Add clue for ENOMEM hugepage allocation
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9
10/*
11 * Change this define to play with the timeout handling
12 */
13#undef FIO_USE_TIMEOUT
14
15struct io_completion_data {
16 int nr; /* input */
17
18 int error; /* output */
19 unsigned long bytes_done[2]; /* output */
20 struct timeval time; /* output */
21};
22
23/*
24 * The ->file_map[] contains a map of blocks we have or have not done io
25 * to yet. Used to make sure we cover the entire range in a fair fashion.
26 */
27static int random_map_free(struct thread_data *td, struct fio_file *f,
28 unsigned long long block)
29{
30 unsigned int idx = RAND_MAP_IDX(td, f, block);
31 unsigned int bit = RAND_MAP_BIT(td, f, block);
32
33 return (f->file_map[idx] & (1UL << bit)) == 0;
34}
35
36/*
37 * Mark a given offset as used in the map.
38 */
39static void mark_random_map(struct thread_data *td, struct io_u *io_u)
40{
41 unsigned int min_bs = td->o.rw_min_bs;
42 struct fio_file *f = io_u->file;
43 unsigned long long block;
44 unsigned int blocks;
45 unsigned int nr_blocks;
46
47 block = io_u->offset / (unsigned long long) min_bs;
48 blocks = 0;
49 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
50
51 while (blocks < nr_blocks) {
52 unsigned int idx, bit;
53
54 /*
55 * If we have a mixed random workload, we may
56 * encounter blocks we already did IO to.
57 */
58 if (!td->o.ddir_nr && !random_map_free(td, f, block))
59 break;
60
61 idx = RAND_MAP_IDX(td, f, block);
62 bit = RAND_MAP_BIT(td, f, block);
63
64 fio_assert(td, idx < f->num_maps);
65
66 f->file_map[idx] |= (1UL << bit);
67 block++;
68 blocks++;
69 }
70
71 if ((blocks * min_bs) < io_u->buflen)
72 io_u->buflen = blocks * min_bs;
73}
74
75/*
76 * Return the next free block in the map.
77 */
78static int get_next_free_block(struct thread_data *td, struct fio_file *f,
79 unsigned long long *b)
80{
81 int i;
82
83 i = f->last_free_lookup;
84 *b = (i * BLOCKS_PER_MAP);
85 while ((*b) * td->o.rw_min_bs < f->real_file_size) {
86 if (f->file_map[i] != -1UL) {
87 *b += fio_ffz(f->file_map[i]);
88 f->last_free_lookup = i;
89 return 0;
90 }
91
92 *b += BLOCKS_PER_MAP;
93 i++;
94 }
95
96 return 1;
97}
98
99static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
100 int ddir, unsigned long long *b)
101{
102 unsigned long long max_blocks = f->io_size / td->o.min_bs[ddir];
103 unsigned long long r, rb;
104 int loops = 5;
105
106 do {
107 r = os_random_long(&td->random_state);
108 if (!max_blocks)
109 *b = 0;
110 else
111 *b = ((max_blocks - 1) * r / (unsigned long long) (RAND_MAX+1.0));
112 /*
113 * if we are not maintaining a random map, we are done.
114 */
115 if (td->o.norandommap)
116 return 0;
117
118 /*
119 * calculate map offset and chec if it's free
120 */
121 rb = *b + (f->file_offset / td->o.min_bs[ddir]);
122 if (random_map_free(td, f, rb))
123 return 0;
124
125 } while (--loops);
126
127 /*
128 * we get here, if we didn't suceed in looking up a block. generate
129 * a random start offset into the filemap, and find the first free
130 * block from there.
131 */
132 loops = 10;
133 do {
134 f->last_free_lookup = (f->num_maps - 1) * (r / (RAND_MAX+1.0));
135 if (!get_next_free_block(td, f, b))
136 return 0;
137
138 r = os_random_long(&td->random_state);
139 } while (--loops);
140
141 /*
142 * that didn't work either, try exhaustive search from the start
143 */
144 f->last_free_lookup = 0;
145 return get_next_free_block(td, f, b);
146}
147
148/*
149 * For random io, generate a random new block and see if it's used. Repeat
150 * until we find a free one. For sequential io, just return the end of
151 * the last io issued.
