Don't do rate checks, if no ratemin has been specified.
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "os.h"
10
11/*
12 * Change this define to play with the timeout handling
13 */
14#undef FIO_USE_TIMEOUT
15
16struct io_completion_data {
17 int nr; /* input */
18
19 int error; /* output */
20 unsigned long bytes_done[2]; /* output */
21 struct timeval time; /* output */
22};
23
24/*
25 * The ->file_map[] contains a map of blocks we have or have not done io
26 * to yet. Used to make sure we cover the entire range in a fair fashion.
27 */
28static int random_map_free(struct thread_data *td, struct fio_file *f,
29 unsigned long long block)
30{
31 unsigned int idx = RAND_MAP_IDX(td, f, block);
32 unsigned int bit = RAND_MAP_BIT(td, f, block);
33
34 return (f->file_map[idx] & (1UL << bit)) == 0;
35}
36
37/*
38 * Mark a given offset as used in the map.
39 */
40static void mark_random_map(struct thread_data *td, struct fio_file *f,
41 struct io_u *io_u)
42{
43 unsigned int min_bs = td->rw_min_bs;
44 unsigned long long block;
45 unsigned int blocks;
46 unsigned int nr_blocks;
47
48 block = io_u->offset / (unsigned long long) min_bs;
49 blocks = 0;
50 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
51
52 while (blocks < nr_blocks) {
53 unsigned int idx, bit;
54
55 if (!random_map_free(td, f, block))
56 break;
57
58 idx = RAND_MAP_IDX(td, f, block);
59 bit = RAND_MAP_BIT(td, f, block);
60
61 fio_assert(td, idx < f->num_maps);
62
63 f->file_map[idx] |= (1UL << bit);
64 block++;
65 blocks++;
66 }
67
68 if ((blocks * min_bs) < io_u->buflen)
69 io_u->buflen = blocks * min_bs;
70}
71
72/*
73 * Return the next free block in the map.
74 */
75static int get_next_free_block(struct thread_data *td, struct fio_file *f,
76 unsigned long long *b)
77{
78 int i;
79
80 i = f->last_free_lookup;
81 *b = (i * BLOCKS_PER_MAP);
82 while ((*b) * td->rw_min_bs < f->real_file_size) {
83 if (f->file_map[i] != -1UL) {
84 *b += ffz(f->file_map[i]);
85 f->last_free_lookup = i;
86 return 0;
87 }
88
89 *b += BLOCKS_PER_MAP;
90 i++;
91 }
92
93 return 1;
94}
95
96/*
97 * For random io, generate a random new block and see if it's used. Repeat
98 * until we find a free one. For sequential io, just return the end of
99 * the last io issued.
100 */
101static int get_next_offset(struct thread_data *td, struct fio_file *f,
102 struct io_u *io_u)
103{
104 const int ddir = io_u->ddir;
105 unsigned long long b, rb;
106 long r;
107
108 if (td_random(td)) {
109 unsigned long long max_blocks = f->file_size / td->min_bs[ddir];
110 int loops = 5;
111
112 do {
113 r = os_random_long(&td->random_state);
114 b = ((max_blocks - 1) * r / (unsigned long long) (RAND_MAX+1.0));
115 if (td->norandommap)
116 break;
117 rb = b + (f->file_offset / td->min_bs[ddir]);
118 loops--;
119 } while (!random_map_free(td, f, rb) && loops);
120
121 /*
122 * if we failed to retrieve a truly random offset within
123 * the loops assigned, see if there are free ones left at all
124 */
125 if (!loops && get_next_free_block(td, f, &b))
126 return 1;
127 } else
128 b = f->last_pos / td->min_bs[ddir];
129
130 io_u->offset = (b * td->min_bs[ddir]) + f->file_offset;
131 if (io_u->offset >= f->real_file_size)
132 return 1;
133
134 return 0;
135}
136
137static unsigned int get_next_buflen(struct thread_data *td, struct fio_file *f,
138 struct io_u *io_u)
139{
140 const int ddir = io_u->ddir;
141 unsigned int buflen;
142 long r;
143
144 if (td->min_bs[ddir] == td->max_bs[ddir])
145 buflen = td->min_bs[ddir];
146 else {
147 r = os_random_long(&td->bsrange_state);
148 buflen = (unsigned int) (1 + (double) (td->max_bs[ddir] - 1) * r / (RAND_MAX + 1.0));
149 if (!td->bs_unaligned)
150 buflen = (buflen + td->min_bs[ddir] - 1) & ~(td->min_bs[ddir] - 1);
151 }
152
153 while (buflen + io_u->offset > f->real_file_size) {
154 if (buflen == td->min_bs[ddir])
155 return 0;
156
157 buflen = td->min_bs[ddir];
158 }
159
160 return buflen;
161}
162
163/*
164 * Return the data direction for the next io_u. If the job is a
165 * mixed read/write workload, check the rwmix cycle and switch if
166 * necessary.
