Better check for not doing a file twice
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "os.h"
10
11/*
12 * Change this define to play with the timeout handling
13 */
14#undef FIO_USE_TIMEOUT
15
16struct io_completion_data {
17 int nr; /* input */
18
19 int error; /* output */
20 unsigned long bytes_done[2]; /* output */
21 struct timeval time; /* output */
22};
23
24/*
25 * The ->file_map[] contains a map of blocks we have or have not done io
26 * to yet. Used to make sure we cover the entire range in a fair fashion.
27 */
28static int random_map_free(struct thread_data *td, struct fio_file *f,
29 unsigned long long block)
30{
31 unsigned int idx = RAND_MAP_IDX(td, f, block);
32 unsigned int bit = RAND_MAP_BIT(td, f, block);
33
34 return (f->file_map[idx] & (1UL << bit)) == 0;
35}
36
37/*
38 * Mark a given offset as used in the map.
39 */
40static void mark_random_map(struct thread_data *td, struct io_u *io_u)
41{
42 unsigned int min_bs = td->o.rw_min_bs;
43 struct fio_file *f = io_u->file;
44 unsigned long long block;
45 unsigned int blocks;
46 unsigned int nr_blocks;
47
48 block = io_u->offset / (unsigned long long) min_bs;
49 blocks = 0;
50 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
51
52 while (blocks < nr_blocks) {
53 unsigned int idx, bit;
54
55 /*
56 * If we have a mixed random workload, we may
57 * encounter blocks we already did IO to.
58 */
59 if (!td->o.ddir_nr && !random_map_free(td, f, block))
60 break;
61
62 idx = RAND_MAP_IDX(td, f, block);
63 bit = RAND_MAP_BIT(td, f, block);
64
65 fio_assert(td, idx < f->num_maps);
66
67 f->file_map[idx] |= (1UL << bit);
68 block++;
69 blocks++;
70 }
71
72 if ((blocks * min_bs) < io_u->buflen)
73 io_u->buflen = blocks * min_bs;
74}
75
76/*
77 * Return the next free block in the map.
78 */
79static int get_next_free_block(struct thread_data *td, struct fio_file *f,
80 unsigned long long *b)
81{
82 int i;
83
84 i = f->last_free_lookup;
85 *b = (i * BLOCKS_PER_MAP);
86 while ((*b) * td->o.rw_min_bs < f->real_file_size) {
87 if (f->file_map[i] != -1UL) {
88 *b += ffz(f->file_map[i]);
89 f->last_free_lookup = i;
90 return 0;
91 }
92
93 *b += BLOCKS_PER_MAP;
94 i++;
95 }
96
97 return 1;
98}
99
100static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
101 int ddir, unsigned long long *b)
102{
103 unsigned long long max_blocks = f->io_size / td->o.min_bs[ddir];
104 unsigned long long r, rb;
105 int loops = 5;
106
107 do {
108 r = os_random_long(&td->random_state);
109 if (!max_blocks)
110 *b = 0;
111 else
112 *b = ((max_blocks - 1) * r / (unsigned long long) (RAND_MAX+1.0));
113 if (td->o.norandommap)
114 break;
115 rb = *b + (f->file_offset / td->o.min_bs[ddir]);
116 loops--;
117 } while (!random_map_free(td, f, rb) && loops);
118
119 /*
120 * if we failed to retrieve a truly random offset within
121 * the loops assigned, see if there are free ones left at all
122 */
123 if (!loops && get_next_free_block(td, f, b))
124 return 1;
125
126 return 0;
127}
128
129/*
130 * For random io, generate a random new block and see if it's used. Repeat
131 * until we find a free one. For sequential io, just return the end of
132 * the last io issued.
