Fix potential crash in terminate_threads()
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "hash.h"
39
40unsigned long page_mask;
41unsigned long page_size;
42#define ALIGN(buf) \
43 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
44
45int groupid = 0;
46int thread_number = 0;
47int nr_process = 0;
48int nr_thread = 0;
49int shm_id = 0;
50int temp_stall_ts;
51
52static struct fio_mutex *startup_mutex;
53static volatile int fio_abort;
54static int exit_value;
55
56struct io_log *agg_io_log[2];
57
58#define TERMINATE_ALL (-1)
59#define JOB_START_TIMEOUT (5 * 1000)
60
61static inline void td_set_runstate(struct thread_data *td, int runstate)
62{
63 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", td->pid, td->runstate,
64 runstate);
65 td->runstate = runstate;
66}
67
68static void terminate_threads(int group_id)
69{
70 struct thread_data *td;
71 int i;
72
73 for_each_td(td, i) {
74 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
75 dprint(FD_PROCESS, "setting terminate on %d\n",td->pid);
76
77 td->terminate = 1;
78 td->o.start_delay = 0;
79
80 /*
81 * if the thread is running, just let it exit
82 */
83 if (td->runstate < TD_RUNNING)
84 kill(td->pid, SIGQUIT);
85 else {
86 struct ioengine_ops *ops = td->io_ops;
87
88 if (ops && (ops->flags & FIO_SIGQUIT))
89 kill(td->pid, SIGQUIT);
90 }
91 }
92 }
93}
94
95static void sig_handler(int sig)
96{
97 switch (sig) {
98 case SIGALRM:
99 update_io_ticks();
100 disk_util_timer_arm();
101 print_thread_status();
102 break;
103 default:
104 printf("\nfio: terminating on signal %d\n", sig);
105 fflush(stdout);
106 terminate_threads(TERMINATE_ALL);
107 break;
108 }
109}
110
111/*
112 * Check if we are above the minimum rate given.
113 */
114static int check_min_rate(struct thread_data *td, struct timeval *now)
115{
116 unsigned long long bytes = 0;
117 unsigned long iops = 0;
118 unsigned long spent;
119 unsigned long rate;
120
121 /*
122 * No minimum rate set, always ok
123 */
124 if (!td->o.ratemin && !td->o.rate_iops_min)
125 return 0;
126
127 /*
128 * allow a 2 second settle period in the beginning
129 */
130 if (mtime_since(&td->start, now) < 2000)
131 return 0;
132
133 if (td_read(td)) {
134 iops += td->io_blocks[DDIR_READ];
135 bytes += td->this_io_bytes[DDIR_READ];
136 }
137 if (td_write(td)) {
138 iops += td->io_blocks[DDIR_WRITE];
139 bytes += td->this_io_bytes[DDIR_WRITE];
140 }
141
142 /*
143 * if rate blocks is set, sample is running
144 */
145 if (td->rate_bytes || td->rate_blocks) {
146 spent = mtime_since(&td->lastrate, now);
147 if (spent < td->o.ratecycle)
148 return 0;
149
150 if (td->o.rate) {
151 /*
152 * check bandwidth specified rate
153 */
154 if (bytes < td->rate_bytes) {
155 log_err("%s: min rate %u not met\n", td->o.name, td->o.ratemin);
156 return 1;
157 } else {
158 rate = (bytes - td->rate_bytes) / spent;
159 if (rate < td->o.ratemin || bytes < td->rate_bytes) {
160 log_err("%s: min rate %u not met, got %luKiB/sec\n", td->o.name, td->o.ratemin, rate);
161 return 1;
162 }
163 }
164 } else {
165 /*
166 * checks iops specified rate
167 */
168 if (iops < td->o.rate_iops) {
169 log_err("%s: min iops rate %u not met\n", td->o.name, td->o.rate_iops);
170 return 1;
171 } else {
172 rate = (iops - td->rate_blocks) / spent;
173 if (rate < td->o.rate_iops_min || iops < td->rate_blocks) {
174 log_err("%s: min iops rate %u not met, got %lu\n", td->o.name, td->o.rate_iops_min, rate);
175 }
176 }
177 }
178 }
179
180 td->rate_bytes = bytes;
181 td->rate_blocks = iops;
182 memcpy(&td->lastrate, now, sizeof(*now));
183 return 0;
184}
185
186static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
187{
188 if (!td->o.timeout)
189 return 0;
190 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
191 return 1;
192
193 return 0;
194}
195
196/*
197 * When job exits, we can cancel the in-flight IO if we are using async
198 * io. Attempt to do so.