167 */
168static enum fio_ddir get_rw_ddir(struct thread_data *td)
169{
170 if (td_rw(td)) {
171 struct timeval now;
172 unsigned long elapsed;
173
174 fio_gettime(&now, NULL);
175 elapsed = mtime_since_now(&td->rwmix_switch);
176
177 /*
178 * Check if it's time to seed a new data direction.
179 */
180 if (elapsed >= td->rwmixcycle) {
181 unsigned int v;
182 long r;
183
184 r = os_random_long(&td->rwmix_state);
185 v = 1 + (int) (100.0 * (r / (RAND_MAX + 1.0)));
186 if (v < td->rwmixread)
187 td->rwmix_ddir = DDIR_READ;
188 else
189 td->rwmix_ddir = DDIR_WRITE;
190 memcpy(&td->rwmix_switch, &now, sizeof(now));
191 }
192 return td->rwmix_ddir;
193 } else if (td_read(td))
194 return DDIR_READ;
195 else
196 return DDIR_WRITE;
197}
198
199void put_io_u(struct thread_data *td, struct io_u *io_u)
200{
201 assert((io_u->flags & IO_U_F_FREE) == 0);
202 io_u->flags |= IO_U_F_FREE;
203
204 io_u->file = NULL;
205 list_del(&io_u->list);
206 list_add(&io_u->list, &td->io_u_freelist);
207 td->cur_depth--;
208}
209
210void requeue_io_u(struct thread_data *td, struct io_u **io_u)
211{
212 struct io_u *__io_u = *io_u;
213
214 __io_u->flags |= IO_U_F_FREE;
215 __io_u->flags &= ~IO_U_F_FLIGHT;
216
217 list_del(&__io_u->list);
218 list_add_tail(&__io_u->list, &td->io_u_requeues);
219 td->cur_depth--;
220 *io_u = NULL;
221}
222
223static int fill_io_u(struct thread_data *td, struct fio_file *f,
224 struct io_u *io_u)
225{
226 /*
227 * If using an iolog, grab next piece if any available.
228 */
229 if (td->read_iolog)
230 return read_iolog_get(td, io_u);
231
232 /*
233 * see if it's time to sync
234 */
235 if (td->fsync_blocks && !(td->io_issues[DDIR_WRITE] % td->fsync_blocks)
236 && td->io_issues[DDIR_WRITE] && should_fsync(td)) {
237 io_u->ddir = DDIR_SYNC;
238 io_u->file = f;
239 return 0;
240 }
241
242 io_u->ddir = get_rw_ddir(td);
243
244 /*
245 * No log, let the seq/rand engine retrieve the next buflen and
246 * position.
247 */
248 if (get_next_offset(td, f, io_u))
249 return 1;
250
251 io_u->buflen = get_next_buflen(td, f, io_u);
252 if (!io_u->buflen)
253 return 1;
254
255 /*
256 * mark entry before potentially trimming io_u
257 */
258 if (!td->read_iolog && td_random(td) && !td->norandommap)
259 mark_random_map(td, f, io_u);
260
261 /*
262 * If using a write iolog, store this entry.
