE;
204}
205
206/*
207 * Return the data direction for the next io_u. If the job is a
208 * mixed read/write workload, check the rwmix cycle and switch if
209 * necessary.
210 */
211static enum fio_ddir get_rw_ddir(struct thread_data *td)
212{
213 if (td_rw(td)) {
214 struct timeval now;
215 unsigned long elapsed;
216 unsigned int cycle;
217
218 fio_gettime(&now, NULL);
219 elapsed = mtime_since_now(&td->rwmix_switch);
220
221 /*
222 * if this is the first cycle, make it shorter
223 */
224 cycle = td->o.rwmixcycle;
225 if (!td->rwmix_bytes)
226 cycle /= 10;
227
228 /*
229 * Check if it's time to seed a new data direction.
230 */
231 if (elapsed >= cycle ||
232 td->io_bytes[td->rwmix_ddir] >= td->rwmix_bytes) {
233 unsigned long long max_bytes;
234 enum fio_ddir ddir;
235
236 /*
237 * Put a top limit on how many bytes we do for
238 * one data direction, to avoid overflowing the
239 * ranges too much
240 */
241 ddir = get_rand_ddir(td);
242 max_bytes = td->this_io_bytes[ddir];
243 if (max_bytes >= (td->o.size * td->o.rwmix[ddir] / 100)) {
244 if (!td->rw_end_set[ddir]) {
245 td->rw_end_set[ddir] = 1;
246 memcpy(&td->rw_end[ddir], &now, sizeof(now));
247 }
248 ddir ^= 1;
249 }
250
251 if (ddir != td->rwmix_ddir)
252 set_rwmix_bytes(td);
253
254 td->rwmix_ddir = ddir;
255 memcpy(&td->rwmix_switch, &now, sizeof(now));
256 }
257 return td->rwmix_ddir;
258 } else if (td_read(td))
259 return DDIR_READ;
260 else
261 return DDIR_WRITE;
262}
263
264void put_io_u(struct thread_data *td, struct io_u *io_u)
265{
266 assert((io_u->flags & IO_U_F_FREE) == 0);
267 io_u->flags |= IO_U_F_FREE;
268
269 io_u->file = NULL;
270 list_del(&io_u->list);
271 list_add(&io_u->list, &td->io_u_freelist);
272 td->cur_depth--;
273}
274
275void requeue_io_u(struct thread_data *td, struct io_u **io_u)
276{
277 struct io_u *__io_u = *io_u;
278
279 __io_u->flags |= IO_U_F_FREE;
280 __io_u->flags &= ~IO_U_F_FLIGHT;
281
282 list_del(&__io_u->list);
283 list_add_tail(&__io_u->list, &td->io_u_requeues);
284 td->cur_depth--;
285 *io_u = NULL;
286}
287
288static int fill_io_u(struct thread_data *td, struct io_u *io_u)
289{
290 /*
291 * If using an iolog, grab next piece if any available.
292 */
293 if (td->o.read_iolog)
294 return read_iolog_get(td, io_u);
295
296 /*
297 * see if it's time to sync
298 */
299 if (td->o.fsync_blocks &&
300 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
301 td->io_issues[DDIR_WRITE] && should_fsync(td)) {
302 io_u->ddir = DDIR_SYNC;
303 goto out;
304 }
305
306 io_u->ddir = get_rw_ddir(td);
307
308 /*
309 * No log, let the seq/rand engine retrieve the next buflen and
310 * position.
311 */
312 if (get_next_offset(td, io_u))
313 return 1;
314
315 io_u->buflen = get_next_buflen(td, io_u);
316 if (!io_u->buflen)
317 return 1;
318
319 /*
320 * mark entry before potentially trimming io_u
321 */
322 if (td_random(td) && !td->o.norandommap)
323 mark_random_map(td, io_u);
324
325 /*
326 * If using a write iolog, store this entry.