199 */
200static void cleanup_pending_aio(struct thread_data *td)
201{
202 struct list_head *entry, *n;
203 struct io_u *io_u;
204 int r;
205
206 /*
207 * get immediately available events, if any
208 */
209 r = io_u_queued_complete(td, 0);
210 if (r < 0)
211 return;
212
213 /*
214 * now cancel remaining active events
215 */
216 if (td->io_ops->cancel) {
217 list_for_each_safe(entry, n, &td->io_u_busylist) {
218 io_u = list_entry(entry, struct io_u, list);
219
220 /*
221 * if the io_u isn't in flight, then that generally
222 * means someone leaked an io_u. complain but fix
223 * it up, so we don't stall here.
224 */
225 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
226 log_err("fio: non-busy IO on busy list\n");
227 put_io_u(td, io_u);
228 } else {
229 r = td->io_ops->cancel(td, io_u);
230 if (!r)
231 put_io_u(td, io_u);
232 }
233 }
234 }
235
236 if (td->cur_depth)
237 r = io_u_queued_complete(td, td->cur_depth);
238}
239
240/*
241 * Helper to handle the final sync of a file. Works just like the normal
242 * io path, just does everything sync.
243 */
244static int fio_io_sync(struct thread_data *td, struct fio_file *f)
245{
246 struct io_u *io_u = __get_io_u(td);
247 int ret;
248
249 if (!io_u)
250 return 1;
251
252 io_u->ddir = DDIR_SYNC;
253 io_u->file = f;
254
255 if (td_io_prep(td, io_u)) {
256 put_io_u(td, io_u);
257 return 1;
258 }
259
260requeue:
261 ret = td_io_queue(td, io_u);
262 if (ret < 0) {
263 td_verror(td, io_u->error, "td_io_queue");
264 put_io_u(td, io_u);
265 return 1;
266 } else if (ret == FIO_Q_QUEUED) {
267 if (io_u_queued_complete(td, 1) < 0)
268 return 1;
269 } else if (ret == FIO_Q_COMPLETED) {
270 if (io_u->error) {
271 td_verror(td, io_u->error, "td_io_queue");
272 return 1;
273 }
274
275 if (io_u_sync_complete(td, io_u) < 0)
276 return 1;
277 } else if (ret == FIO_Q_BUSY) {
278 if (td_io_commit(td))
279 return 1;
280 goto requeue;
281 }
282
283 return 0;
284}
285
286/*
287 * The main verify engine. Runs over the writes we previously submitted,
288 * reads the blocks back in, and checks the crc/md5 of the data.
289 */
290static void do_verify(struct thread_data *td)
291{
292 struct fio_file *f;
293 struct io_u *io_u;
294 int ret, min_events;
295 unsigned int i;
296
297 /*
298 * sync io first and invalidate cache, to make sure we really
299 * read from disk.