152 */
153static int get_next_offset(struct thread_data *td, struct io_u *io_u)
154{
155 struct fio_file *f = io_u->file;
156 const int ddir = io_u->ddir;
157 unsigned long long b;
158
159 if (td_random(td) && (td->o.ddir_nr && !--td->ddir_nr)) {
160 td->ddir_nr = td->o.ddir_nr;
161
162 if (get_next_rand_offset(td, f, ddir, &b))
163 return 1;
164 } else {
165 if (f->last_pos >= f->real_file_size)
166 return 1;
167
168 b = f->last_pos / td->o.min_bs[ddir];
169 }
170
171 io_u->offset = (b * td->o.min_bs[ddir]) + f->file_offset;
172 if (io_u->offset >= f->real_file_size)
173 return 1;
174
175 return 0;
176}
177
178static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u)
179{
180 const int ddir = io_u->ddir;
181 unsigned int buflen;
182 long r;
183
184 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
185 buflen = td->o.min_bs[ddir];
186 else {
187 r = os_random_long(&td->bsrange_state);
188 buflen = (unsigned int) (1 + (double) (td->o.max_bs[ddir] - 1) * r / (RAND_MAX + 1.0));
189 if (!td->o.bs_unaligned)
190 buflen = (buflen + td->o.min_bs[ddir] - 1) & ~(td->o.min_bs[ddir] - 1);
191 }
192
193 return buflen;
194}
195
196static void set_rwmix_bytes(struct thread_data *td)
197{
198 unsigned long long rbytes;
199 unsigned int diff;
200
201 /*
202 * we do time or byte based switch. this is needed because
203 * buffered writes may issue a lot quicker than they complete,
204 * whereas reads do not.
205 */
206 rbytes = td->io_bytes[td->rwmix_ddir] - td->rwmix_bytes;
207 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
208
209 td->rwmix_bytes = td->io_bytes[td->rwmix_ddir] + (rbytes * ((100 - diff)) / diff);
210}
211
212static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
213{
214 unsigned int v;
215 long r;
216
217 r = os_random_long(&td->rwmix_state);
218 v = 1 + (int) (100.0 * (r / (RAND_MAX + 1.0)));
219 if (v < td->o.rwmix[DDIR_READ])
220 return DDIR_READ;
221
222 return DDIR_WRITE;
223}
224
225/*
226 * Return the data direction for the next io_u. If the job is a
227 * mixed read/write workload, check the rwmix cycle and switch if
228 * necessary.
229 */
230static enum fio_ddir get_rw_ddir(struct thread_data *td)
231{
232 if (td_rw(td)) {
233 struct timeval now;
234 unsigned long elapsed;
235 unsigned int cycle;
236
237 fio_gettime(&now, NULL);
238 elapsed = mtime_since_now(&td->rwmix_switch);
239
240 /*
241 * if this is the first cycle, make it shorter
242 */
243 cycle = td->o.rwmixcycle;
244 if (!td->rwmix_bytes)
245 cycle /= 10;
246
247 /*
248 * Check if it's time to seed a new data direction.
249 */
250 if (elapsed >= cycle ||
251 td->io_bytes[td->rwmix_ddir] >= td->rwmix_bytes) {
252 unsigned long long max_bytes;
253 enum fio_ddir ddir;
254
255 /*
256 * Put a top limit on how many bytes we do for
257 * one data direction, to avoid overflowing the
258 * ranges too much
259 */
260 ddir = get_rand_ddir(td);
261 max_bytes = td->this_io_bytes[ddir];
262 if (max_bytes >= (td->o.size * td->o.rwmix[ddir] / 100)) {
263 if (!td->rw_end_set[ddir]) {
264 td->rw_end_set[ddir] = 1;
265 memcpy(&td->rw_end[ddir], &now, sizeof(now));
266 }
267 ddir ^= 1;
268 }
269
270 if (ddir != td->rwmix_ddir)
271 set_rwmix_bytes(td);
272
273 td->rwmix_ddir = ddir;
274 memcpy(&td->rwmix_switch, &now, sizeof(now));
275 }
276 return td->rwmix_ddir;
277 } else if (td_read(td))
278 return DDIR_READ;
279 else
280 return DDIR_WRITE;
281}
282
283void put_io_u(struct thread_data *td, struct io_u *io_u)
284{
285 assert((io_u->flags & IO_U_F_FREE) == 0);
286 io_u->flags |= IO_U_F_FREE;
287
288 if (io_u->file)
289 put_file(td, io_u->file);
290
291 io_u->file = NULL;
292 list_del(&io_u->list);
293 list_add(&io_u->list, &td->io_u_freelist);
294 td->cur_depth--;
295}
296
297void requeue_io_u(struct thread_data *td, struct io_u **io_u)
298{
299 struct io_u *__io_u = *io_u;
300
301 __io_u->flags |= IO_U_F_FREE;
302 __io_u->flags &= ~IO_U_F_FLIGHT;
303
304 list_del(&__io_u->list);
305 list_add_tail(&__io_u->list, &td->io_u_requeues);
306 td->cur_depth--;
307 *io_u = NULL;
308}
309
310static int fill_io_u(struct thread_data *td, struct io_u *io_u)
311{
312 /*
313 * If using an iolog, grab next piece if any available.