327 */
328out:
329 if (td->o.write_iolog_file)
330 write_iolog_put(td, io_u);
331
332 return 0;
333}
334
335void io_u_mark_depth(struct thread_data *td, struct io_u *io_u)
336{
337 int index = 0;
338
339 if (io_u->ddir == DDIR_SYNC)
340 return;
341
342 switch (td->cur_depth) {
343 default:
344 index++;
345 case 32 ... 63:
346 index++;
347 case 16 ... 31:
348 index++;
349 case 8 ... 15:
350 index++;
351 case 4 ... 7:
352 index++;
353 case 2 ... 3:
354 index++;
355 case 1:
356 break;
357 }
358
359 td->ts.io_u_map[index]++;
360 td->ts.total_io_u[io_u->ddir]++;
361}
362
363static void io_u_mark_latency(struct thread_data *td, unsigned long msec)
364{
365 int index = 0;
366
367 switch (msec) {
368 default:
369 index++;
370 case 1000 ... 1999:
371 index++;
372 case 750 ... 999:
373 index++;
374 case 500 ... 749:
375 index++;
376 case 250 ... 499:
377 index++;
378 case 100 ... 249:
379 index++;
380 case 50 ... 99:
381 index++;
382 case 20 ... 49:
383 index++;
384 case 10 ... 19:
385 index++;
386 case 4 ... 9:
387 index++;
388 case 2 ... 3:
389 index++;
390 case 0 ... 1:
391 break;
392 }
393
394 td->ts.io_u_lat[index]++;
395}
396
397/*
398 * Get next file to service by choosing one at random
399 */
400static struct fio_file *get_next_file_rand(struct thread_data *td, int goodf,
401 int badf)
402{
403 struct fio_file *f;
404 int fno;
405
406 do {
407 long r = os_random_long(&td->next_file_state);
408
409 fno = (unsigned int) ((double) td->o.nr_files * (r / (RAND_MAX + 1.0)));
410 f = &td->files[fno];
411 if (f->flags & FIO_FILE_DONE)
412 continue;
413
414 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
415 return f;
416 } while (1);
417}
418
419/*
420 * Get next file to service by doing round robin between all available ones
421 */
422static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
423 int badf)
424{
425 unsigned int old_next_file = td->next_file;
426 struct fio_file *f;
427
428 do {
429 f = &td->files[td->next_file];
430
431 td->next_file++;
432 if (td->next_file >= td->o.nr_files)
433 td->next_file = 0;
434
435 if (f->flags & FIO_FILE_DONE) {
436 f = NULL;
437 continue;
438 }
439
440 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
441 break;
442
443 f = NULL;
444 } while (td->next_file != old_next_file);
445
446 return f;
447}
448
449static struct fio_file *get_next_file(struct thread_data *td)
450{
451 struct fio_file *f;
452
453 assert(td->o.nr_files <= td->files_index);
454
455 if (!td->nr_open_files || td->nr_done_files >= td->o.nr_files)
456 return NULL;
457
458 f = td->file_service_file;
459 if (f && (f->flags & FIO_FILE_OPEN) && td->file_service_left--)
460 return f;
461
462 if (td->o.file_service_type == FIO_FSERVICE_RR)
463 f = get_next_file_rr(td, FIO_FILE_OPEN, FIO_FILE_CLOSING);
464 else
465 f = get_next_file_rand(td, FIO_FILE_OPEN, FIO_FILE_CLOSING);
466
467 td->file_service_file = f;
468 td->file_service_left = td->file_service_nr - 1;
469 return f;
470}
471
472static struct fio_file *find_next_new_file(struct thread_data *td)
473{
474 struct fio_file *f;
475
476 if (!td->nr_open_files || td->nr_done_files >= td->o.nr_files)
477 return NULL;
478
479 if (td->o.file_service_type == FIO_FSERVICE_RR)
480 f = get_next_file_rr(td, 0, FIO_FILE_OPEN);
481 else
482 f = get_next_file_rand(td, 0, FIO_FILE_OPEN);
483
484 return f;
485}
486
487struct io_u *__get_io_u(struct thread_data *td)
488{
489 struct io_u *io_u = NULL;
490
491 if (!list_empty(&td->io_u_requeues))
492 io_u = list_entry(td->io_u_requeues.next, struct io_u, list);
493 else if (!queue_full(td)) {
494 io_u = list_entry(td->io_u_freelist.next, struct io_u, list);
495
496 io_u->buflen = 0;
497 io_u->resid = 0;
498 io_u->file = NULL;
499 io_u->end_io = NULL;
500 }
501
502 if (io_u) {
503 assert(io_u->flags & IO_U_F_FREE);
504 io_u->flags &= ~IO_U_F_FREE;
505
506 io_u->error = 0;
507 list_del(&io_u->list);
508 list_add(&io_u->list, &td->io_u_busylist);
509 td->cur_depth++;
510 }
511
512 return io_u;
513}
514
515/*
516 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
517 * etc. The returned io_u is fully ready to be prepped and submitted.