300 */
301 for_each_file(td, f, i) {
302 if (!(f->flags & FIO_FILE_OPEN))
303 continue;
304 if (fio_io_sync(td, f))
305 break;
306 if (file_invalidate_cache(td, f))
307 break;
308 }
309
310 if (td->error)
311 return;
312
313 td_set_runstate(td, TD_VERIFYING);
314
315 io_u = NULL;
316 while (!td->terminate) {
317 int ret2;
318
319 io_u = __get_io_u(td);
320 if (!io_u)
321 break;
322
323 if (runtime_exceeded(td, &io_u->start_time)) {
324 put_io_u(td, io_u);
325 td->terminate = 1;
326 break;
327 }
328
329 if (get_next_verify(td, io_u)) {
330 put_io_u(td, io_u);
331 break;
332 }
333
334 if (td_io_prep(td, io_u)) {
335 put_io_u(td, io_u);
336 break;
337 }
338
339 io_u->end_io = verify_io_u;
340
341 ret = td_io_queue(td, io_u);
342 switch (ret) {
343 case FIO_Q_COMPLETED:
344 if (io_u->error)
345 ret = -io_u->error;
346 else if (io_u->resid) {
347 int bytes = io_u->xfer_buflen - io_u->resid;
348 struct fio_file *f = io_u->file;
349
350 /*
351 * zero read, fail
352 */
353 if (!bytes) {
354 td_verror(td, ENODATA, "full resid");
355 put_io_u(td, io_u);
356 break;
357 }
358
359 io_u->xfer_buflen = io_u->resid;
360 io_u->xfer_buf += bytes;
361 io_u->offset += bytes;
362 f->last_completed_pos = io_u->offset;
363
364 td->ts.short_io_u[io_u->ddir]++;
365
366 if (io_u->offset == f->real_file_size)
367 goto sync_done;
368
369 requeue_io_u(td, &io_u);
370 } else {
371sync_done:
372 ret = io_u_sync_complete(td, io_u);
373 if (ret < 0)
374 break;
375 }
376 continue;
377 case FIO_Q_QUEUED:
378 break;
379 case FIO_Q_BUSY:
380 requeue_io_u(td, &io_u);
381 ret2 = td_io_commit(td);
382 if (ret2 < 0)
383 ret = ret2;
384 break;
385 default:
386 assert(ret < 0);
387 td_verror(td, -ret, "td_io_queue");
388 break;
389 }
390
391 if (ret < 0 || td->error)
392 break;
393
394 /*
395 * if we can queue more, do so. but check if there are
396 * completed io_u's first.
397 */
398 min_events = 0;
399 if (queue_full(td) || ret == FIO_Q_BUSY) {
400 min_events = 1;
401
402 if (td->cur_depth > td->o.iodepth_low)
403 min_events = td->cur_depth - td->o.iodepth_low;
404 }
405
406 /*
407 * Reap required number of io units, if any, and do the
408 * verification on them through the callback handler
409 */
410 if (io_u_queued_complete(td, min_events) < 0)
411 break;
412 }
413
414 if (!td->error) {
415 min_events = td->cur_depth;
416
417 if (min_events)
418 ret = io_u_queued_complete(td, min_events);
419 } else
420 cleanup_pending_aio(td);
421
422 td_set_runstate(td, TD_RUNNING);
423}
424
425/*
426 * Main IO worker function. It retrieves io_u's to process and queues
427 * and reaps them, checking for rate and errors along the way.
428 */
429static void do_io(struct thread_data *td)
430{
431 struct timeval s;
432 unsigned long usec;
433 unsigned int i;
434 int ret = 0;
435
436 td_set_runstate(td, TD_RUNNING);
437
438 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) {
439 struct timeval comp_time;
440 long bytes_done = 0;
441 int min_evts = 0;
442 struct io_u *io_u;
443 int ret2;
444
445 if (td->terminate)
446 break;
447
448 io_u = get_io_u(td);
449 if (!io_u)
450 break;
451
452 memcpy(&s, &io_u->start_time, sizeof(s));
453
454 if (runtime_exceeded(td, &s)) {
455 put_io_u(td, io_u);
456 td->terminate = 1;
457 break;
458 }
459
460 /*
461 * Add verification end_io handler, if asked to verify
462 * a previously written file.