133 */
134static int get_next_offset(struct thread_data *td, struct io_u *io_u)
135{
136 struct fio_file *f = io_u->file;
137 const int ddir = io_u->ddir;
138 unsigned long long b;
139
140 if (td_random(td) && (td->o.ddir_nr && !--td->ddir_nr)) {
141 td->ddir_nr = td->o.ddir_nr;
142
143 if (get_next_rand_offset(td, f, ddir, &b))
144 return 1;
145 } else {
146 if (f->last_pos >= f->real_file_size)
147 return 1;
148
149 b = f->last_pos / td->o.min_bs[ddir];
150 }
151
152 io_u->offset = (b * td->o.min_bs[ddir]) + f->file_offset;
153 if (io_u->offset >= f->real_file_size)
154 return 1;
155
156 return 0;
157}
158
159static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u)
160{
161 struct fio_file *f = io_u->file;
162 const int ddir = io_u->ddir;
163 unsigned int buflen;
164 long r;
165
166 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
167 buflen = td->o.min_bs[ddir];
168 else {
169 r = os_random_long(&td->bsrange_state);
170 buflen = (unsigned int) (1 + (double) (td->o.max_bs[ddir] - 1) * r / (RAND_MAX + 1.0));
171 if (!td->o.bs_unaligned)
172 buflen = (buflen + td->o.min_bs[ddir] - 1) & ~(td->o.min_bs[ddir] - 1);
173 }
174
175 while (buflen + io_u->offset > f->real_file_size) {
176 if (buflen == td->o.min_bs[ddir]) {
177 if (!td->o.odirect) {
178 assert(io_u->offset <= f->real_file_size);
179 buflen = f->real_file_size - io_u->offset;
180 return buflen;
181 }
182 return 0;
183 }
184
185 buflen = td->o.min_bs[ddir];
186 }
187
188 return buflen;
189}
190
191static void set_rwmix_bytes(struct thread_data *td)
192{
193 unsigned long long rbytes;
194 unsigned int diff;
195
196 /*
197 * we do time or byte based switch. this is needed because
198 * buffered writes may issue a lot quicker than they complete,
199 * whereas reads do not.
200 */
201 rbytes = td->io_bytes[td->rwmix_ddir] - td->rwmix_bytes;
202 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
203
204 td->rwmix_bytes = td->io_bytes[td->rwmix_ddir] + (rbytes * ((100 - diff)) / diff);
205}
206
207static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
208{
209 unsigned int v;
210 long r;
211
212 r = os_random_long(&td->rwmix_state);
213 v = 1 + (int) (100.0 * (r / (RAND_MAX + 1.0)));
214 if (v < td->o.rwmix[DDIR_READ])
215 return DDIR_READ;
216
217 return DDIR_WRITE;
218}
219
220/*
221 * Return the data direction for the next io_u. If the job is a
222 * mixed read/write workload, check the rwmix cycle and switch if
223 * necessary.
224 */
225static enum fio_ddir get_rw_ddir(struct thread_data *td)
226{
227 if (td_rw(td)) {
228 struct timeval now;
229 unsigned long elapsed;
230 unsigned int cycle;
231
232 fio_gettime(&now, NULL);
233 elapsed = mtime_since_now(&td->rwmix_switch);
234
235 /*
236 * if this is the first cycle, make it shorter
237 */
238 cycle = td->o.rwmixcycle;
239 if (!td->rwmix_bytes)
240 cycle /= 10;
241
242 /*
243 * Check if it's time to seed a new data direction.
