Don't print 100% done, when we don't have a time estimate yet
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10
11/*
12 * Change this define to play with the timeout handling
13 */
14#undef FIO_USE_TIMEOUT
15
16struct io_completion_data {
17 int nr; /* input */
18
19 int error; /* output */
20 unsigned long bytes_done[2]; /* output */
21 struct timeval time; /* output */
22};
23
24/*
25 * The ->file_map[] contains a map of blocks we have or have not done io
26 * to yet. Used to make sure we cover the entire range in a fair fashion.
27 */
28static int random_map_free(struct fio_file *f, const unsigned long long block)
29{
30 unsigned int idx = RAND_MAP_IDX(f, block);
31 unsigned int bit = RAND_MAP_BIT(f, block);
32
33 dprint(FD_RANDOM, "free: b=%llu, idx=%u, bit=%u\n", block, idx, bit);
34
35 return (f->file_map[idx] & (1 << bit)) == 0;
36}
37
38/*
39 * Mark a given offset as used in the map.
40 */
41static void mark_random_map(struct thread_data *td, struct io_u *io_u)
42{
43 unsigned int min_bs = td->o.rw_min_bs;
44 struct fio_file *f = io_u->file;
45 unsigned long long block;
46 unsigned int blocks, nr_blocks;
47
48 block = (io_u->offset - f->file_offset) / (unsigned long long) min_bs;
49 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
50 blocks = 0;
51
52 while (nr_blocks) {
53 unsigned int this_blocks, mask;
54 unsigned int idx, bit;
55
56 /*
57 * If we have a mixed random workload, we may
58 * encounter blocks we already did IO to.
59 */
60 if ((td->o.ddir_nr == 1) && !random_map_free(f, block)) {
61 if (!blocks)
62 blocks = 1;
63 break;
64 }
65
66 idx = RAND_MAP_IDX(f, block);
67 bit = RAND_MAP_BIT(f, block);
68
69 fio_assert(td, idx < f->num_maps);
70
71 this_blocks = nr_blocks;
72 if (this_blocks + bit > BLOCKS_PER_MAP)
73 this_blocks = BLOCKS_PER_MAP - bit;
74
75 if (this_blocks == BLOCKS_PER_MAP)
76 mask = -1U;
77 else
78 mask = ((1U << this_blocks) - 1) << bit;
79
80 fio_assert(td, !(f->file_map[idx] & mask));
81 f->file_map[idx] |= mask;
82 nr_blocks -= this_blocks;
83 blocks += this_blocks;
84 block += this_blocks;
85 }
86
87 if ((blocks * min_bs) < io_u->buflen)
88 io_u->buflen = blocks * min_bs;
89}
90
91static unsigned long long last_block(struct thread_data *td, struct fio_file *f,
92 enum fio_ddir ddir)
93{
94 unsigned long long max_blocks;
95 unsigned long long max_size;
96
97 /*
98 * Hmm, should we make sure that ->io_size <= ->real_file_size?
99 */
100 max_size = f->io_size;
101 if (max_size > f->real_file_size)
102 max_size = f->real_file_size;
103
104 max_blocks = max_size / (unsigned long long) td->o.min_bs[ddir];
105 if (!max_blocks)
106 return 0;
107
108 return max_blocks;
109}
110
111/*
112 * Return the next free block in the map.