463 */
464 if (td->o.verify != VERIFY_NONE)
465 io_u->end_io = verify_io_u;
466
467 ret = td_io_queue(td, io_u);
468 switch (ret) {
469 case FIO_Q_COMPLETED:
470 if (io_u->error)
471 ret = -io_u->error;
472 else if (io_u->resid) {
473 int bytes = io_u->xfer_buflen - io_u->resid;
474 struct fio_file *f = io_u->file;
475
476 /*
477 * zero read, fail
478 */
479 if (!bytes) {
480 td_verror(td, ENODATA, "full resid");
481 put_io_u(td, io_u);
482 break;
483 }
484
485 io_u->xfer_buflen = io_u->resid;
486 io_u->xfer_buf += bytes;
487 io_u->offset += bytes;
488 f->last_completed_pos = io_u->offset;
489
490 td->ts.short_io_u[io_u->ddir]++;
491
492 if (io_u->offset == f->real_file_size)
493 goto sync_done;
494
495 requeue_io_u(td, &io_u);
496 } else {
497sync_done:
498 fio_gettime(&comp_time, NULL);
499 bytes_done = io_u_sync_complete(td, io_u);
500 if (bytes_done < 0)
501 ret = bytes_done;
502 }
503 break;
504 case FIO_Q_QUEUED:
505 /*
506 * if the engine doesn't have a commit hook,
507 * the io_u is really queued. if it does have such
508 * a hook, it has to call io_u_queued() itself.
509 */
510 if (td->io_ops->commit == NULL)
511 io_u_queued(td, io_u);
512 break;
513 case FIO_Q_BUSY:
514 requeue_io_u(td, &io_u);
515 ret2 = td_io_commit(td);
516 if (ret2 < 0)
517 ret = ret2;
518 break;
519 default:
520 assert(ret < 0);
521 put_io_u(td, io_u);
522 break;
523 }
524
525 if (ret < 0 || td->error)
526 break;
527
528 /*
529 * See if we need to complete some commands
530 */
531 if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) {
532 min_evts = 0;
533 if (queue_full(td) || ret == FIO_Q_BUSY) {
534 min_evts = 1;
535
536 if (td->cur_depth > td->o.iodepth_low)
537 min_evts = td->cur_depth - td->o.iodepth_low;
538 }
539
540 fio_gettime(&comp_time, NULL);
541 bytes_done = io_u_queued_complete(td, min_evts);
542 if (bytes_done < 0)
543 break;
544 }
545
546 if (!bytes_done)
547 continue;
548
549 /*
550 * the rate is batched for now, it should work for batches
551 * of completions except the very first one which may look
552 * a little bursty
553 */
554 usec = utime_since(&s, &comp_time);
555
556 rate_throttle(td, usec, bytes_done);
557
558 if (check_min_rate(td, &comp_time)) {
559 if (exitall_on_terminate)
560 terminate_threads(td->groupid);
561 td_verror(td, ENODATA, "check_min_rate");
562 break;
563 }
564
565 if (td->o.thinktime) {
566 unsigned long long b;
567
568 b = td->io_blocks[0] + td->io_blocks[1];
569 if (!(b % td->o.thinktime_blocks)) {
570 int left;
571
572 if (td->o.thinktime_spin)
573 __usec_sleep(td->o.thinktime_spin);
574
575 left = td->o.thinktime - td->o.thinktime_spin;
576 if (left)
577 usec_sleep(td, left);
578 }
579 }
580 }
581
582 if (td->o.fill_device && td->error == ENOSPC) {
583 td->error = 0;
584 td->terminate = 1;
585 }
586 if (!td->error) {
587 struct fio_file *f;
588
589 i = td->cur_depth;
590 if (i)
591 ret = io_u_queued_complete(td, i);
592
593 if (should_fsync(td) && td->o.end_fsync) {
594 td_set_runstate(td, TD_FSYNCING);
595