314 */
315 if (td->o.read_iolog_file)
316 return read_iolog_get(td, io_u);
317
318 /*
319 * see if it's time to sync
320 */
321 if (td->o.fsync_blocks &&
322 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
323 td->io_issues[DDIR_WRITE] && should_fsync(td)) {
324 io_u->ddir = DDIR_SYNC;
325 goto out;
326 }
327
328 io_u->ddir = get_rw_ddir(td);
329
330 /*
331 * No log, let the seq/rand engine retrieve the next buflen and
332 * position.
333 */
334 if (get_next_offset(td, io_u))
335 return 1;
336
337 io_u->buflen = get_next_buflen(td, io_u);
338 if (!io_u->buflen)
339 return 1;
340
341 /*
342 * mark entry before potentially trimming io_u
343 */
344 if (td_random(td) && !td->o.norandommap)
345 mark_random_map(td, io_u);
346
347 /*
348 * If using a write iolog, store this entry.
349 */
350out:
351 if (td->o.write_iolog_file)
352 write_iolog_put(td, io_u);
353
354 return 0;
355}
356
357void io_u_mark_depth(struct thread_data *td, struct io_u *io_u)
358{
359 int index = 0;
360
361 if (io_u->ddir == DDIR_SYNC)
362 return;
363
364 switch (td->cur_depth) {
365 default:
366 index = 6;
367 break;
368 case 32 ... 63:
369 index = 5;
370 break;
371 case 16 ... 31:
372 index = 4;
373 break;
374 case 8 ... 15:
375 index = 3;
376 break;
377 case 4 ... 7:
378 index = 2;
379 break;
380 case 2 ... 3:
381 index = 1;
382 case 1:
383 break;
384 }
385
386 td->ts.io_u_map[index]++;
387 td->ts.total_io_u[io_u->ddir]++;
388}
389
390static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
391{
392 int index = 0;
393
394 assert(usec < 1000);
395
396 switch (usec) {
397 case 750 ... 999:
398 index = 9;
399 break;
400 case 500 ... 749:
401 index = 8;
402 break;
403 case 250 ... 499:
404 index = 7;
405 break;
406 case 100 ... 249:
407 index = 6;
408 break;
409 case 50 ... 99:
410 index = 5;
411 break;
412 case 20 ... 49:
413 index = 4;
414 break;
415 case 10 ... 19:
416 index = 3;
417 break;
418 case 4 ... 9:
419 index = 2;
420 break;
421 case 2 ... 3:
422 index = 1;
423 case 0 ... 1:
424 break;
425 }
426
427 assert(index < FIO_IO_U_LAT_U_NR);
428 td->ts.io_u_lat_u[index]++;
429}
430
431static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
432{
433 int index = 0;
434
435 switch (msec) {
436 default:
437 index = 11;
438 break;
439 case 1000 ... 1999:
440 index = 10;
441 break;
442 case 750 ... 999:
443 index = 9;
444 break;
445 case 500 ... 749:
446 index = 8;
447 break;
448 case 250 ... 499:
449 index = 7;
450 break;
451 case 100 ... 249:
452 index = 6;
453 break;
454 case 50 ... 99:
455 index = 5;
456 break;
457 case 20 ... 49:
458 index = 4;
459 break;
460 case 10 ... 19:
461 index = 3;
462 break;
463 case 4 ... 9:
464 index = 2;
465 break;
466 case 2 ... 3:
467 index = 1;
468 case 0 ... 1:
469 break;
470 }
471
472 assert(index < FIO_IO_U_LAT_M_NR);
473 td->ts.io_u_lat_m[index]++;
474}
475
476static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
477{
478 if (usec < 1000)
479 io_u_mark_lat_usec(td, usec);
480 else
481 io_u_mark_lat_msec(td, usec / 1000);
482}
483
484/*
485 * Get next file to service by choosing one at random
486 */
487static struct fio_file *get_next_file_rand(struct thread_data *td, int goodf,
488 int badf)
489{
490 struct fio_file *f;
491 int fno;
492
493 do {
494 long r = os_random_long(&td->next_file_state);
