posixaio engine: residual data count
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "os.h"
39
40static unsigned long page_mask;
41#define ALIGN(buf) \
42 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
43
44int groupid = 0;
45int thread_number = 0;
46int shm_id = 0;
47int temp_stall_ts;
48
49static volatile int startup_sem;
50static volatile int fio_abort;
51static int exit_value;
52
53struct io_log *agg_io_log[2];
54
55#define TERMINATE_ALL (-1)
56#define JOB_START_TIMEOUT (5 * 1000)
57
58static inline void td_set_runstate(struct thread_data *td, int runstate)
59{
60 td->runstate = runstate;
61}
62
63static void terminate_threads(int group_id, int forced_kill)
64{
65 struct thread_data *td;
66 int i;
67
68 for_each_td(td, i) {
69 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
70 td->terminate = 1;
71 td->start_delay = 0;
72 if (forced_kill)
73 td_set_runstate(td, TD_EXITED);
74 }
75 }
76}
77
78static void sig_handler(int sig)
79{
80 switch (sig) {
81 case SIGALRM:
82 update_io_ticks();
83 disk_util_timer_arm();
84 print_thread_status();
85 break;
86 default:
87 printf("\nfio: terminating on signal %d\n", sig);
88 fflush(stdout);
89 terminate_threads(TERMINATE_ALL, 0);
90 break;
91 }
92}
93
94/*
95 * Check if we are above the minimum rate given.
96 */
97static int check_min_rate(struct thread_data *td, struct timeval *now)
98{
99 unsigned long long bytes = 0;
100 unsigned long spent;
101 unsigned long rate;
102
103 /*
104 * No minimum rate set, always ok
105 */
106 if (!td->ratemin)
107 return 0;
108
109 /*
110 * allow a 2 second settle period in the beginning
111 */
112 if (mtime_since(&td->start, now) < 2000)
113 return 0;
114
115 if (td_read(td))
116 bytes += td->this_io_bytes[DDIR_READ];
117 if (td_write(td))
118 bytes += td->this_io_bytes[DDIR_WRITE];
119
120 /*
121 * if rate blocks is set, sample is running
122 */
123 if (td->rate_bytes) {
124 spent = mtime_since(&td->lastrate, now);
125 if (spent < td->ratecycle)
126 return 0;
127
128 if (bytes < td->rate_bytes) {
129 fprintf(f_out, "%s: min rate %u not met\n", td->name, td->ratemin);
130 return 1;
131 } else {
132 rate = (bytes - td->rate_bytes) / spent;
133 if (rate < td->ratemin || bytes < td->rate_bytes) {
134 fprintf(f_out, "%s: min rate %u not met, got %luKiB/sec\n", td->name, td->ratemin, rate);
135 return 1;
136 }
137 }
138 }
139
140 td->rate_bytes = bytes;
141 memcpy(&td->lastrate, now, sizeof(*now));
142 return 0;
143}
144
145static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
146{
147 if (!td->timeout)
148 return 0;
149 if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
150 return 1;
151
152 return 0;
153}
154
155/*
156 * When job exits, we can cancel the in-flight IO if we are using async
157 * io. Attempt to do so.
158 */
159static void cleanup_pending_aio(struct thread_data *td)
160{
161 struct list_head *entry, *n;
162 struct io_u *io_u;
163 int r;
164
165 /*
166 * get immediately available events, if any
167 */
168 r = io_u_queued_complete(td, 0);
169 if (r < 0)
170 return;
171
172 /*
173 * now cancel remaining active events
174 */
175 if (td->io_ops->cancel) {
176 list_for_each_safe(entry, n, &td->io_u_busylist) {
177 io_u = list_entry(entry, struct io_u, list);
178
179 /*
180 * if the io_u isn't in flight, then that generally
181 * means someone leaked an io_u. complain but fix
182 * it up, so we don't stall here.
183 */
184 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
185 log_err("fio: non-busy IO on busy list\n");
186 put_io_u(td, io_u);
187 } else {
188 r = td->io_ops->cancel(td, io_u);
189 if (!r)
190 put_io_u(td, io_u);
191 }
192 }
193 }
194
195 if (td->cur_depth)
196 r = io_u_queued_complete(td, td->cur_depth);
197}
198
199/*
200 * Helper to handle the final sync of a file. Works just like the normal
201 * io path, just does everything sync.