596 for_each_file(td, f, i) {
597 if (!(f->flags & FIO_FILE_OPEN))
598 continue;
599 fio_io_sync(td, f);
600 }
601 }
602 } else
603 cleanup_pending_aio(td);
604
605 /*
606 * stop job if we failed doing any IO
607 */
608 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
609 td->done = 1;
610}
611
612static void cleanup_io_u(struct thread_data *td)
613{
614 struct list_head *entry, *n;
615 struct io_u *io_u;
616
617 list_for_each_safe(entry, n, &td->io_u_freelist) {
618 io_u = list_entry(entry, struct io_u, list);
619
620 list_del(&io_u->list);
621 free(io_u);
622 }
623
624 free_io_mem(td);
625}
626
627/*
628 * "randomly" fill the buffer contents
629 */
630static void fill_io_buf(struct thread_data *td, struct io_u *io_u, int max_bs)
631{
632 long *ptr = io_u->buf;
633
634 if (!td->o.zero_buffers) {
635 while ((void *) ptr - io_u->buf < max_bs) {
636 *ptr = rand() * GOLDEN_RATIO_PRIME;
637 ptr++;
638 }
639 } else
640 memset(ptr, 0, max_bs);
641}
642
643static int init_io_u(struct thread_data *td)
644{
645 struct io_u *io_u;
646 unsigned int max_bs;
647 int i, max_units;
648 char *p;
649
650 max_units = td->o.iodepth;
651 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
652 td->orig_buffer_size = (unsigned long long) max_bs * (unsigned long long) max_units;
653
654 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE)
655 td->orig_buffer_size = (td->orig_buffer_size + td->o.hugepage_size - 1) & ~(td->o.hugepage_size - 1);
656
657 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
658 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
659 return 1;
660 }
661
662 if (allocate_io_mem(td))
663 return 1;
664
665 if (td->o.odirect)
666 p = ALIGN(td->orig_buffer);
667 else
668 p = td->orig_buffer;
669
670 for (i = 0; i < max_units; i++) {
671 if (td->terminate)
672 return 1;
673 io_u = malloc(sizeof(*io_u));
674 memset(io_u, 0, sizeof(*io_u));
675 INIT_LIST_HEAD(&io_u->list);
676
677 if (!(td->io_ops->flags & FIO_NOIO)) {
678 io_u->buf = p + max_bs * i;
679
680 if (td_write(td))
681 fill_io_buf(td, io_u, max_bs);
682 }
683
684 io_u->index = i;
685 io_u->flags = IO_U_F_FREE;
686 list_add(&io_u->list, &td->io_u_freelist);
687 }
688
689 io_u_init_timeout();
690
691 return 0;
692}
693
694static int switch_ioscheduler(struct thread_data *td)
695{
696 char tmp[256], tmp2[128];
697 FILE *f;
698 int ret;
699
700 if (td->io_ops->flags & FIO_DISKLESSIO)
701 return 0;
702
703 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
704
705 f = fopen(tmp, "r+");
706 if (!f) {
707 if (errno == ENOENT) {
708 log_err("fio: os or kernel doesn't support IO scheduler switching\n");
709 return 0;
710 }
711 td_verror(td, errno, "fopen iosched");
712 return 1;
713 }
714
715 /*
716 * Set io scheduler.
717 */
718 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
719 if (ferror(f) || ret != 1) {
720 td_verror(td, errno, "fwrite");
721 fclose(f);
722 return 1;
723 }
724
725 rewind(f);
726
727 /*
728 * Read back and check that the selected scheduler is now the default.