495
496 fno = (unsigned int) ((double) td->o.nr_files * (r / (RAND_MAX + 1.0)));
497 f = &td->files[fno];
498 if (f->flags & FIO_FILE_DONE)
499 continue;
500
501 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
502 return f;
503 } while (1);
504}
505
506/*
507 * Get next file to service by doing round robin between all available ones
508 */
509static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
510 int badf)
511{
512 unsigned int old_next_file = td->next_file;
513 struct fio_file *f;
514
515 do {
516 f = &td->files[td->next_file];
517
518 td->next_file++;
519 if (td->next_file >= td->o.nr_files)
520 td->next_file = 0;
521
522 if (f->flags & FIO_FILE_DONE) {
523 f = NULL;
524 continue;
525 }
526
527 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
528 break;
529
530 f = NULL;
531 } while (td->next_file != old_next_file);
532
533 return f;
534}
535
536static struct fio_file *get_next_file(struct thread_data *td)
537{
538 struct fio_file *f;
539
540 assert(td->o.nr_files <= td->files_index);
541
542 if (!td->nr_open_files || td->nr_done_files >= td->o.nr_files)
543 return NULL;
544
545 f = td->file_service_file;
546 if (f && (f->flags & FIO_FILE_OPEN) && td->file_service_left--)
547 return f;
548
549 if (td->o.file_service_type == FIO_FSERVICE_RR)
550 f = get_next_file_rr(td, FIO_FILE_OPEN, FIO_FILE_CLOSING);
551 else
552 f = get_next_file_rand(td, FIO_FILE_OPEN, FIO_FILE_CLOSING);
553
554 td->file_service_file = f;
555 td->file_service_left = td->file_service_nr - 1;
556 return f;
557}
558
559static struct fio_file *find_next_new_file(struct thread_data *td)
560{
561 struct fio_file *f;
562
563 if (!td->nr_open_files || td->nr_done_files >= td->o.nr_files)
564 return NULL;
565
566 if (td->o.file_service_type == FIO_FSERVICE_RR)
567 f = get_next_file_rr(td, 0, FIO_FILE_OPEN);
568 else
569 f = get_next_file_rand(td, 0, FIO_FILE_OPEN);
570
571 return f;
572}
573
574struct io_u *__get_io_u(struct thread_data *td)
575{
576 struct io_u *io_u = NULL;
577
578 if (!list_empty(&td->io_u_requeues))
579 io_u = list_entry(td->io_u_requeues.next, struct io_u, list);
580 else if (!queue_full(td)) {
581 io_u = list_entry(td->io_u_freelist.next, struct io_u, list);
582
583 io_u->buflen = 0;
584 io_u->resid = 0;
585 io_u->file = NULL;
586 io_u->end_io = NULL;
587 }
588
589 if (io_u) {
590 assert(io_u->flags & IO_U_F_FREE);
591 io_u->flags &= ~IO_U_F_FREE;
592
593 io_u->error = 0;
594 list_del(&io_u->list);
595 list_add(&io_u->list, &td->io_u_busylist);
596 td->cur_depth++;
597 }
598
599 return io_u;
600}
601
602/*
603 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
604 * etc. The returned io_u is fully ready to be prepped and submitted.
605 */
606struct io_u *get_io_u(struct thread_data *td)
607{
608 struct fio_file *f;
609 struct io_u *io_u;
610 int ret;
611
612 io_u = __get_io_u(td);
613 if (!io_u)
614 return NULL;
615
616 /*
617 * from a requeue, io_u already setup
618 */
619 if (io_u->file)
620 goto out;
621
622 do {
623 f = get_next_file(td);
624 if (!f) {
625 put_io_u(td, io_u);
626 return NULL;
627 }
628
629set_file:
630 io_u->file = f;
631 get_file(f);
632
633 if (!fill_io_u(td, io_u))
634 break;
635
636 /*
637 * td_io_close() does a put_file() as well, so no need to
638 * do that here.