202 */
203static int fio_io_sync(struct thread_data *td, struct fio_file *f)
204{
205 struct io_u *io_u = __get_io_u(td);
206 int ret;
207
208 if (!io_u)
209 return 1;
210
211 io_u->ddir = DDIR_SYNC;
212 io_u->file = f;
213
214 if (td_io_prep(td, io_u)) {
215 put_io_u(td, io_u);
216 return 1;
217 }
218
219requeue:
220 ret = td_io_queue(td, io_u);
221 if (ret < 0) {
222 td_verror(td, io_u->error, "td_io_queue");
223 put_io_u(td, io_u);
224 return 1;
225 } else if (ret == FIO_Q_QUEUED) {
226 if (io_u_queued_complete(td, 1) < 0)
227 return 1;
228 } else if (ret == FIO_Q_COMPLETED) {
229 if (io_u->error) {
230 td_verror(td, io_u->error, "td_io_queue");
231 return 1;
232 }
233
234 if (io_u_sync_complete(td, io_u) < 0)
235 return 1;
236 } else if (ret == FIO_Q_BUSY) {
237 if (td_io_commit(td))
238 return 1;
239 goto requeue;
240 }
241
242 return 0;
243}
244
245/*
246 * The main verify engine. Runs over the writes we previusly submitted,
247 * reads the blocks back in, and checks the crc/md5 of the data.
248 */
249static void do_verify(struct thread_data *td)
250{
251 struct fio_file *f;
252 struct io_u *io_u;
253 int ret, i, min_events;
254
255 /*
256 * sync io first and invalidate cache, to make sure we really
257 * read from disk.
258 */
259 for_each_file(td, f, i) {
260 if (fio_io_sync(td, f))
261 break;
262 if (file_invalidate_cache(td, f))
263 break;
264 }
265
266 if (td->error)
267 return;
268
269 td_set_runstate(td, TD_VERIFYING);
270
271 io_u = NULL;
272 while (!td->terminate) {
273 io_u = __get_io_u(td);
274 if (!io_u)
275 break;
276
277 if (runtime_exceeded(td, &io_u->start_time)) {
278 put_io_u(td, io_u);
279 break;
280 }
281
282 if (get_next_verify(td, io_u)) {
283 put_io_u(td, io_u);
284 break;
285 }
286
287 if (td_io_prep(td, io_u)) {
288 put_io_u(td, io_u);
289 break;
290 }
291
292 io_u->end_io = verify_io_u;
293requeue:
294 ret = td_io_queue(td, io_u);
295
296 switch (ret) {
297 case FIO_Q_COMPLETED:
298 if (io_u->error)
299 ret = -io_u->error;
300 if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
301 int bytes = io_u->xfer_buflen - io_u->resid;
302
303 io_u->xfer_buflen = io_u->resid;
304 io_u->xfer_buf += bytes;
305 goto requeue;
306 }
307 ret = io_u_sync_complete(td, io_u);
308 if (ret < 0)
309 break;
310 continue;
311 case FIO_Q_QUEUED:
312 break;
313 case FIO_Q_BUSY:
314 requeue_io_u(td, &io_u);
315 ret = td_io_commit(td);
316 break;
317 default:
318 assert(ret < 0);
319 td_verror(td, -ret, "td_io_queue");
320 break;
321 }
322
323 if (ret < 0 || td->error)
324 break;
325
326 /*
327 * if we can queue more, do so. but check if there are
328 * completed io_u's first.
329 */
330 min_events = 0;
331 if (queue_full(td) || ret == FIO_Q_BUSY) {
332 min_events = 1;
333
334 if (td->cur_depth > td->iodepth_low)
335 min_events = td->cur_depth - td->iodepth_low;
336 }
337
338 /*
339 * Reap required number of io units, if any, and do the
340 * verification on them through the callback handler
341 */
342 if (io_u_queued_complete(td, min_events) < 0)
343 break;
344 }
345
346 if (!td->error) {
347 min_events = td->cur_depth;
348
349 if (min_events)
350 ret = io_u_queued_complete(td, min_events);
351 } else
352 cleanup_pending_aio(td);
353
354 td_set_runstate(td, TD_RUNNING);
355}
356
357/*
358 * Not really an io thread, all it does is burn CPU cycles in the specified
359 * manner.