113 */
114static int get_next_free_block(struct thread_data *td, struct fio_file *f,
115 enum fio_ddir ddir, unsigned long long *b)
116{
117 unsigned long long min_bs = td->o.rw_min_bs;
118 int i;
119
120 i = f->last_free_lookup;
121 *b = (i * BLOCKS_PER_MAP);
122 while ((*b) * min_bs < f->real_file_size) {
123 if (f->file_map[i] != (unsigned int) -1) {
124 *b += ffz(f->file_map[i]);
125 if (*b > last_block(td, f, ddir))
126 break;
127 f->last_free_lookup = i;
128 return 0;
129 }
130
131 *b += BLOCKS_PER_MAP;
132 i++;
133 }
134
135 dprint(FD_IO, "failed finding a free block\n");
136 return 1;
137}
138
139static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
140 enum fio_ddir ddir, unsigned long long *b)
141{
142 unsigned long long r;
143 int loops = 5;
144
145 do {
146 r = os_random_long(&td->random_state);
147 dprint(FD_RANDOM, "off rand %llu\n", r);
148 *b = (last_block(td, f, ddir) - 1)
149 * (r / ((unsigned long long) OS_RAND_MAX + 1.0));
150
151 /*
152 * if we are not maintaining a random map, we are done.
153 */
154 if (!file_randommap(td, f))
155 return 0;
156
157 /*
158 * calculate map offset and check if it's free
159 */
160 if (random_map_free(f, *b))
161 return 0;
162
163 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
164 *b);
165 } while (--loops);
166
167 /*
168 * we get here, if we didn't suceed in looking up a block. generate
169 * a random start offset into the filemap, and find the first free
170 * block from there.
171 */
172 loops = 10;
173 do {
174 f->last_free_lookup = (f->num_maps - 1) *
175 (r / (OS_RAND_MAX + 1.0));
176 if (!get_next_free_block(td, f, ddir, b))
177 return 0;
178
179 r = os_random_long(&td->random_state);
180 } while (--loops);
181
182 /*
183 * that didn't work either, try exhaustive search from the start
184 */
185 f->last_free_lookup = 0;
186 return get_next_free_block(td, f, ddir, b);
187}
188
189/*
190 * For random io, generate a random new block and see if it's used. Repeat
191 * until we find a free one. For sequential io, just return the end of
192 * the last io issued.
193 */
194static int get_next_offset(struct thread_data *td, struct io_u *io_u)
195{
196 struct fio_file *f = io_u->file;
197 unsigned long long b;
198 enum fio_ddir ddir = io_u->ddir;
199
200 if (td_random(td) && (td->o.ddir_nr && !--td->ddir_nr)) {
201 td->ddir_nr = td->o.ddir_nr;
202
203 if (get_next_rand_offset(td, f, ddir, &b))
204 return 1;
205 } else {
206 if (f->last_pos >= f->real_file_size) {
207 if (!td_random(td) ||
208 get_next_rand_offset(td, f, ddir, &b))
209 return 1;
210 } else
211 b = (f->last_pos - f->file_offset) / td->o.min_bs[ddir];
212 }
213
214 io_u->offset = b * td->o.min_bs[ddir];
215 if (io_u->offset >= f->io_size) {
216 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
217 io_u->offset, f->io_size);
218 return 1;
219 }
220
221 io_u->offset += f->file_offset;
222 if (io_u->offset >= f->real_file_size) {
223 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
224 io_u->offset, f->real_file_size);
225 return 1;
226 }
227
228 return 0;
229}
230
231static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u)
232{
233 const int ddir = io_u->ddir;
234 unsigned int buflen = buflen; /* silence dumb gcc warning */
235 long r;
236
237 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
238 buflen = td->o.min_bs[ddir];
239 else {
240 r = os_random_long(&td->bsrange_state);
241 if (!td->o.bssplit_nr) {
242 buflen = (unsigned int)
243 (1 + (double) (td->o.max_bs[ddir] - 1)
244 * r / (OS_RAND_MAX + 1.0));
245 } else {
246 long perc = 0;
247 unsigned int i;
248
249 for (i = 0; i < td->o.bssplit_nr; i++) {
250 struct bssplit *bsp = &td->o.bssplit[i];
251
252 buflen = bsp->bs;
253 perc += bsp->perc;
254 if (r <= ((LONG_MAX / 100L) * perc))
255 break;
256 }
257 }
258 if (!td->o.bs_unaligned) {
259 buflen = (buflen + td->o.min_bs[ddir] - 1)
260 & ~(td->o.min_bs[ddir] - 1);
261 }
262 }
263
264 if (io_u->offset + buflen > io_u->file->real_file_size) {
265 dprint(FD_IO, "lower buflen %u -> %u (ddir=%d)\n", buflen,
266 td->o.min_bs[ddir], ddir);
267 buflen = td->o.min_bs[ddir];
268 }
269
270 return buflen;
271}
272
273static void set_rwmix_bytes(struct thread_data *td)
274{
275 unsigned int diff;
276
277 /*
278 * we do time or byte based switch. this is needed because
279 * buffered writes may issue a lot quicker than they complete,
280 * whereas reads do not.