263 */
264 if (td->write_iolog_file)
265 write_iolog_put(td, io_u);
266
267 io_u->file = f;
268 return 0;
269}
270
271static void io_u_mark_depth(struct thread_data *td)
272{
273 int index = 0;
274
275 switch (td->cur_depth) {
276 default:
277 index++;
278 case 32 ... 63:
279 index++;
280 case 16 ... 31:
281 index++;
282 case 8 ... 15:
283 index++;
284 case 4 ... 7:
285 index++;
286 case 2 ... 3:
287 index++;
288 case 1:
289 break;
290 }
291
292 td->io_u_map[index]++;
293 td->total_io_u++;
294}
295
296static void io_u_mark_latency(struct thread_data *td, unsigned long msec)
297{
298 int index = 0;
299
300 switch (msec) {
301 default:
302 index++;
303 case 1000 ... 1999:
304 index++;
305 case 750 ... 999:
306 index++;
307 case 500 ... 749:
308 index++;
309 case 250 ... 499:
310 index++;
311 case 100 ... 249:
312 index++;
313 case 50 ... 99:
314 index++;
315 case 20 ... 49:
316 index++;
317 case 10 ... 19:
318 index++;
319 case 4 ... 9:
320 index++;
321 case 2 ... 3:
322 index++;
323 case 0 ... 1:
324 break;
325 }
326
327 td->io_u_lat[index]++;
328}
329
330/*
331 * Get next file to service by choosing one at random
332 */
333static struct fio_file *get_next_file_rand(struct thread_data *td)
334{
335 long r = os_random_long(&td->next_file_state);
336 unsigned int fileno;
337 struct fio_file *f;
338
339 do {
340 fileno = (unsigned int) ((double) (td->nr_files - 1) * r / (RAND_MAX + 1.0));
341 f = &td->files[fileno];
342 if (f->fd != -1)
343 return f;
344 } while (1);
345}
346
347/*
348 * Get next file to service by doing round robin between all available ones
349 */
350static struct fio_file *get_next_file_rr(struct thread_data *td)
351{
352 unsigned int old_next_file = td->next_file;
353 struct fio_file *f;
354
355 do {
356 f = &td->files[td->next_file];
357
358 td->next_file++;
359 if (td->next_file >= td->nr_files)
360 td->next_file = 0;
361
362 if (f->fd != -1)
363 break;
364
365 f = NULL;
366 } while (td->next_file != old_next_file);
367
368 return f;
369}
370
371struct io_u *__get_io_u(struct thread_data *td)
372{
373 struct io_u *io_u = NULL;
374
375 if (!list_empty(&td->io_u_requeues))
376 io_u = list_entry(td->io_u_requeues.next, struct io_u, list);
377 else if (!queue_full(td)) {
378 io_u = list_entry(td->io_u_freelist.next, struct io_u, list);
379
380 io_u->buflen = 0;
381 io_u->resid = 0;
382 io_u->file = NULL;
383 io_u->end_io = NULL;
384 }
385
386 if (io_u) {
387 assert(io_u->flags & IO_U_F_FREE);
388 io_u->flags &= ~IO_U_F_FREE;
389
390 io_u->error = 0;
391 list_del(&io_u->list);
392 list_add(&io_u->list, &td->io_u_busylist);
393 td->cur_depth++;
394 io_u_mark_depth(td);
395 }
396
397 return io_u;
398}
399
400/*
401 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
402 * etc. The returned io_u is fully ready to be prepped and submitted.