360 */
361static void do_cpuio(struct thread_data *td)
362{
363 struct timeval e;
364 int split = 100 / td->cpuload;
365 int i = 0;
366
367 while (!td->terminate) {
368 fio_gettime(&e, NULL);
369
370 if (runtime_exceeded(td, &e))
371 break;
372
373 if (!(i % split))
374 __usec_sleep(10000);
375 else
376 usec_sleep(td, 10000);
377
378 i++;
379 }
380}
381
382/*
383 * Main IO worker function. It retrieves io_u's to process and queues
384 * and reaps them, checking for rate and errors along the way.
385 */
386static void do_io(struct thread_data *td)
387{
388 struct timeval s;
389 unsigned long usec;
390 int i, ret = 0;
391
392 td_set_runstate(td, TD_RUNNING);
393
394 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->io_size) {
395 struct timeval comp_time;
396 long bytes_done = 0;
397 int min_evts = 0;
398 struct io_u *io_u;
399
400 if (td->terminate)
401 break;
402
403 io_u = get_io_u(td);
404 if (!io_u)
405 break;
406
407 memcpy(&s, &io_u->start_time, sizeof(s));
408
409 if (runtime_exceeded(td, &s)) {
410 put_io_u(td, io_u);
411 break;
412 }
413requeue:
414 ret = td_io_queue(td, io_u);
415
416 switch (ret) {
417 case FIO_Q_COMPLETED:
418 if (io_u->error) {
419 ret = io_u->error;
420 break;
421 }
422 if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
423 int bytes = io_u->xfer_buflen - io_u->resid;
424
425 io_u->xfer_buflen = io_u->resid;
426 io_u->xfer_buf += bytes;
427 goto requeue;
428 }
429 fio_gettime(&comp_time, NULL);
430 bytes_done = io_u_sync_complete(td, io_u);
431 if (bytes_done < 0)
432 ret = bytes_done;
433 break;
434 case FIO_Q_QUEUED:
435 /*
436 * if the engine doesn't have a commit hook,
437 * the io_u is really queued. if it does have such
438 * a hook, it has to call io_u_queued() itself.
439 */
440 if (td->io_ops->commit == NULL)
441 io_u_queued(td, io_u);
442 break;
443 case FIO_Q_BUSY:
444 requeue_io_u(td, &io_u);
445 ret = td_io_commit(td);
446 break;
447 default:
448 assert(ret < 0);
449 put_io_u(td, io_u);
450 break;
451 }
452
453 if (ret < 0 || td->error)
454 break;
455
456 /*
457 * See if we need to complete some commands
458 */
459 if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) {
460 min_evts = 0;
461 if (queue_full(td) || ret == FIO_Q_BUSY) {
462 min_evts = 1;
463
464 if (td->cur_depth > td->iodepth_low)
465 min_evts = td->cur_depth - td->iodepth_low;
466 }
467
468 fio_gettime(&comp_time, NULL);
469 bytes_done = io_u_queued_complete(td, min_evts);
470 if (bytes_done < 0)
471 break;
472 }
473
474 if (!bytes_done)
475 continue;
476
477 /*
478 * the rate is batched for now, it should work for batches
479 * of completions except the very first one which may look
480 * a little bursty
481 */
482 usec = utime_since(&s, &comp_time);
483
484 rate_throttle(td, usec, bytes_done);
485
486 if (check_min_rate(td, &comp_time)) {
487 if (exitall_on_terminate)
488 terminate_threads(td->groupid, 0);
489 td_verror(td, ENODATA, "check_min_rate");
490 break;
491 }
492
493 if (td->thinktime) {
494 unsigned long long b;
495
496 b = td->io_blocks[0] + td->io_blocks[1];
497 if (!(b % td->thinktime_blocks)) {
498 int left;
499
500 if (td->thinktime_spin)
501 __usec_sleep(td->thinktime_spin);
502
503 left = td->thinktime - td->thinktime_spin;
504 if (left)
505 usec_sleep(td, left);
506 }
507 }
508 }
509
510 if (!td->error) {
511 struct fio_file *f;
512
513 i = td->cur_depth;
514 if (i)
515 ret = io_u_queued_complete(td, i);
516
517 if (should_fsync(td) && td->end_fsync) {
518 td_set_runstate(td, TD_FSYNCING);