281 */
282 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
283 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
284}
285
286static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
287{
288 unsigned int v;
289 long r;
290
291 r = os_random_long(&td->rwmix_state);
292 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0)));
293 if (v <= td->o.rwmix[DDIR_READ])
294 return DDIR_READ;
295
296 return DDIR_WRITE;
297}
298
299/*
300 * Return the data direction for the next io_u. If the job is a
301 * mixed read/write workload, check the rwmix cycle and switch if
302 * necessary.
303 */
304static enum fio_ddir get_rw_ddir(struct thread_data *td)
305{
306 if (td_rw(td)) {
307 /*
308 * Check if it's time to seed a new data direction.
309 */
310 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
311 unsigned long long max_bytes;
312 enum fio_ddir ddir;
313
314 /*
315 * Put a top limit on how many bytes we do for
316 * one data direction, to avoid overflowing the
317 * ranges too much
318 */
319 ddir = get_rand_ddir(td);
320 max_bytes = td->this_io_bytes[ddir];
321 if (max_bytes >=
322 (td->o.size * td->o.rwmix[ddir] / 100)) {
323 if (!td->rw_end_set[ddir]) {
324 td->rw_end_set[ddir] = 1;
325 fio_gettime(&td->rw_end[ddir], NULL);
326 }
327
328 ddir ^= 1;
329 }
330
331 if (ddir != td->rwmix_ddir)
332 set_rwmix_bytes(td);
333
334 td->rwmix_ddir = ddir;
335 }
336 return td->rwmix_ddir;
337 } else if (td_read(td))
338 return DDIR_READ;
339 else
340 return DDIR_WRITE;
341}
342
343static void put_file_log(struct thread_data *td, struct fio_file *f)
344{
345 int ret = put_file(td, f);
346
347 if (ret)
348 td_verror(td, ret, "file close");
349}
350
351void put_io_u(struct thread_data *td, struct io_u *io_u)
352{
353 assert((io_u->flags & IO_U_F_FREE) == 0);
354 io_u->flags |= IO_U_F_FREE;
355
356 if (io_u->file)
357 put_file_log(td, io_u->file);
358
359 io_u->file = NULL;
360 flist_del(&io_u->list);
361 flist_add(&io_u->list, &td->io_u_freelist);
362 td->cur_depth--;
363}
364
365void requeue_io_u(struct thread_data *td, struct io_u **io_u)
366{
367 struct io_u *__io_u = *io_u;
368
369 dprint(FD_IO, "requeue %p\n", __io_u);
370
371 __io_u->flags |= IO_U_F_FREE;
372 if ((__io_u->flags & IO_U_F_FLIGHT) && (__io_u->ddir != DDIR_SYNC))
373 td->io_issues[__io_u->ddir]--;
374
375 __io_u->flags &= ~IO_U_F_FLIGHT;
376
377 flist_del(&__io_u->list);
378 flist_add_tail(&__io_u->list, &td->io_u_requeues);
379 td->cur_depth--;
380 *io_u = NULL;
381}
382
383static int fill_io_u(struct thread_data *td, struct io_u *io_u)
384{
385 if (td->io_ops->flags & FIO_NOIO)
386 goto out;
387
388 /*
389 * see if it's time to sync
390 */
391 if (td->o.fsync_blocks &&
392 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
393 td->io_issues[DDIR_WRITE] && should_fsync(td)) {
394 io_u->ddir = DDIR_SYNC;
395 goto out;
396 }
397
398 io_u->ddir = get_rw_ddir(td);
399
400 /*
401 * See if it's time to switch to a new zone
402 */
403 if (td->zone_bytes >= td->o.zone_size) {
404 td->zone_bytes = 0;
405 io_u->file->last_pos += td->o.zone_skip;
406 td->io_skip_bytes += td->o.zone_skip;
407 }
408
409 /*
410 * No log, let the seq/rand engine retrieve the next buflen and
411 * position.