729 */
730 ret = fread(tmp, 1, sizeof(tmp), f);
731 if (ferror(f) || ret < 0) {
732 td_verror(td, errno, "fread");
733 fclose(f);
734 return 1;
735 }
736
737 sprintf(tmp2, "[%s]", td->o.ioscheduler);
738 if (!strstr(tmp, tmp2)) {
739 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
740 td_verror(td, EINVAL, "iosched_switch");
741 fclose(f);
742 return 1;
743 }
744
745 fclose(f);
746 return 0;
747}
748
749static int keep_running(struct thread_data *td)
750{
751 unsigned long long io_done;
752
753 if (td->done)
754 return 0;
755 if (td->o.time_based)
756 return 1;
757 if (td->o.loops) {
758 td->o.loops--;
759 return 1;
760 }
761
762 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE] + td->io_skip_bytes;
763 if (io_done < td->o.size)
764 return 1;
765
766 return 0;
767}
768
769static int clear_io_state(struct thread_data *td)
770{
771 struct fio_file *f;
772 unsigned int i;
773 int ret;
774
775 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
776 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
777 td->zone_bytes = 0;
778 td->rate_bytes = 0;
779 td->rate_blocks = 0;
780 td->rw_end_set[0] = td->rw_end_set[1] = 0;
781
782 td->last_was_sync = 0;
783
784 /*
785 * reset file done count if we are to start over
786 */
787 if (td->o.time_based || td->o.loops)
788 td->nr_done_files = 0;
789
790 for_each_file(td, f, i)
791 td_io_close_file(td, f);
792
793 ret = 0;
794 for_each_file(td, f, i) {
795 f->flags &= ~FIO_FILE_DONE;
796 ret = td_io_open_file(td, f);
797 if (ret)
798 break;
799 }
800
801 return ret;
802}
803
804/*
805 * Entry point for the thread based jobs. The process based jobs end up
806 * here as well, after a little setup.
807 */
808static void *thread_main(void *data)
809{
810 unsigned long long runtime[2], elapsed;
811 struct thread_data *td = data;
812 int clear_state;
813
814 if (!td->o.use_thread)
815 setsid();
816
817 td->pid = getpid();
818
819 dprint(FD_PROCESS, "jobs pid=%d started\n", td->pid);
820
821 INIT_LIST_HEAD(&td->io_u_freelist);
822 INIT_LIST_HEAD(&td->io_u_busylist);
823 INIT_LIST_HEAD(&td->io_u_requeues);
824 INIT_LIST_HEAD(&td->io_log_list);
825 INIT_LIST_HEAD(&td->io_hist_list);
826 td->io_hist_tree = RB_ROOT;
827
828 td_set_runstate(td, TD_INITIALIZED);
829 fio_mutex_up(startup_mutex);
830 fio_mutex_down(td->mutex);
831
832 /*
833 * the ->mutex mutex is now no longer used, close it to avoid
834 * eating a file descriptor
835 */
836 fio_mutex_remove(td->mutex);
837
838 /*
839 * May alter parameters that init_io_u() will use, so we need to
840 * do this first.
841 */
842 if (init_iolog(td))
843 goto err;
844
845 if (init_io_u(td))
846 goto err;
847
848 if (td->o.cpumask_set && fio_setaffinity(td) == -1) {
849 td_verror(td, errno, "cpu_set_affinity");
850 goto err;
851 }
852
853 if (td->ioprio_set) {
854 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
855 td_verror(td, errno, "ioprio_set");
856 goto err;
857 }
858 }
859
860 if (nice(td->o.nice) == -1) {
861 td_verror(td, errno, "nice");
862 goto err;
863 }
864
865 if (td->o.ioscheduler && switch_ioscheduler(td))
866 goto err;
867
868 if (!td->o.create_serialize && setup_files(td))
869 goto err;
870
871 if (td_io_init(td))
872 goto err;
873
874 if (open_files(td))
875 goto err;
876
877 if (init_random_map(td))