519 for_each_file(td, f, i)
520 fio_io_sync(td, f);
521 }
522 } else
523 cleanup_pending_aio(td);
524}
525
526static void cleanup_io_u(struct thread_data *td)
527{
528 struct list_head *entry, *n;
529 struct io_u *io_u;
530
531 list_for_each_safe(entry, n, &td->io_u_freelist) {
532 io_u = list_entry(entry, struct io_u, list);
533
534 list_del(&io_u->list);
535 free(io_u);
536 }
537
538 free_io_mem(td);
539}
540
541/*
542 * "randomly" fill the buffer contents
543 */
544static void fill_rand_buf(struct io_u *io_u, int max_bs)
545{
546 int *ptr = io_u->buf;
547
548 while ((void *) ptr - io_u->buf < max_bs) {
549 *ptr = rand() * 0x9e370001;
550 ptr++;
551 }
552}
553
554static int init_io_u(struct thread_data *td)
555{
556 struct io_u *io_u;
557 unsigned int max_bs;
558 int i, max_units;
559 char *p;
560
561 if (td->io_ops->flags & FIO_CPUIO)
562 return 0;
563
564 if (td->io_ops->flags & FIO_SYNCIO)
565 max_units = 1;
566 else
567 max_units = td->iodepth;
568
569 max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
570 td->orig_buffer_size = max_bs * max_units;
571
572 if (td->mem_type == MEM_SHMHUGE || td->mem_type == MEM_MMAPHUGE)
573 td->orig_buffer_size = (td->orig_buffer_size + td->hugepage_size - 1) & ~(td->hugepage_size - 1);
574 else
575 td->orig_buffer_size += page_mask;
576
577 if (allocate_io_mem(td))
578 return 1;
579
580 p = ALIGN(td->orig_buffer);
581 for (i = 0; i < max_units; i++) {
582 io_u = malloc(sizeof(*io_u));
583 memset(io_u, 0, sizeof(*io_u));
584 INIT_LIST_HEAD(&io_u->list);
585
586 io_u->buf = p + max_bs * i;
587 if (td_write(td) || td_rw(td))
588 fill_rand_buf(io_u, max_bs);
589
590 io_u->index = i;
591 io_u->flags = IO_U_F_FREE;
592 list_add(&io_u->list, &td->io_u_freelist);
593 }
594
595 io_u_init_timeout();
596
597 return 0;
598}
599
600static int switch_ioscheduler(struct thread_data *td)
601{
602 char tmp[256], tmp2[128];
603 FILE *f;
604 int ret;
605
606 if (td->io_ops->flags & FIO_CPUIO)
607 return 0;
608
609 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
610
611 f = fopen(tmp, "r+");
612 if (!f) {
613 td_verror(td, errno, "fopen");
614 return 1;
615 }
616
617 /*
618 * Set io scheduler.
619 */
620 ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
621 if (ferror(f) || ret != 1) {
622 td_verror(td, errno, "fwrite");
623 fclose(f);
624 return 1;
625 }
626
627 rewind(f);
628
629 /*
630 * Read back and check that the selected scheduler is now the default.
631 */
632 ret = fread(tmp, 1, sizeof(tmp), f);
633 if (ferror(f) || ret < 0) {
634 td_verror(td, errno, "fread");
635 fclose(f);
636 return 1;
637 }
638
639 sprintf(tmp2, "[%s]", td->ioscheduler);
640 if (!strstr(tmp, tmp2)) {
641 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
642 td_verror(td, EINVAL, "iosched_switch");
643 fclose(f);
644 return 1;
645 }
646
647 fclose(f);
648 return 0;
649}
650
651static void clear_io_state(struct thread_data *td)
652{
653 struct fio_file *f;
654 int i;
655
656 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
657 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
658 td->zone_bytes = 0;
659
660 td->last_was_sync = 0;
661
662 for_each_file(td, f, i) {
663 f->last_completed_pos = 0;
664
665 f->last_pos = 0;
666 if (td->io_ops->flags & FIO_SYNCIO)
667 lseek(f->fd, SEEK_SET, 0);
668
669 if (f->file_map)
670 memset(f->file_map, 0, f->num_maps * sizeof(long));
671 }
672}
673
674/*
675 * Entry point for the thread based jobs. The process based jobs end up
676 * here as well, after a little setup.