412 */
413 if (get_next_offset(td, io_u)) {
414 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
415 return 1;
416 }
417
418 io_u->buflen = get_next_buflen(td, io_u);
419 if (!io_u->buflen) {
420 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
421 return 1;
422 }
423
424 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
425 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
426 dprint(FD_IO, " off=%llu/%lu > %llu\n", io_u->offset,
427 io_u->buflen, io_u->file->real_file_size);
428 return 1;
429 }
430
431 /*
432 * mark entry before potentially trimming io_u
433 */
434 if (td_random(td) && file_randommap(td, io_u->file))
435 mark_random_map(td, io_u);
436
437 /*
438 * If using a write iolog, store this entry.
439 */
440out:
441 dprint_io_u(io_u, "fill_io_u");
442 td->zone_bytes += io_u->buflen;
443 log_io_u(td, io_u);
444 return 0;
445}
446
447static void __io_u_mark_map(unsigned int *map, unsigned int nr)
448{
449 int index = 0;
450
451 switch (nr) {
452 default:
453 index = 6;
454 break;
455 case 33 ... 64:
456 index = 5;
457 break;
458 case 17 ... 32:
459 index = 4;
460 break;
461 case 9 ... 16:
462 index = 3;
463 break;
464 case 5 ... 8:
465 index = 2;
466 break;
467 case 1 ... 4:
468 index = 1;
469 case 0:
470 break;
471 }
472
473 map[index]++;
474}
475
476void io_u_mark_submit(struct thread_data *td, unsigned int nr)
477{
478 __io_u_mark_map(td->ts.io_u_submit, nr);
479 td->ts.total_submit++;
480}
481
482void io_u_mark_complete(struct thread_data *td, unsigned int nr)
483{
484 __io_u_mark_map(td->ts.io_u_complete, nr);
485 td->ts.total_complete++;
486}
487
488void io_u_mark_depth(struct thread_data *td, unsigned int nr)
489{
490 int index = 0;
491
492 switch (td->cur_depth) {
493 default:
494 index = 6;
495 break;
496 case 32 ... 63:
497 index = 5;
498 break;
499 case 16 ... 31:
500 index = 4;
501 break;
502 case 8 ... 15:
503 index = 3;
504 break;
505 case 4 ... 7:
506 index = 2;
507 break;
508 case 2 ... 3:
509 index = 1;
510 case 1:
511 break;
512 }
513
514 td->ts.io_u_map[index] += nr;
515}
516
517static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
518{
519 int index = 0;
520
521 assert(usec < 1000);
522
523 switch (usec) {
524 case 750 ... 999:
525 index = 9;
526 break;
527 case 500 ... 749:
528 index = 8;
529 break;
530 case 250 ... 499:
531 index = 7;
532 break;
533 case 100 ... 249:
534 index = 6;
535 break;
536 case 50 ... 99:
537 index = 5;
538 break;
539 case 20 ... 49:
540 index = 4;
541 break;
542 case 10 ... 19:
543 index = 3;
544 break;
545 case 4 ... 9:
546 index = 2;
547 break;
548 case 2 ... 3:
549 index = 1;
550 case 0 ... 1:
551 break;
552 }
553
554 assert(index < FIO_IO_U_LAT_U_NR);
555 td->ts.io_u_lat_u[index]++;
556}
557
558static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
559{
560 int index = 0;
561
562 switch (msec) {
563 default:
564 index = 11;
565 break;
566 case 1000 ... 1999:
567 index = 10;
568 break;
569 case 750 ... 999:
570 index = 9;
571 break;
572 case 500 ... 749:
573 index = 8;
574 break;
575 case 250 ... 499:
576 index = 7;
577 break;
578 case 100 ... 249:
579 index = 6;
580 break;
581 case 50 ... 99:
582 index = 5;
583 break;
584 case 20 ... 49:
585 index = 4;
586 break;
587 case 10 ... 19:
588 index = 3;
589 break;