878 goto err;
879
880 if (td->o.exec_prerun) {
881 if (system(td->o.exec_prerun) < 0)
882 goto err;
883 }
884
885 fio_gettime(&td->epoch, NULL);
886 memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch));
887 getrusage(RUSAGE_SELF, &td->ts.ru_start);
888
889 runtime[0] = runtime[1] = 0;
890 clear_state = 0;
891 while (keep_running(td)) {
892 fio_gettime(&td->start, NULL);
893 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
894
895 if (td->o.ratemin)
896 memcpy(&td->lastrate, &td->ts.stat_sample_time, sizeof(td->lastrate));
897
898 if (clear_state && clear_io_state(td))
899 break;
900
901 prune_io_piece_log(td);
902
903 do_io(td);
904
905 clear_state = 1;
906
907 if (td_read(td) && td->io_bytes[DDIR_READ]) {
908 if (td->rw_end_set[DDIR_READ])
909 elapsed = utime_since(&td->start, &td->rw_end[DDIR_READ]);
910 else
911 elapsed = utime_since_now(&td->start);
912
913 runtime[DDIR_READ] += elapsed;
914 }
915 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
916 if (td->rw_end_set[DDIR_WRITE])
917 elapsed = utime_since(&td->start, &td->rw_end[DDIR_WRITE]);
918 else
919 elapsed = utime_since_now(&td->start);
920
921 runtime[DDIR_WRITE] += elapsed;
922 }
923
924 if (td->error || td->terminate)
925 break;
926
927 if (!td->o.do_verify ||
928 td->o.verify == VERIFY_NONE ||
929 (td->io_ops->flags & FIO_UNIDIR))
930 continue;
931
932 if (clear_io_state(td))
933 break;
934
935 fio_gettime(&td->start, NULL);
936
937 do_verify(td);
938
939 runtime[DDIR_READ] += utime_since_now(&td->start);
940
941 if (td->error || td->terminate)
942 break;
943 }
944
945 update_rusage_stat(td);
946 td->ts.runtime[0] = (runtime[0] + 999) / 1000;
947 td->ts.runtime[1] = (runtime[1] + 999) / 1000;
948 td->ts.total_run_time = mtime_since_now(&td->epoch);
949 td->ts.io_bytes[0] = td->io_bytes[0];
950 td->ts.io_bytes[1] = td->io_bytes[1];
951
952 if (td->ts.bw_log)
953 finish_log(td, td->ts.bw_log, "bw");
954 if (td->ts.slat_log)
955 finish_log(td, td->ts.slat_log, "slat");
956 if (td->ts.clat_log)
957 finish_log(td, td->ts.clat_log, "clat");
958 if (td->o.exec_postrun) {
959 if (system(td->o.exec_postrun) < 0)
960 log_err("fio: postrun %s failed\n", td->o.exec_postrun);
961 }
962
963 if (exitall_on_terminate)
964 terminate_threads(td->groupid);
965
966err:
967 if (td->error)
968 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
969 close_files(td);
970 close_ioengine(td);
971 cleanup_io_u(td);
972
973 /*
974 * do this very late, it will log file closing as well
975 */
976 if (td->o.write_iolog_file)
977 write_iolog_close(td);
978
979 options_mem_free(td);
980 td_set_runstate(td, TD_EXITED);
981 return (void *) (unsigned long) td->error;
982}
983
984/*
985 * We cannot pass the td data into a forked process, so attach the td and
986 * pass it to the thread worker.
987 */
988static int fork_main(int shmid, int offset)
989{
990 struct thread_data *td;
991 void *data, *ret;
992
993 data = shmat(shmid, NULL, 0);
994 if (data == (void *) -1) {
995 int __err = errno;
996
997 perror("shmat");
998 return __err;
999 }
1000
1001 td = data + offset * sizeof(struct thread_data);
1002 ret = thread_main(td);
1003 shmdt(data);
1004 return (int) (unsigned long) ret;
1005}
1006
1007/*
1008 * Run over the job map and reap the threads that have exited, if any.