518 */
519struct io_u *get_io_u(struct thread_data *td)
520{
521 struct fio_file *f;
522 struct io_u *io_u;
523 int ret;
524
525 io_u = __get_io_u(td);
526 if (!io_u)
527 return NULL;
528
529 /*
530 * from a requeue, io_u already setup
531 */
532 if (io_u->file)
533 goto out;
534
535 do {
536 f = get_next_file(td);
537 if (!f) {
538 put_io_u(td, io_u);
539 return NULL;
540 }
541
542set_file:
543 io_u->file = f;
544
545 if (!fill_io_u(td, io_u))
546 break;
547
548 /*
549 * No more to do for this file, close it
550 */
551 io_u->file = NULL;
552 td_io_close_file(td, f);
553 f->flags |= FIO_FILE_DONE;
554 td->nr_done_files++;
555
556 /*
557 * probably not the right place to do this, but see
558 * if we need to open a new file
559 */
560 if (td->nr_open_files < td->o.open_files &&
561 td->o.open_files != td->o.nr_files) {
562 f = find_next_new_file(td);
563
564 if (!f || (ret = td_io_open_file(td, f))) {
565 put_io_u(td, io_u);
566 return NULL;
567 }
568 goto set_file;
569 }
570 } while (1);
571
572 if (td->zone_bytes >= td->o.zone_size) {
573 td->zone_bytes = 0;
574 f->last_pos += td->o.zone_skip;
575 }
576
577 if (io_u->ddir != DDIR_SYNC) {
578 if (!io_u->buflen) {
579 put_io_u(td, io_u);
580 return NULL;
581 }
582
583 f->last_pos = io_u->offset + io_u->buflen;
584
585 if (td->o.verify != VERIFY_NONE)
586 populate_verify_io_u(td, io_u);
587 }
588
589 /*
590 * Set io data pointers.
591 */
592out:
593 io_u->xfer_buf = io_u->buf;
594 io_u->xfer_buflen = io_u->buflen;
595
596 if (td_io_prep(td, io_u)) {
597 put_io_u(td, io_u);
598 return NULL;
599 }
600
601 fio_gettime(&io_u->start_time, NULL);
602 return io_u;
603}
604
605void io_u_log_error(struct thread_data *td, struct io_u *io_u)
606{
607 const char *msg[] = { "read", "write", "sync" };
608
609 log_err("fio: io_u error");
610
611 if (io_u->file)
612 log_err(" on file %s", io_u->file->file_name);
613
614 log_err(": %s\n", strerror(io_u->error));
615
616 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir], io_u->offset, io_u->xfer_buflen);
617
618 if (!td->error)
619 td_verror(td, io_u->error, "io_u error");
620}
621
622static void io_completed(struct thread_data *td, struct io_u *io_u,
623 struct io_completion_data *icd)
624{
625 unsigned long msec;
626
627 assert(io_u->flags & IO_U_F_FLIGHT);
628 io_u->flags &= ~IO_U_F_FLIGHT;
629
630 put_file(td, io_u->file);
631
632 if (io_u->ddir == DDIR_SYNC) {
633 td->last_was_sync = 1;
634 return;
635 }
636
637 td->last_was_sync = 0;
638
639 if (!io_u->error) {
640 unsigned int bytes = io_u->buflen - io_u->resid;
641 const enum fio_ddir idx = io_u->ddir;
642 int ret;
643
644 td->io_blocks[idx]++;
645 td->io_bytes[idx] += bytes;
646 td->zone_bytes += bytes;
647 td->this_io_bytes[idx] += bytes;
648
649 io_u->file->last_completed_pos = io_u->offset + io_u->buflen;
650
651 msec = mtime_since(&io_u->issue_time, &icd->time);
652
653 add_clat_sample(td, idx, msec);
654 add_bw_sample(td, idx, &icd->time);
655 io_u_mark_latency(td, msec);
656
657 if ((td_rw(td) || td_write(td)) && idx == DDIR_WRITE &&
658 td->o.verify != VERIFY_NONE)
659 log_io_piece(td, io_u);
660
661 icd->bytes_done[idx] += bytes;
662
663 if (io_u->end_io) {
664 ret = io_u->end_io(td, io_u);
665 if (ret && !icd->error)
666 icd->error = ret;
667 }
668 } else {
669 icd->error = io_u->error;
670 io_u_log_error(td, io_u);
671 }
672}
673
674static void init_icd(struct io_completion_data *icd, int nr)
675{
676 fio_gettime(&icd->time, NULL);
677
678 icd->nr = nr;
679
680 icd->error = 0;
681 icd->bytes_done[0] = icd->bytes_done[1] = 0;
682}
683
684static void ios_completed(struct thread_data *td,
685 struct io_completion_data *icd)
686{
687 struct io_u *io_u;
688 int i;
689
690 for (i = 0; i < icd->nr; i++) {
691 io_u = td->io_ops->event(td, i);
692
693 io_completed(td, io_u, icd);
694 put_io_u(td, io_u);
695 }
696}
697
698/*
699 * Complete a single io_u for the sync engines.