590 case 4 ... 9:
591 index = 2;
592 break;
593 case 2 ... 3:
594 index = 1;
595 case 0 ... 1:
596 break;
597 }
598
599 assert(index < FIO_IO_U_LAT_M_NR);
600 td->ts.io_u_lat_m[index]++;
601}
602
603static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
604{
605 if (usec < 1000)
606 io_u_mark_lat_usec(td, usec);
607 else
608 io_u_mark_lat_msec(td, usec / 1000);
609}
610
611/*
612 * Get next file to service by choosing one at random
613 */
614static struct fio_file *get_next_file_rand(struct thread_data *td, int goodf,
615 int badf)
616{
617 struct fio_file *f;
618 int fno;
619
620 do {
621 long r = os_random_long(&td->next_file_state);
622
623 fno = (unsigned int) ((double) td->o.nr_files
624 * (r / (OS_RAND_MAX + 1.0)));
625 f = td->files[fno];
626 if (f->flags & FIO_FILE_DONE)
627 continue;
628
629 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
630 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
631 return f;
632 }
633 } while (1);
634}
635
636/*
637 * Get next file to service by doing round robin between all available ones
638 */
639static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
640 int badf)
641{
642 unsigned int old_next_file = td->next_file;
643 struct fio_file *f;
644
645 do {
646 f = td->files[td->next_file];
647
648 td->next_file++;
649 if (td->next_file >= td->o.nr_files)
650 td->next_file = 0;
651
652 if (f->flags & FIO_FILE_DONE) {
653 f = NULL;
654 continue;
655 }
656
657 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
658 break;
659
660 f = NULL;
661 } while (td->next_file != old_next_file);
662
663 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
664 return f;
665}
666
667static struct fio_file *get_next_file(struct thread_data *td)
668{
669 struct fio_file *f;
670
671 assert(td->o.nr_files <= td->files_index);
672
673 if (!td->nr_open_files || td->nr_done_files >= td->o.nr_files) {
674 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
675 " nr_files=%d\n", td->nr_open_files,
676 td->nr_done_files,
677 td->o.nr_files);
678 return NULL;
679 }
680
681 f = td->file_service_file;
682 if (f && (f->flags & FIO_FILE_OPEN) && td->file_service_left--)
683 goto out;
684
685 if (td->o.file_service_type == FIO_FSERVICE_RR)
686 f = get_next_file_rr(td, FIO_FILE_OPEN, FIO_FILE_CLOSING);
687 else
688 f = get_next_file_rand(td, FIO_FILE_OPEN, FIO_FILE_CLOSING);
689
690 td->file_service_file = f;
691 td->file_service_left = td->file_service_nr - 1;
692out:
693 dprint(FD_FILE, "get_next_file: %p\n", f);
694 return f;
695}
696
697static struct fio_file *find_next_new_file(struct thread_data *td)
698{
699 struct fio_file *f;
700
701 if (!td->nr_open_files || td->nr_done_files >= td->o.nr_files)
702 return NULL;
703
704 if (td->o.file_service_type == FIO_FSERVICE_RR)
705 f = get_next_file_rr(td, 0, FIO_FILE_OPEN);
706 else
707 f = get_next_file_rand(td, 0, FIO_FILE_OPEN);
708
709 return f;
710}
711
712static int set_io_u_file(struct thread_data *td, struct io_u *io_u)
713{
714 struct fio_file *f;
715
716 do {
717 f = get_next_file(td);
718 if (!f)
719 return 1;
720
721set_file:
722 io_u->file = f;
723 get_file(f);
724
725 if (!fill_io_u(td, io_u))
726 break;
727
728 /*
729 * optimization to prevent close/open of the same file. This
730 * way we preserve queueing etc.