639 */
640 io_u->file = NULL;
641 td_io_close_file(td, f);
642 f->flags |= FIO_FILE_DONE;
643 td->nr_done_files++;
644
645 /*
646 * probably not the right place to do this, but see
647 * if we need to open a new file
648 */
649 if (td->nr_open_files < td->o.open_files &&
650 td->o.open_files != td->o.nr_files) {
651 f = find_next_new_file(td);
652
653 if (!f || (ret = td_io_open_file(td, f))) {
654 put_io_u(td, io_u);
655 return NULL;
656 }
657 goto set_file;
658 }
659 } while (1);
660
661 assert(io_u->file->flags & FIO_FILE_OPEN);
662
663 if (td->zone_bytes >= td->o.zone_size) {
664 td->zone_bytes = 0;
665 f->last_pos += td->o.zone_skip;
666 }
667
668 if (io_u->ddir != DDIR_SYNC) {
669 if (!io_u->buflen) {
670 put_io_u(td, io_u);
671 return NULL;
672 }
673
674 f->last_pos = io_u->offset + io_u->buflen;
675
676 if (td->o.verify != VERIFY_NONE)
677 populate_verify_io_u(td, io_u);
678 }
679
680 /*
681 * Set io data pointers.
682 */
683 io_u->endpos = io_u->offset + io_u->buflen;
684out:
685 io_u->xfer_buf = io_u->buf;
686 io_u->xfer_buflen = io_u->buflen;
687
688 if (td_io_prep(td, io_u)) {
689 put_io_u(td, io_u);
690 return NULL;
691 }
692
693 fio_gettime(&io_u->start_time, NULL);
694 return io_u;
695}
696
697void io_u_log_error(struct thread_data *td, struct io_u *io_u)
698{
699 const char *msg[] = { "read", "write", "sync" };
700
701 log_err("fio: io_u error");
702
703 if (io_u->file)
704 log_err(" on file %s", io_u->file->file_name);
705
706 log_err(": %s\n", strerror(io_u->error));
707
708 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir], io_u->offset, io_u->xfer_buflen);
709
710 if (!td->error)
711 td_verror(td, io_u->error, "io_u error");
712}
713
714static void io_completed(struct thread_data *td, struct io_u *io_u,
715 struct io_completion_data *icd)
716{
717 unsigned long usec;
718
719 assert(io_u->flags & IO_U_F_FLIGHT);
720 io_u->flags &= ~IO_U_F_FLIGHT;
721
722 if (io_u->ddir == DDIR_SYNC) {
723 td->last_was_sync = 1;
724 return;
725 }
726
727 td->last_was_sync = 0;
728
729 if (!io_u->error) {
730 unsigned int bytes = io_u->buflen - io_u->resid;
731 const enum fio_ddir idx = io_u->ddir;
732 int ret;
733
734 td->io_blocks[idx]++;
735 td->io_bytes[idx] += bytes;
736 td->zone_bytes += bytes;
737 td->this_io_bytes[idx] += bytes;
738
739 io_u->file->last_completed_pos = io_u->endpos;
740
741 usec = utime_since(&io_u->issue_time, &icd->time);
742
743 add_clat_sample(td, idx, usec);
744 add_bw_sample(td, idx, &icd->time);
745 io_u_mark_latency(td, usec);
746
747 if (td_write(td) && idx == DDIR_WRITE &&
748 td->o.verify != VERIFY_NONE)
749 log_io_piece(td, io_u);
750
751 icd->bytes_done[idx] += bytes;
752
753 if (io_u->end_io) {
754 ret = io_u->end_io(td, io_u);
755 if (ret && !icd->error)
756 icd->error = ret;
757 }
758 } else {
759 icd->error = io_u->error;
760 io_u_log_error(td, io_u);
761 }
762}
763
764static void init_icd(struct io_completion_data *icd, int nr)
765{
766 fio_gettime(&icd->time, NULL);
767
768 icd->nr = nr;
769
770 icd->error = 0;
771 icd->bytes_done[0] = icd->bytes_done[1] = 0;
772}
773
774static void ios_completed(struct thread_data *td,
775 struct io_completion_data *icd)
776{
777 struct io_u *io_u;
778 int i;
779
780 for (i = 0; i < icd->nr; i++) {
781 io_u = td->io_ops->event(td, i);
782
783 io_completed(td, io_u, icd);
784 put_io_u(td, io_u);
785 }
786}
787
788/*
789 * Complete a single io_u for the sync engines.