677 */
678static void *thread_main(void *data)
679{
680 unsigned long long runtime[2];
681 struct thread_data *td = data;
682
683 if (!td->use_thread)
684 setsid();
685
686 td->pid = getpid();
687
688 INIT_LIST_HEAD(&td->io_u_freelist);
689 INIT_LIST_HEAD(&td->io_u_busylist);
690 INIT_LIST_HEAD(&td->io_u_requeues);
691 INIT_LIST_HEAD(&td->io_hist_list);
692 INIT_LIST_HEAD(&td->io_log_list);
693
694 if (init_io_u(td))
695 goto err;
696
697 if (fio_setaffinity(td) == -1) {
698 td_verror(td, errno, "cpu_set_affinity");
699 goto err;
700 }
701
702 if (init_iolog(td))
703 goto err;
704
705 if (td->ioprio) {
706 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
707 td_verror(td, errno, "ioprio_set");
708 goto err;
709 }
710 }
711
712 if (nice(td->nice) == -1) {
713 td_verror(td, errno, "nice");
714 goto err;
715 }
716
717 if (init_random_state(td))
718 goto err;
719
720 if (td->ioscheduler && switch_ioscheduler(td))
721 goto err;
722
723 td_set_runstate(td, TD_INITIALIZED);
724 fio_sem_up(&startup_sem);
725 fio_sem_down(&td->mutex);
726
727 if (!td->create_serialize && setup_files(td))
728 goto err;
729 if (open_files(td))
730 goto err;
731
732 /*
733 * Do this late, as some IO engines would like to have the
734 * files setup prior to initializing structures.
735 */
736 if (td_io_init(td))
737 goto err;
738
739 if (td->exec_prerun) {
740 if (system(td->exec_prerun) < 0)
741 goto err;
742 }
743
744 fio_gettime(&td->epoch, NULL);
745 memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch));
746 getrusage(RUSAGE_SELF, &td->ts.ru_start);
747
748 runtime[0] = runtime[1] = 0;
749 while (td->loops--) {
750 fio_gettime(&td->start, NULL);
751 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
752
753 if (td->ratemin)
754 memcpy(&td->lastrate, &td->ts.stat_sample_time, sizeof(td->lastrate));
755
756 clear_io_state(td);
757 prune_io_piece_log(td);
758
759 if (td->io_ops->flags & FIO_CPUIO)
760 do_cpuio(td);
761 else
762 do_io(td);
763
764 if (td_read(td) && td->io_bytes[DDIR_READ])
765 runtime[DDIR_READ] += utime_since_now(&td->start);
766 if (td_write(td) && td->io_bytes[DDIR_WRITE])
767 runtime[DDIR_WRITE] += utime_since_now(&td->start);
768
769 if (td->error || td->terminate)
770 break;
771
772 if (td->verify == VERIFY_NONE)
773 continue;
774
775 clear_io_state(td);
776 fio_gettime(&td->start, NULL);
777
778 do_verify(td);
779
780 runtime[DDIR_READ] += utime_since_now(&td->start);
781
782 if (td->error || td->terminate)
783 break;
784 }
785
786 update_rusage_stat(td);
787 fio_gettime(&td->end_time, NULL);
788 td->runtime[0] = runtime[0] / 1000;
789 td->runtime[1] = runtime[1] / 1000;
790
791 if (td->ts.bw_log)
792 finish_log(td, td->ts.bw_log, "bw");
793 if (td->ts.slat_log)
794 finish_log(td, td->ts.slat_log, "slat");
795 if (td->ts.clat_log)
796 finish_log(td, td->ts.clat_log, "clat");
797 if (td->write_iolog_file)
798 write_iolog_close(td);
799 if (td->exec_postrun) {
800 if (system(td->exec_postrun) < 0)
801 log_err("fio: postrun %s failed\n", td->exec_postrun);
802 }
803
804 if (exitall_on_terminate)
805 terminate_threads(td->groupid, 0);
806
807err:
808 if (td->error)
809 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
810 close_files(td);
811 close_ioengine(td);
812 cleanup_io_u(td);
813 td_set_runstate(td, TD_EXITED);
814 return (void *) (unsigned long) td->error;
815}
816
817/*
818 * We cannot pass the td data into a forked process, so attach the td and
819 * pass it to the thread worker.