700 */
701long io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
702{
703 struct io_completion_data icd;
704
705 init_icd(&icd, 1);
706 io_completed(td, io_u, &icd);
707 put_io_u(td, io_u);
708
709 if (!icd.error)
710 return icd.bytes_done[0] + icd.bytes_done[1];
711
712 td_verror(td, icd.error, "io_u_sync_complete");
713 return -1;
714}
715
716/*
717 * Called to complete min_events number of io for the async engines.
718 */
719long io_u_queued_complete(struct thread_data *td, int min_events)
720{
721 struct io_completion_data icd;
722 struct timespec *tvp = NULL;
723 int ret;
724 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
725
726 if (!min_events)
727 tvp = &ts;
728
729 ret = td_io_getevents(td, min_events, td->cur_depth, tvp);
730 if (ret < 0) {
731 td_verror(td, -ret, "td_io_getevents");
732 return ret;
733 } else if (!ret)
734 return ret;
735
736 init_icd(&icd, ret);
737 ios_completed(td, &icd);
738 if (!icd.error)
739 return icd.bytes_done[0] + icd.bytes_done[1];
740
741 td_verror(td, icd.error, "io_u_queued_complete");
742 return -1;
743}
744
745/*
746 * Call when io_u is really queued, to update the submission latency.
747 */
748void io_u_queued(struct thread_data *td, struct io_u *io_u)
749{
750 unsigned long slat_time;
751
752 slat_time = mtime_since(&io_u->start_time, &io_u->issue_time);
753 add_slat_sample(td, io_u->ddir, slat_time);
754}
755
756#ifdef FIO_USE_TIMEOUT
757void io_u_set_timeout(struct thread_data *td)
758{
759 assert(td->cur_depth);
760
761 td->timer.it_interval.tv_sec = 0;
762 td->timer.it_interval.tv_usec = 0;
763 td->timer.it_value.tv_sec = IO_U_TIMEOUT + IO_U_TIMEOUT_INC;
764 td->timer.it_value.tv_usec = 0;
765 setitimer(ITIMER_REAL, &td->timer, NULL);
766 fio_gettime(&td->timeout_end, NULL);
767}
768
769static void io_u_dump(struct io_u *io_u)
770{
771 unsigned long t_start = mtime_since_now(&io_u->start_time);
772 unsigned long t_issue = mtime_since_now(&io_u->issue_time);
773
774 log_err("io_u=%p, t_start=%lu, t_issue=%lu\n", io_u, t_start, t_issue);
775 log_err(" buf=%p/%p, len=%lu/%lu, offset=%llu\n", io_u->buf, io_u->xfer_buf, io_u->buflen, io_u->xfer_buflen, io_u->offset);
776 log_err(" ddir=%d, fname=%s\n", io_u->ddir, io_u->file->file_name);
777}
778#else
779void io_u_set_timeout(struct thread_data fio_unused *td)
780{
781}
782#endif
783
784#ifdef FIO_USE_TIMEOUT
785static void io_u_timeout_handler(int fio_unused sig)
786{
787 struct thread_data *td, *__td;
788 pid_t pid = getpid();
789 struct list_head *entry;
790 struct io_u *io_u;
791 int i;
792
793 log_err("fio: io_u timeout\n");
794
795 /*
796 * TLS would be nice...
797 */
798 td = NULL;
799 for_each_td(__td, i) {
800 if (__td->pid == pid) {
801 td = __td;
802 break;
803 }
804 }
805
806 if (!td) {
807 log_err("fio: io_u timeout, can't find job\n");
808 exit(1);
809 }
810
811 if (!td->cur_depth) {
812 log_err("fio: timeout without pending work?\n");
813 return;
814 }
815
816 log_err("fio: io_u timeout: job=%s, pid=%d\n", td->o.name, td->pid);
817
818 list_for_each(entry, &td->io_u_busylist) {
819 io_u = list_entry(entry, struct io_u, list);
820
821 io_u_dump(io_u);
822 }
823
824 td_verror(td, ETIMEDOUT, "io_u timeout");
825 exit(1);
826}
827#endif
828
829void io_u_init_timeout(void)
830{
831#ifdef FIO_USE_TIMEOUT
832 signal(SIGALRM, io_u_timeout_handler);
833#endif
834}