244 */
245 if (elapsed >= cycle ||
246 td->io_bytes[td->rwmix_ddir] >= td->rwmix_bytes) {
247 unsigned long long max_bytes;
248 enum fio_ddir ddir;
249
250 /*
251 * Put a top limit on how many bytes we do for
252 * one data direction, to avoid overflowing the
253 * ranges too much
254 */
255 ddir = get_rand_ddir(td);
256 max_bytes = td->this_io_bytes[ddir];
257 if (max_bytes >= (td->o.size * td->o.rwmix[ddir] / 100)) {
258 if (!td->rw_end_set[ddir]) {
259 td->rw_end_set[ddir] = 1;
260 memcpy(&td->rw_end[ddir], &now, sizeof(now));
261 }
262 ddir ^= 1;
263 }
264
265 if (ddir != td->rwmix_ddir)
266 set_rwmix_bytes(td);
267
268 td->rwmix_ddir = ddir;
269 memcpy(&td->rwmix_switch, &now, sizeof(now));
270 }
271 return td->rwmix_ddir;
272 } else if (td_read(td))
273 return DDIR_READ;
274 else
275 return DDIR_WRITE;
276}
277
278void put_io_u(struct thread_data *td, struct io_u *io_u)
279{
280 assert((io_u->flags & IO_U_F_FREE) == 0);
281 io_u->flags |= IO_U_F_FREE;
282
283 io_u->file = NULL;
284 list_del(&io_u->list);
285 list_add(&io_u->list, &td->io_u_freelist);
286 td->cur_depth--;
287}
288
289void requeue_io_u(struct thread_data *td, struct io_u **io_u)
290{
291 struct io_u *__io_u = *io_u;
292
293 __io_u->flags |= IO_U_F_FREE;
294 __io_u->flags &= ~IO_U_F_FLIGHT;
295
296 list_del(&__io_u->list);
297 list_add_tail(&__io_u->list, &td->io_u_requeues);
298 td->cur_depth--;
299 *io_u = NULL;
300}
301
302static int fill_io_u(struct thread_data *td, struct io_u *io_u)
303{
304 /*
305 * If using an iolog, grab next piece if any available.
306 */
307 if (td->o.read_iolog)
308 return read_iolog_get(td, io_u);
309
310 /*
311 * see if it's time to sync
312 */
313 if (td->o.fsync_blocks &&
314 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
315 td->io_issues[DDIR_WRITE] && should_fsync(td)) {
316 io_u->ddir = DDIR_SYNC;
317 goto out;
318 }
319
320 io_u->ddir = get_rw_ddir(td);
321
322 /*
323 * No log, let the seq/rand engine retrieve the next buflen and
324 * position.
325 */
326 if (get_next_offset(td, io_u))
327 return 1;
328
329 io_u->buflen = get_next_buflen(td, io_u);
330 if (!io_u->buflen)
331 return 1;
332
333 /*
334 * mark entry before potentially trimming io_u
335 */
336 if (td_random(td) && !td->o.norandommap)
337 mark_random_map(td, io_u);
338
339 /*
340 * If using a write iolog, store this entry.
341 */
342out:
343 if (td->o.write_iolog_file)
344 write_iolog_put(td, io_u);
345
346 return 0;
347}
348
349void io_u_mark_depth(struct thread_data *td, struct io_u *io_u)
350{
351 int index = 0;
352
353 if (io_u->ddir == DDIR_SYNC)
354 return;
355
356 switch (td->cur_depth) {
357 default:
358 index++;
359 case 32 ... 63:
360 index++;
361 case 16 ... 31:
362 index++;
363 case 8 ... 15:
364 index++;
365 case 4 ... 7:
366 index++;
367 case 2 ... 3:
368 index++;
369 case 1:
370 break;
371 }
372
373 td->ts.io_u_map[index]++;
374 td->ts.total_io_u[io_u->ddir]++;
375}
376
377static void io_u_mark_latency(struct thread_data *td, unsigned long msec)
378{
379 int index = 0;
380
381 switch (msec) {
382 default:
383 index++;
384 case 1000 ... 1999:
385 index++;
386 case 750 ... 999:
387 index++;
388 case 500 ... 749:
389 index++;
390 case 250 ... 499:
391 index++;
392 case 100 ... 249:
393 index++;
394 case 50 ... 99:
395 index++;
396 case 20 ... 49:
397 index++;
398 case 10 ... 19:
399 index++;
400 case 4 ... 9:
401 index++;
402 case 2 ... 3:
403 index++;
404 case 0 ... 1:
405 break;
406 }
407
408 td->ts.io_u_lat[index]++;
409}
410
411/*
412 * Get next file to service by choosing one at random
413 */
414static struct fio_file *get_next_file_rand(struct thread_data *td, int goodf,
415 int badf)
416{
417 struct fio_file *f;
418 int fno;
419
420 do {
421 long r = os_random_long(&td->next_file_state);
422
423 fno = (unsigned int) ((double) td->o.nr_files * (r / (RAND_MAX + 1.0)));
424 f = &td->files[fno];
425 if (f->flags & FIO_FILE_DONE)
426 continue;
427
428 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