820 */
821static int fork_main(int shmid, int offset)
822{
823 struct thread_data *td;
824 void *data, *ret;
825
826 data = shmat(shmid, NULL, 0);
827 if (data == (void *) -1) {
828 int __err = errno;
829
830 perror("shmat");
831 return __err;
832 }
833
834 td = data + offset * sizeof(struct thread_data);
835 ret = thread_main(td);
836 shmdt(data);
837 return (int) (unsigned long) ret;
838}
839
840/*
841 * Run over the job map and reap the threads that have exited, if any.
842 */
843static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
844{
845 struct thread_data *td;
846 int i, cputhreads, pending, status, ret;
847
848 /*
849 * reap exited threads (TD_EXITED -> TD_REAPED)
850 */
851 pending = cputhreads = 0;
852 for_each_td(td, i) {
853 int flags = 0;
854
855 /*
856 * ->io_ops is NULL for a thread that has closed its
857 * io engine
858 */
859 if (td->io_ops && td->io_ops->flags & FIO_CPUIO)
860 cputhreads++;
861
862 if (!td->pid || td->runstate == TD_REAPED)
863 continue;
864 if (td->use_thread) {
865 if (td->runstate == TD_EXITED) {
866 td_set_runstate(td, TD_REAPED);
867 goto reaped;
868 }
869 continue;
870 }
871
872 flags = WNOHANG;
873 if (td->runstate == TD_EXITED)
874 flags = 0;
875
876 /*
877 * check if someone quit or got killed in an unusual way
878 */
879 ret = waitpid(td->pid, &status, flags);
880 if (ret < 0) {
881 if (errno == ECHILD) {
882 log_err("fio: pid=%d disappeared %d\n", td->pid, td->runstate);
883 td_set_runstate(td, TD_REAPED);
884 goto reaped;
885 }
886 perror("waitpid");
887 } else if (ret == td->pid) {
888 if (WIFSIGNALED(status)) {
889 int sig = WTERMSIG(status);
890
891 log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
892 td_set_runstate(td, TD_REAPED);
893 goto reaped;
894 }
895 if (WIFEXITED(status)) {
896 if (WEXITSTATUS(status) && !td->error)
897 td->error = WEXITSTATUS(status);
898
899 td_set_runstate(td, TD_REAPED);
900 goto reaped;
901 }
902 }
903
904 /*
905 * thread is not dead, continue
906 */
907 continue;
908reaped:
909 if (td->use_thread) {
910 long ret;
911
912 if (pthread_join(td->thread, (void *) &ret))
913 perror("pthread_join");
914 }
915
916 (*nr_running)--;
917 (*m_rate) -= td->ratemin;
918 (*t_rate) -= td->rate;
919
920 if (td->error)
921 exit_value++;
922 }
923
924 if (*nr_running == cputhreads && !pending)
925 terminate_threads(TERMINATE_ALL, 0);
926}
927
928/*
929 * Main function for kicking off and reaping jobs, as needed.
930 */
931static void run_threads(void)
932{
933 struct thread_data *td;
934 unsigned long spent;
935 int i, todo, nr_running, m_rate, t_rate, nr_started;
936
937 if (fio_pin_memory())
938 return;
939
940 if (!terse_output) {
941 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
942 fflush(stdout);
943 }
944
945 signal(SIGINT, sig_handler);
946 signal(SIGALRM, sig_handler);
947
948 todo = thread_number;
949 nr_running = 0;
950 nr_started = 0;
951 m_rate = t_rate = 0;
952
953 for_each_td(td, i) {
954 print_status_init(td->thread_number - 1);
955
956 if (!td->create_serialize) {
957 init_disk_util(td);
958 continue;
959 }
960
961 /*
962 * do file setup here so it happens sequentially,
963 * we don't want X number of threads getting their
964 * client data interspersed on disk
965 */
966 if (setup_files(td)) {
967 exit_value++;
968 if (td->error)
969 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
970 td_set_runstate(td, TD_REAPED);
971 todo--;
972 }
973
974 init_disk_util(td);
975 }
976
977 set_genesis_time();
978
979 while (todo) {
980 struct thread_data *map[MAX_JOBS];
981 struct timeval this_start;
982 int this_jobs = 0, left;
983
984 /*
985 * create threads (TD_NOT_CREATED -> TD_CREATED)
986 */
987 for_each_td(td, i) {
988 if (td->runstate != TD_NOT_CREATED)
989 continue;
990
991 /*
992 * never got a chance to start, killed by other
993 * thread for some reason
994 */
995 if (td->terminate) {
996 todo--;
997 continue;
998 }
999
1000 if (td->start_delay) {
1001 spent = mtime_since_genesis();
1002
1003 if (td->start_delay * 1000 > spent)
1004 continue;
1005 }
1006
1007 if (td->stonewall && (nr_started || nr_running))
1008 break;
1009
1010 /*
1011 * Set state to created. Thread will transition
1012 * to TD_INITIALIZED when it's done setting up.