731 */
732 if (td->o.nr_files == 1 && td->o.time_based) {
733 put_file_log(td, f);
734 fio_file_reset(f);
735 goto set_file;
736 }
737
738 /*
739 * td_io_close() does a put_file() as well, so no need to
740 * do that here.
741 */
742 io_u->file = NULL;
743 td_io_close_file(td, f);
744 f->flags |= FIO_FILE_DONE;
745 td->nr_done_files++;
746
747 /*
748 * probably not the right place to do this, but see
749 * if we need to open a new file
750 */
751 if (td->nr_open_files < td->o.open_files &&
752 td->o.open_files != td->o.nr_files) {
753 f = find_next_new_file(td);
754
755 if (!f || td_io_open_file(td, f))
756 return 1;
757
758 goto set_file;
759 }
760 } while (1);
761
762 return 0;
763}
764
765
766struct io_u *__get_io_u(struct thread_data *td)
767{
768 struct io_u *io_u = NULL;
769
770 if (!flist_empty(&td->io_u_requeues))
771 io_u = flist_entry(td->io_u_requeues.next, struct io_u, list);
772 else if (!queue_full(td)) {
773 io_u = flist_entry(td->io_u_freelist.next, struct io_u, list);
774
775 io_u->buflen = 0;
776 io_u->resid = 0;
777 io_u->file = NULL;
778 io_u->end_io = NULL;
779 }
780
781 if (io_u) {
782 assert(io_u->flags & IO_U_F_FREE);
783 io_u->flags &= ~IO_U_F_FREE;
784
785 io_u->error = 0;
786 flist_del(&io_u->list);
787 flist_add(&io_u->list, &td->io_u_busylist);
788 td->cur_depth++;
789 }
790
791 return io_u;
792}
793
794/*
795 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
796 * etc. The returned io_u is fully ready to be prepped and submitted.
797 */
798struct io_u *get_io_u(struct thread_data *td)
799{
800 struct fio_file *f;
801 struct io_u *io_u;
802
803 io_u = __get_io_u(td);
804 if (!io_u) {
805 dprint(FD_IO, "__get_io_u failed\n");
806 return NULL;
807 }
808
809 /*
810 * from a requeue, io_u already setup
811 */
812 if (io_u->file)
813 goto out;
814
815 /*
816 * If using an iolog, grab next piece if any available.
817 */
818 if (td->o.read_iolog_file) {
819 if (read_iolog_get(td, io_u))
820 goto err_put;
821 } else if (set_io_u_file(td, io_u)) {
822 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
823 goto err_put;
824 }
825
826 f = io_u->file;
827 assert(f->flags & FIO_FILE_OPEN);
828
829 if (io_u->ddir != DDIR_SYNC) {
830 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) {
831 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
832 goto err_put;
833 }
834
835 f->last_pos = io_u->offset + io_u->buflen;
836
837 if (td->o.verify != VERIFY_NONE)
838 populate_verify_io_u(td, io_u);
839 else if (td->o.refill_buffers && io_u->ddir == DDIR_WRITE)
840 io_u_fill_buffer(td, io_u, io_u->xfer_buflen);
841 }
842
843 /*
844 * Set io data pointers.