429 return f;
430 } while (1);
431}
432
433/*
434 * Get next file to service by doing round robin between all available ones
435 */
436static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
437 int badf)
438{
439 unsigned int old_next_file = td->next_file;
440 struct fio_file *f;
441
442 do {
443 f = &td->files[td->next_file];
444
445 td->next_file++;
446 if (td->next_file >= td->o.nr_files)
447 td->next_file = 0;
448
449 if (f->flags & FIO_FILE_DONE)
450 continue;
451
452 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
453 break;
454
455 f = NULL;
456 } while (td->next_file != old_next_file);
457
458 return f;
459}
460
461static struct fio_file *get_next_file(struct thread_data *td)
462{
463 struct fio_file *f;
464
465 assert(td->o.nr_files <= td->files_index);
466
467 if (!td->nr_open_files)
468 return NULL;
469
470 f = td->file_service_file;
471 if (f && (f->flags & FIO_FILE_OPEN) && td->file_service_left--)
472 return f;
473
474 if (td->o.file_service_type == FIO_FSERVICE_RR)
475 f = get_next_file_rr(td, FIO_FILE_OPEN, FIO_FILE_CLOSING);
476 else
477 f = get_next_file_rand(td, FIO_FILE_OPEN, FIO_FILE_CLOSING);
478
479 td->file_service_file = f;
480 td->file_service_left = td->file_service_nr - 1;
481 return f;
482}
483
484static struct fio_file *find_next_new_file(struct thread_data *td)
485{
486 struct fio_file *f;
487
488 if (td->o.file_service_type == FIO_FSERVICE_RR)
489 f = get_next_file_rr(td, 0, FIO_FILE_OPEN);
490 else
491 f = get_next_file_rand(td, 0, FIO_FILE_OPEN);
492
493 return f;
494}
495
496struct io_u *__get_io_u(struct thread_data *td)
497{
498 struct io_u *io_u = NULL;
499
500 if (!list_empty(&td->io_u_requeues))
501 io_u = list_entry(td->io_u_requeues.next, struct io_u, list);
502 else if (!queue_full(td)) {
503 io_u = list_entry(td->io_u_freelist.next, struct io_u, list);
504
505 io_u->buflen = 0;
506 io_u->resid = 0;
507 io_u->file = NULL;
508 io_u->end_io = NULL;
509 }
510
511 if (io_u) {
512 assert(io_u->flags & IO_U_F_FREE);
513 io_u->flags &= ~IO_U_F_FREE;
514
515 io_u->error = 0;
516 list_del(&io_u->list);
517 list_add(&io_u->list, &td->io_u_busylist);
518 td->cur_depth++;
519 }
520
521 return io_u;
522}
523
524/*
525 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
526 * etc. The returned io_u is fully ready to be prepped and submitted.
527 */
528struct io_u *get_io_u(struct thread_data *td)
529{
530 struct fio_file *f;
531 struct io_u *io_u;
532 int ret;
533
534 io_u = __get_io_u(td);
535 if (!io_u)
536 return NULL;
537
538 /*
539 * from a requeue, io_u already setup
540 */
541 if (io_u->file)
542 goto out;
543
544 do {
545 f = get_next_file(td);
546 if (!f) {
547 put_io_u(td, io_u);
548 return NULL;
549 }
550
551set_file:
552 io_u->file = f;
553
554 if (!fill_io_u(td, io_u))
555 break;
556
557 /*
558 * No more to do for this file, close it
559 */
560 io_u->file = NULL;
561 td_io_close_file(td, f);
562 f->flags |= FIO_FILE_DONE;
563
564 /*
565 * probably not the right place to do this, but see
566 * if we need to open a new file
567 */
568 if (td->nr_open_files < td->o.open_files &&
569 td->o.open_files != td->o.nr_files) {
570 f = find_next_new_file(td);
571
572 if (!f || (ret = td_io_open_file(td, f))) {
573 put_io_u(td, io_u);
574 return NULL;
575 }
576 goto set_file;
577 }
578 } while (1);
579
580 if (td->zone_bytes >= td->o.zone_size) {
581 td->zone_bytes = 0;
582 f->last_pos += td->o.zone_skip;
583 }
584
585 if (io_u->buflen + io_u->offset > f->real_file_size) {
586 if (td->io_ops->flags & FIO_RAWIO) {
587 put_io_u(td, io_u);
588 return NULL;
589 }
590
591 io_u->buflen = f->real_file_size - io_u->offset;
592 }
593
594 if (io_u->ddir != DDIR_SYNC) {
595 if (!io_u->buflen) {
596 put_io_u(td, io_u);
597 return NULL;
598 }
599
600 f->last_pos = io_u->offset + io_u->buflen;
601
602 if (td->o.verify != VERIFY_NONE)
603 populate_verify_io_u(td, io_u);
604 }
605
606 /*
607 * Set io data pointers.