1013 */
1014 td_set_runstate(td, TD_CREATED);
1015 map[this_jobs++] = td;
1016 fio_sem_init(&startup_sem, 1);
1017 nr_started++;
1018
1019 if (td->use_thread) {
1020 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1021 perror("thread_create");
1022 nr_started--;
1023 }
1024 } else {
1025 if (fork())
1026 fio_sem_down(&startup_sem);
1027 else {
1028 int ret = fork_main(shm_id, i);
1029
1030 exit(ret);
1031 }
1032 }
1033 }
1034
1035 /*
1036 * Wait for the started threads to transition to
1037 * TD_INITIALIZED.
1038 */
1039 fio_gettime(&this_start, NULL);
1040 left = this_jobs;
1041 while (left && !fio_abort) {
1042 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1043 break;
1044
1045 usleep(100000);
1046
1047 for (i = 0; i < this_jobs; i++) {
1048 td = map[i];
1049 if (!td)
1050 continue;
1051 if (td->runstate == TD_INITIALIZED) {
1052 map[i] = NULL;
1053 left--;
1054 } else if (td->runstate >= TD_EXITED) {
1055 map[i] = NULL;
1056 left--;
1057 todo--;
1058 nr_running++; /* work-around... */
1059 }
1060 }
1061 }
1062
1063 if (left) {
1064 log_err("fio: %d jobs failed to start\n", left);
1065 for (i = 0; i < this_jobs; i++) {
1066 td = map[i];
1067 if (!td)
1068 continue;
1069 kill(td->pid, SIGTERM);
1070 }
1071 break;
1072 }
1073
1074 /*
1075 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1076 */
1077 for_each_td(td, i) {
1078 if (td->runstate != TD_INITIALIZED)
1079 continue;
1080
1081 td_set_runstate(td, TD_RUNNING);
1082 nr_running++;
1083 nr_started--;
1084 m_rate += td->ratemin;
1085 t_rate += td->rate;
1086 todo--;
1087 fio_sem_up(&td->mutex);
1088 }
1089
1090 reap_threads(&nr_running, &t_rate, &m_rate);
1091
1092 if (todo)
1093 usleep(100000);
1094 }
1095
1096 while (nr_running) {
1097 reap_threads(&nr_running, &t_rate, &m_rate);
1098 usleep(10000);
1099 }
1100
1101 update_io_ticks();
1102 fio_unpin_memory();
1103}
1104
1105int main(int argc, char *argv[])
1106{
1107 long ps;
1108
1109 /*
1110 * We need locale for number printing, if it isn't set then just
1111 * go with the US format.
1112 */
1113 if (!getenv("LC_NUMERIC"))
1114 setlocale(LC_NUMERIC, "en_US");
1115
1116 if (parse_options(argc, argv))
1117 return 1;
1118
1119 if (!thread_number) {
1120 log_err("Nothing to do\n");
1121 return 1;
1122 }
1123
1124 ps = sysconf(_SC_PAGESIZE);
1125 if (ps < 0) {
1126 log_err("Failed to get page size\n");
1127 return 1;
1128 }
1129
1130 page_mask = ps - 1;
1131
1132 if (write_bw_log) {
1133 setup_log(&agg_io_log[DDIR_READ]);
1134 setup_log(&agg_io_log[DDIR_WRITE]);
1135 }
1136
1137 set_genesis_time();
1138
1139 disk_util_timer_arm();
1140
1141 run_threads();
1142
1143 if (!fio_abort) {
1144 show_run_stats();
1145 if (write_bw_log) {
1146 __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1147 __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1148 }
1149 }
1150
1151 return exit_value;
1152}