403 */
404struct io_u *get_io_u(struct thread_data *td)
405{
406 struct fio_file *f;
407 struct io_u *io_u;
408
409 io_u = __get_io_u(td);
410 if (!io_u)
411 return NULL;
412
413 /*
414 * from a requeue, io_u already setup
415 */
416 if (io_u->file)
417 goto out;
418
419 if (td->file_service_type == FIO_FSERVICE_RR)
420 f = get_next_file_rr(td);
421 else
422 f = get_next_file_rand(td);
423
424 if (!f) {
425 put_io_u(td, io_u);
426 return NULL;
427 }
428
429 io_u->file = f;
430
431 if (td->zone_bytes >= td->zone_size) {
432 td->zone_bytes = 0;
433 f->last_pos += td->zone_skip;
434 }
435
436 if (fill_io_u(td, f, io_u)) {
437 put_io_u(td, io_u);
438 return NULL;
439 }
440
441 if (io_u->buflen + io_u->offset > f->real_file_size) {
442 if (td->io_ops->flags & FIO_RAWIO) {
443 put_io_u(td, io_u);
444 return NULL;
445 }
446
447 io_u->buflen = f->real_file_size - io_u->offset;
448 }
449
450 if (io_u->ddir != DDIR_SYNC) {
451 if (!io_u->buflen) {
452 put_io_u(td, io_u);
453 return NULL;
454 }
455
456 f->last_pos = io_u->offset + io_u->buflen;
457
458 if (td->verify != VERIFY_NONE)
459 populate_verify_io_u(td, io_u);
460 }
461
462 /*
463 * Set io data pointers.
464 */
465out:
466 io_u->xfer_buf = io_u->buf;
467 io_u->xfer_buflen = io_u->buflen;
468
469 if (td_io_prep(td, io_u)) {
470 put_io_u(td, io_u);
471 return NULL;
472 }
473
474 fio_gettime(&io_u->start_time, NULL);
475 return io_u;
476}
477
478static void io_completed(struct thread_data *td, struct io_u *io_u,
479 struct io_completion_data *icd)
480{
481 unsigned long msec;
482
483 assert(io_u->flags & IO_U_F_FLIGHT);
484 io_u->flags &= ~IO_U_F_FLIGHT;
485
486 if (io_u->ddir == DDIR_SYNC) {
487 td->last_was_sync = 1;
488 return;
489 }
490
491 td->last_was_sync = 0;
492
493 if (!io_u->error) {
494 unsigned int bytes = io_u->buflen - io_u->resid;
495 const enum fio_ddir idx = io_u->ddir;
496 int ret;
497
498 td->io_blocks[idx]++;
499 td->io_bytes[idx] += bytes;
500 td->zone_bytes += bytes;
501 td->this_io_bytes[idx] += bytes;
502
503 io_u->file->last_completed_pos = io_u->offset + io_u->buflen;
504
505 msec = mtime_since(&io_u->issue_time, &icd->time);
506
507 add_clat_sample(td, idx, msec);
508 add_bw_sample(td, idx, &icd->time);
509 io_u_mark_latency(td, msec);
510
511 if ((td_rw(td) || td_write(td)) && idx == DDIR_WRITE)
512 log_io_piece(td, io_u);
513
514 icd->bytes_done[idx] += bytes;
515
516 if (io_u->end_io) {
517 ret = io_u->end_io(io_u);
518 if (ret && !icd->error)
519 icd->error = ret;
520 }
521 } else
522 icd->error = io_u->error;
523}
524
525static void init_icd(struct io_completion_data *icd, int nr)
526{
527 fio_gettime(&icd->time, NULL);
528
529 icd->nr = nr;
530
531 icd->error = 0;
532 icd->bytes_done[0] = icd->bytes_done[1] = 0;
533}
534
535static void ios_completed(struct thread_data *td,
536 struct io_completion_data *icd)
537{
538 struct io_u *io_u;
539 int i;
540
541 for (i = 0; i < icd->nr; i++) {
542 io_u = td->io_ops->event(td, i);
543
544 io_completed(td, io_u, icd);
545 put_io_u(td, io_u);
546 }
547}
548
549/*
550 * Complete a single io_u for the sync engines.