608 */
609out:
610 io_u->xfer_buf = io_u->buf;
611 io_u->xfer_buflen = io_u->buflen;
612
613 if (td_io_prep(td, io_u)) {
614 put_io_u(td, io_u);
615 return NULL;
616 }
617
618 fio_gettime(&io_u->start_time, NULL);
619 return io_u;
620}
621
622void io_u_log_error(struct thread_data *td, struct io_u *io_u)
623{
624 const char *msg[] = { "read", "write", "sync" };
625
626 log_err("fio: io_u error");
627
628 if (io_u->file)
629 log_err(" on file %s", io_u->file->file_name);
630
631 log_err(": %s\n", strerror(io_u->error));
632
633 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir], io_u->offset, io_u->xfer_buflen);
634
635 if (!td->error)
636 td_verror(td, io_u->error, "io_u error");
637}
638
639static void io_completed(struct thread_data *td, struct io_u *io_u,
640 struct io_completion_data *icd)
641{
642 unsigned long msec;
643
644 assert(io_u->flags & IO_U_F_FLIGHT);
645 io_u->flags &= ~IO_U_F_FLIGHT;
646
647 put_file(td, io_u->file);
648
649 if (io_u->ddir == DDIR_SYNC) {
650 td->last_was_sync = 1;
651 return;
652 }
653
654 td->last_was_sync = 0;
655
656 if (!io_u->error) {
657 unsigned int bytes = io_u->buflen - io_u->resid;
658 const enum fio_ddir idx = io_u->ddir;
659 int ret;
660
661 td->io_blocks[idx]++;
662 td->io_bytes[idx] += bytes;
663 td->zone_bytes += bytes;
664 td->this_io_bytes[idx] += bytes;
665
666 io_u->file->last_completed_pos = io_u->offset + io_u->buflen;
667
668 msec = mtime_since(&io_u->issue_time, &icd->time);
669
670 add_clat_sample(td, idx, msec);
671 add_bw_sample(td, idx, &icd->time);
672 io_u_mark_latency(td, msec);
673
674 if ((td_rw(td) || td_write(td)) && idx == DDIR_WRITE &&
675 td->o.verify != VERIFY_NONE)
676 log_io_piece(td, io_u);
677
678 icd->bytes_done[idx] += bytes;
679
680 if (io_u->end_io) {
681 ret = io_u->end_io(td, io_u);
682 if (ret && !icd->error)
683 icd->error = ret;
684 }
685 } else {
686 icd->error = io_u->error;
687 io_u_log_error(td, io_u);
688 }
689}
690
691static void init_icd(struct io_completion_data *icd, int nr)
692{
693 fio_gettime(&icd->time, NULL);
694
695 icd->nr = nr;
696
697 icd->error = 0;
698 icd->bytes_done[0] = icd->bytes_done[1] = 0;
699}
700
701static void ios_completed(struct thread_data *td,
702 struct io_completion_data *icd)
703{
704 struct io_u *io_u;
705 int i;
706
707 for (i = 0; i < icd->nr; i++) {
708 io_u = td->io_ops->event(td, i);
709
710 io_completed(td, io_u, icd);
711 put_io_u(td, io_u);
712 }
713}
714
715/*
716 * Complete a single io_u for the sync engines.