790 */
791long io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
792{
793 struct io_completion_data icd;
794
795 init_icd(&icd, 1);
796 io_completed(td, io_u, &icd);
797 put_io_u(td, io_u);
798
799 if (!icd.error)
800 return icd.bytes_done[0] + icd.bytes_done[1];
801
802 td_verror(td, icd.error, "io_u_sync_complete");
803 return -1;
804}
805
806/*
807 * Called to complete min_events number of io for the async engines.
808 */
809long io_u_queued_complete(struct thread_data *td, int min_events)
810{
811 struct io_completion_data icd;
812 struct timespec *tvp = NULL;
813 int ret;
814 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
815
816 if (!min_events)
817 tvp = &ts;
818
819 ret = td_io_getevents(td, min_events, td->cur_depth, tvp);
820 if (ret < 0) {
821 td_verror(td, -ret, "td_io_getevents");
822 return ret;
823 } else if (!ret)
824 return ret;
825
826 init_icd(&icd, ret);
827 ios_completed(td, &icd);
828 if (!icd.error)
829 return icd.bytes_done[0] + icd.bytes_done[1];
830
831 td_verror(td, icd.error, "io_u_queued_complete");
832 return -1;
833}
834
835/*
836 * Call when io_u is really queued, to update the submission latency.
837 */
838void io_u_queued(struct thread_data *td, struct io_u *io_u)
839{
840 unsigned long slat_time;
841
842 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
843 add_slat_sample(td, io_u->ddir, slat_time);
844}
845
846#ifdef FIO_USE_TIMEOUT
847void io_u_set_timeout(struct thread_data *td)
848{
849 assert(td->cur_depth);
850
851 td->timer.it_interval.tv_sec = 0;
852 td->timer.it_interval.tv_usec = 0;
853 td->timer.it_value.tv_sec = IO_U_TIMEOUT + IO_U_TIMEOUT_INC;
854 td->timer.it_value.tv_usec = 0;
855 setitimer(ITIMER_REAL, &td->timer, NULL);
856 fio_gettime(&td->timeout_end, NULL);
857}
858
859static void io_u_dump(struct io_u *io_u)
860{
861 unsigned long t_start = mtime_since_now(&io_u->start_time);
862 unsigned long t_issue = mtime_since_now(&io_u->issue_time);
863
864 log_err("io_u=%p, t_start=%lu, t_issue=%lu\n", io_u, t_start, t_issue);
865 log_err(" buf=%p/%p, len=%lu/%lu, offset=%llu\n", io_u->buf, io_u->xfer_buf, io_u->buflen, io_u->xfer_buflen, io_u->offset);
866 log_err(" ddir=%d, fname=%s\n", io_u->ddir, io_u->file->file_name);
867}
868#else
869void io_u_set_timeout(struct thread_data fio_unused *td)
870{
871}
872#endif
873
874#ifdef FIO_USE_TIMEOUT
875static void io_u_timeout_handler(int fio_unused sig)
876{
877 struct thread_data *td, *__td;
878 pid_t pid = getpid();
879 struct list_head *entry;
880 struct io_u *io_u;
881 int i;
882
883 log_err("fio: io_u timeout\n");
884
885 /*
886 * TLS would be nice...
887 */
888 td = NULL;
889 for_each_td(__td, i) {
890 if (__td->pid == pid) {
891 td = __td;
892 break;
893 }
894 }
895
896 if (!td) {
897 log_err("fio: io_u timeout, can't find job\n");
898 exit(1);
899 }
900
901 if (!td->cur_depth) {
902 log_err("fio: timeout without pending work?\n");
903 return;
904 }
905
906 log_err("fio: io_u timeout: job=%s, pid=%d\n", td->o.name, td->pid);
907
908 list_for_each(entry, &td->io_u_busylist) {
909 io_u = list_entry(entry, struct io_u, list);
910
911 io_u_dump(io_u);
912 }
913
914 td_verror(td, ETIMEDOUT, "io_u timeout");
915 exit(1);
916}
917#endif
918
919void io_u_init_timeout(void)
920{
921#ifdef FIO_USE_TIMEOUT
922 signal(SIGALRM, io_u_timeout_handler);
923#endif
924}