845 */
846 io_u->endpos = io_u->offset + io_u->buflen;
847 io_u->xfer_buf = io_u->buf;
848 io_u->xfer_buflen = io_u->buflen;
849
850out:
851 if (!td_io_prep(td, io_u)) {
852 fio_gettime(&io_u->start_time, NULL);
853 return io_u;
854 }
855err_put:
856 dprint(FD_IO, "get_io_u failed\n");
857 put_io_u(td, io_u);
858 return NULL;
859}
860
861void io_u_log_error(struct thread_data *td, struct io_u *io_u)
862{
863 const char *msg[] = { "read", "write", "sync" };
864
865 log_err("fio: io_u error");
866
867 if (io_u->file)
868 log_err(" on file %s", io_u->file->file_name);
869
870 log_err(": %s\n", strerror(io_u->error));
871
872 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir],
873 io_u->offset, io_u->xfer_buflen);
874
875 if (!td->error)
876 td_verror(td, io_u->error, "io_u error");
877}
878
879static void io_completed(struct thread_data *td, struct io_u *io_u,
880 struct io_completion_data *icd)
881{
882 unsigned long usec;
883
884 dprint_io_u(io_u, "io complete");
885
886 assert(io_u->flags & IO_U_F_FLIGHT);
887 io_u->flags &= ~IO_U_F_FLIGHT;
888
889 if (io_u->ddir == DDIR_SYNC) {
890 td->last_was_sync = 1;
891 return;
892 }
893
894 td->last_was_sync = 0;
895
896 if (!io_u->error) {
897 unsigned int bytes = io_u->buflen - io_u->resid;
898 const enum fio_ddir idx = io_u->ddir;
899 int ret;
900
901 td->io_blocks[idx]++;
902 td->io_bytes[idx] += bytes;
903 td->this_io_bytes[idx] += bytes;
904
905 usec = utime_since(&io_u->issue_time, &icd->time);
906
907 add_clat_sample(td, idx, usec);
908 add_bw_sample(td, idx, &icd->time);
909 io_u_mark_latency(td, usec);
910
911 if (td_write(td) && idx == DDIR_WRITE &&
912 td->o.do_verify &&
913 td->o.verify != VERIFY_NONE)
914 log_io_piece(td, io_u);
915
916 icd->bytes_done[idx] += bytes;
917
918 if (io_u->end_io) {
919 ret = io_u->end_io(td, io_u);
920 if (ret && !icd->error)
921 icd->error = ret;
922 }
923 } else {
924 icd->error = io_u->error;
925 io_u_log_error(td, io_u);
926 }
927}
928
929static void init_icd(struct io_completion_data *icd, int nr)
930{
931 fio_gettime(&icd->time, NULL);
932
933 icd->nr = nr;
934
935 icd->error = 0;
936 icd->bytes_done[0] = icd->bytes_done[1] = 0;
937}
938
939static void ios_completed(struct thread_data *td,
940 struct io_completion_data *icd)
941{
942 struct io_u *io_u;
943 int i;
944
945 for (i = 0; i < icd->nr; i++) {
946 io_u = td->io_ops->event(td, i);
947
948 io_completed(td, io_u, icd);
949 put_io_u(td, io_u);
950 }
951}
952
953/*
954 * Complete a single io_u for the sync engines.
955 */
956long io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
957{
958 struct io_completion_data icd;
959
960 init_icd(&icd, 1);
961 io_completed(td, io_u, &icd);
962 put_io_u(td, io_u);
963
964 if (!icd.error)
965 return icd.bytes_done[0] + icd.bytes_done[1];
966
967 td_verror(td, icd.error, "io_u_sync_complete");
968 return -1;
969}
970
971/*
972 * Called to complete min_events number of io for the async engines.
973 */
974long io_u_queued_complete(struct thread_data *td, int min_events)
975{
976 struct io_completion_data icd;
977 struct timespec *tvp = NULL;
978 int ret;
979 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
980
981 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_events);
982
983 if (!min_events)
984 tvp = &ts;
985
986 ret = td_io_getevents(td, min_events, td->cur_depth, tvp);
987 if (ret < 0) {
988 td_verror(td, -ret, "td_io_getevents");
989 return ret;
990 } else if (!ret)
991 return ret;
992
993 init_icd(&icd, ret);
994 ios_completed(td, &icd);
995 if (!icd.error)
996 return icd.bytes_done[0] + icd.bytes_done[1];
997
998 td_verror(td, icd.error, "io_u_queued_complete");
999 return -1;
1000}
1001
1002/*
1003 * Call when io_u is really queued, to update the submission latency.