717 */
718long io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
719{
720 struct io_completion_data icd;
721
722 init_icd(&icd, 1);
723 io_completed(td, io_u, &icd);
724 put_io_u(td, io_u);
725
726 if (!icd.error)
727 return icd.bytes_done[0] + icd.bytes_done[1];
728
729 td_verror(td, icd.error, "io_u_sync_complete");
730 return -1;
731}
732
733/*
734 * Called to complete min_events number of io for the async engines.
735 */
736long io_u_queued_complete(struct thread_data *td, int min_events)
737{
738 struct io_completion_data icd;
739 struct timespec *tvp = NULL;
740 int ret;
741 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
742
743 if (!min_events)
744 tvp = &ts;
745
746 ret = td_io_getevents(td, min_events, td->cur_depth, tvp);
747 if (ret < 0) {
748 td_verror(td, -ret, "td_io_getevents");
749 return ret;
750 } else if (!ret)
751 return ret;
752
753 init_icd(&icd, ret);
754 ios_completed(td, &icd);
755 if (!icd.error)
756 return icd.bytes_done[0] + icd.bytes_done[1];
757
758 td_verror(td, icd.error, "io_u_queued_complete");
759 return -1;
760}
761
762/*
763 * Call when io_u is really queued, to update the submission latency.
764 */
765void io_u_queued(struct thread_data *td, struct io_u *io_u)
766{
767 unsigned long slat_time;
768
769 slat_time = mtime_since(&io_u->start_time, &io_u->issue_time);
770 add_slat_sample(td, io_u->ddir, slat_time);
771}
772
773#ifdef FIO_USE_TIMEOUT
774void io_u_set_timeout(struct thread_data *td)
775{
776 assert(td->cur_depth);
777
778 td->timer.it_interval.tv_sec = 0;
779 td->timer.it_interval.tv_usec = 0;
780 td->timer.it_value.tv_sec = IO_U_TIMEOUT + IO_U_TIMEOUT_INC;
781 td->timer.it_value.tv_usec = 0;
782 setitimer(ITIMER_REAL, &td->timer, NULL);
783 fio_gettime(&td->timeout_end, NULL);
784}
785
786static void io_u_dump(struct io_u *io_u)
787{
788 unsigned long t_start = mtime_since_now(&io_u->start_time);
789 unsigned long t_issue = mtime_since_now(&io_u->issue_time);
790
791 log_err("io_u=%p, t_start=%lu, t_issue=%lu\n", io_u, t_start, t_issue);
792 log_err(" buf=%p/%p, len=%lu/%lu, offset=%llu\n", io_u->buf, io_u->xfer_buf, io_u->buflen, io_u->xfer_buflen, io_u->offset);
793 log_err(" ddir=%d, fname=%s\n", io_u->ddir, io_u->file->file_name);
794}
795#else
796void io_u_set_timeout(struct thread_data fio_unused *td)
797{
798}
799#endif
800
801#ifdef FIO_USE_TIMEOUT
802static void io_u_timeout_handler(int fio_unused sig)
803{
804 struct thread_data *td, *__td;
805 pid_t pid = getpid();
806 struct list_head *entry;
807 struct io_u *io_u;
808 int i;
809
810 log_err("fio: io_u timeout\n");
811
812 /*
813 * TLS would be nice...
814 */
815 td = NULL;
816 for_each_td(__td, i) {
817 if (__td->pid == pid) {
818 td = __td;
819 break;
820 }
821 }
822
823 if (!td) {
824 log_err("fio: io_u timeout, can't find job\n");
825 exit(1);
826 }
827
828 if (!td->cur_depth) {
829 log_err("fio: timeout without pending work?\n");
830 return;
831 }
832
833 log_err("fio: io_u timeout: job=%s, pid=%d\n", td->o.name, td->pid);
834
835 list_for_each(entry, &td->io_u_busylist) {
836 io_u = list_entry(entry, struct io_u, list);
837
838 io_u_dump(io_u);
839 }
840
841 td_verror(td, ETIMEDOUT, "io_u timeout");
842 exit(1);
843}
844#endif
845
846void io_u_init_timeout(void)
847{
848#ifdef FIO_USE_TIMEOUT
849 signal(SIGALRM, io_u_timeout_handler);
850#endif
851}