551 */
552long io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
553{
554 struct io_completion_data icd;
555
556 init_icd(&icd, 1);
557 io_completed(td, io_u, &icd);
558 put_io_u(td, io_u);
559
560 if (!icd.error)
561 return icd.bytes_done[0] + icd.bytes_done[1];
562
563 return -1;
564}
565
566/*
567 * Called to complete min_events number of io for the async engines.
568 */
569long io_u_queued_complete(struct thread_data *td, int min_events)
570{
571 struct io_completion_data icd;
572 struct timespec *tvp = NULL;
573 int ret;
574
575 if (!min_events) {
576 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
577
578 tvp = &ts;
579 }
580
581 ret = td_io_getevents(td, min_events, td->cur_depth, tvp);
582 if (ret < 0) {
583 td_verror(td, -ret, "td_io_getevents");
584 return ret;
585 } else if (!ret)
586 return ret;
587
588 init_icd(&icd, ret);
589 ios_completed(td, &icd);
590 if (!icd.error)
591 return icd.bytes_done[0] + icd.bytes_done[1];
592
593 return -1;
594}
595
596/*
597 * Call when io_u is really queued, to update the submission latency.
598 */
599void io_u_queued(struct thread_data *td, struct io_u *io_u)
600{
601 unsigned long slat_time;
602
603 slat_time = mtime_since(&io_u->start_time, &io_u->issue_time);
604 add_slat_sample(td, io_u->ddir, slat_time);
605}
606
607#ifdef FIO_USE_TIMEOUT
608void io_u_set_timeout(struct thread_data *td)
609{
610 assert(td->cur_depth);
611
612 td->timer.it_interval.tv_sec = 0;
613 td->timer.it_interval.tv_usec = 0;
614 td->timer.it_value.tv_sec = IO_U_TIMEOUT + IO_U_TIMEOUT_INC;
615 td->timer.it_value.tv_usec = 0;
616 setitimer(ITIMER_REAL, &td->timer, NULL);
617 fio_gettime(&td->timeout_end, NULL);
618}
619
620static void io_u_dump(struct io_u *io_u)
621{
622 unsigned long t_start = mtime_since_now(&io_u->start_time);
623 unsigned long t_issue = mtime_since_now(&io_u->issue_time);
624
625 log_err("io_u=%p, t_start=%lu, t_issue=%lu\n", io_u, t_start, t_issue);
626 log_err(" buf=%p/%p, len=%lu/%lu, offset=%llu\n", io_u->buf, io_u->xfer_buf, io_u->buflen, io_u->xfer_buflen, io_u->offset);
627 log_err(" ddir=%d, fname=%s\n", io_u->ddir, io_u->file->file_name);
628}
629#else
630void io_u_set_timeout(struct thread_data fio_unused *td)
631{
632}
633#endif
634
635#ifdef FIO_USE_TIMEOUT
636static void io_u_timeout_handler(int fio_unused sig)
637{
638 struct thread_data *td, *__td;
639 pid_t pid = getpid();
640 struct list_head *entry;
641 struct io_u *io_u;
642 int i;
643
644 log_err("fio: io_u timeout\n");
645
646 /*
647 * TLS would be nice...
648 */
649 td = NULL;
650 for_each_td(__td, i) {
651 if (__td->pid == pid) {
652 td = __td;
653 break;
654 }
655 }
656
657 if (!td) {
658 log_err("fio: io_u timeout, can't find job\n");
659 exit(1);
660 }
661
662 if (!td->cur_depth) {
663 log_err("fio: timeout without pending work?\n");
664 return;
665 }
666
667 log_err("fio: io_u timeout: job=%s, pid=%d\n", td->name, td->pid);
668
669 list_for_each(entry, &td->io_u_busylist) {
670 io_u = list_entry(entry, struct io_u, list);
671
672 io_u_dump(io_u);
673 }
674
675 td_verror(td, ETIMEDOUT, "io_u timeout");
676 exit(1);
677}
678#endif
679
680void io_u_init_timeout(void)
681{
682#ifdef FIO_USE_TIMEOUT
683 signal(SIGALRM, io_u_timeout_handler);
684#endif
685}