1004 */
1005void io_u_queued(struct thread_data *td, struct io_u *io_u)
1006{
1007 unsigned long slat_time;
1008
1009 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
1010 add_slat_sample(td, io_u->ddir, slat_time);
1011}
1012
1013/*
1014 * "randomly" fill the buffer contents
1015 */
1016void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
1017 unsigned int max_bs)
1018{
1019 long *ptr = io_u->buf;
1020
1021 if (!td->o.zero_buffers) {
1022 while ((void *) ptr - io_u->buf < max_bs) {
1023 *ptr = rand() * GOLDEN_RATIO_PRIME;
1024 ptr++;
1025 }
1026 } else
1027 memset(ptr, 0, max_bs);
1028}
1029
1030#ifdef FIO_USE_TIMEOUT
1031void io_u_set_timeout(struct thread_data *td)
1032{
1033 assert(td->cur_depth);
1034
1035 td->timer.it_interval.tv_sec = 0;
1036 td->timer.it_interval.tv_usec = 0;
1037 td->timer.it_value.tv_sec = IO_U_TIMEOUT + IO_U_TIMEOUT_INC;
1038 td->timer.it_value.tv_usec = 0;
1039 setitimer(ITIMER_REAL, &td->timer, NULL);
1040 fio_gettime(&td->timeout_end, NULL);
1041}
1042
1043static void io_u_dump(struct io_u *io_u)
1044{
1045 unsigned long t_start = mtime_since_now(&io_u->start_time);
1046 unsigned long t_issue = mtime_since_now(&io_u->issue_time);
1047
1048 log_err("io_u=%p, t_start=%lu, t_issue=%lu\n", io_u, t_start, t_issue);
1049 log_err(" buf=%p/%p, len=%lu/%lu, offset=%llu\n", io_u->buf,
1050 io_u->xfer_buf, io_u->buflen,
1051 io_u->xfer_buflen,
1052 io_u->offset);
1053 log_err(" ddir=%d, fname=%s\n", io_u->ddir, io_u->file->file_name);
1054}
1055#else
1056void io_u_set_timeout(struct thread_data fio_unused *td)
1057{
1058}
1059#endif
1060
1061#ifdef FIO_USE_TIMEOUT
1062static void io_u_timeout_handler(int fio_unused sig)
1063{
1064 struct thread_data *td, *__td;
1065 pid_t pid = getpid();
1066 struct flist_head *entry;
1067 struct io_u *io_u;
1068 int i;
1069
1070 log_err("fio: io_u timeout\n");
1071
1072 /*
1073 * TLS would be nice...
1074 */
1075 td = NULL;
1076 for_each_td(__td, i) {
1077 if (__td->pid == pid) {
1078 td = __td;
1079 break;
1080 }
1081 }
1082
1083 if (!td) {
1084 log_err("fio: io_u timeout, can't find job\n");
1085 exit(1);
1086 }
1087
1088 if (!td->cur_depth) {
1089 log_err("fio: timeout without pending work?\n");
1090 return;
1091 }
1092
1093 log_err("fio: io_u timeout: job=%s, pid=%d\n", td->o.name, td->pid);
1094
1095 flist_for_each(entry, &td->io_u_busylist) {
1096 io_u = flist_entry(entry, struct io_u, list);
1097
1098 io_u_dump(io_u);
1099 }
1100
1101 td_verror(td, ETIMEDOUT, "io_u timeout");
1102 exit(1);
1103}
1104#endif
1105
1106void io_u_init_timeout(void)
1107{
1108#ifdef FIO_USE_TIMEOUT
1109 signal(SIGALRM, io_u_timeout_handler);
1110#endif
1111}