1009 */
1010static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1011{
1012 struct thread_data *td;
1013 int i, cputhreads, realthreads, pending, status, ret;
1014
1015 /*
1016 * reap exited threads (TD_EXITED -> TD_REAPED)
1017 */
1018 realthreads = pending = cputhreads = 0;
1019 for_each_td(td, i) {
1020 int flags = 0;
1021
1022 /*
1023 * ->io_ops is NULL for a thread that has closed its
1024 * io engine
1025 */
1026 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1027 cputhreads++;
1028 else
1029 realthreads++;
1030
1031 if (!td->pid) {
1032 pending++;
1033 continue;
1034 }
1035 if (td->runstate == TD_REAPED)
1036 continue;
1037 if (td->o.use_thread) {
1038 if (td->runstate == TD_EXITED) {
1039 td_set_runstate(td, TD_REAPED);
1040 goto reaped;
1041 }
1042 continue;
1043 }
1044
1045 flags = WNOHANG;
1046 if (td->runstate == TD_EXITED)
1047 flags = 0;
1048
1049 /*
1050 * check if someone quit or got killed in an unusual way
1051 */
1052 ret = waitpid(td->pid, &status, flags);
1053 if (ret < 0) {
1054 if (errno == ECHILD) {
1055 log_err("fio: pid=%d disappeared %d\n", td->pid, td->runstate);
1056 td_set_runstate(td, TD_REAPED);
1057 goto reaped;
1058 }
1059 perror("waitpid");
1060 } else if (ret == td->pid) {
1061 if (WIFSIGNALED(status)) {
1062 int sig = WTERMSIG(status);
1063
1064 if (sig != SIGQUIT)
1065 log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
1066 td_set_runstate(td, TD_REAPED);
1067 goto reaped;
1068 }
1069 if (WIFEXITED(status)) {
1070 if (WEXITSTATUS(status) && !td->error)
1071 td->error = WEXITSTATUS(status);
1072
1073 td_set_runstate(td, TD_REAPED);
1074 goto reaped;
1075 }
1076 }
1077
1078 /*
1079 * thread is not dead, continue
1080 */
1081 pending++;
1082 continue;
1083reaped:
1084 if (td->o.use_thread) {
1085 long ret;
1086
1087 dprint(FD_PROCESS, "joining tread %d\n", td->pid);
1088 if (pthread_join(td->thread, (void *) &ret)) {
1089 dprint(FD_PROCESS, "join failed %ld\n", ret);
1090 perror("pthread_join");
1091 }
1092 }
1093
1094 (*nr_running)--;
1095 (*m_rate) -= td->o.ratemin;
1096 (*t_rate) -= td->o.rate;
1097 pending--;
1098
1099 if (td->error)
1100 exit_value++;
1101 }
1102
1103 if (*nr_running == cputhreads && !pending && realthreads)
1104 terminate_threads(TERMINATE_ALL);
1105}
1106
1107/*
1108 * Main function for kicking off and reaping jobs, as needed.
1109 */
1110static void run_threads(void)
1111{
1112 struct thread_data *td;
1113 unsigned long spent;
1114 int i, todo, nr_running, m_rate, t_rate, nr_started;
1115
1116 if (fio_pin_memory())
1117 return;
1118
1119 if (!terse_output) {
1120 printf("Starting ");
1121 if (nr_thread)
1122 printf("%d thread%s", nr_thread, nr_thread > 1 ? "s" : "");
1123 if (nr_process) {
1124 if (nr_thread)
1125 printf(" and ");
1126 printf("%d process%s", nr_process, nr_process > 1 ? "es" : "");
1127 }
1128 printf("\n");
1129 fflush(stdout);
1130 }
1131
1132 signal(SIGINT, sig_handler);
1133 signal(SIGALRM, sig_handler);
1134
1135 todo = thread_number;
1136 nr_running = 0;
1137 nr_started = 0;
1138 m_rate = t_rate = 0;
1139
1140 for_each_td(td, i) {
1141 print_status_init(td->thread_number - 1);
1142
1143 if (!td->o.create_serialize) {
1144 init_disk_util(td);
1145 continue;
1146 }
1147
1148 /*
1149 * do file setup here so it happens sequentially,
1150 * we don't want X number of threads getting their
1151 * client data interspersed on disk
1152 */
1153 if (setup_files(td)) {
1154 exit_value++;
1155 if (td->error)
1156 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
1157 td_set_runstate(td, TD_REAPED);
1158 todo--;
1159 }
1160
1161 init_disk_util(td);
1162 }
1163
1164 set_genesis_time();
1165
1166 while (todo) {
1167 struct thread_data *map[MAX_JOBS];
1168 struct timeval this_start;
1169 int this_jobs = 0, left;
1170
1171 /*
1172 * create threads (TD_NOT_CREATED -> TD_CREATED)
1173 */
1174 for_each_td(td, i) {
1175 if (td->runstate != TD_NOT_CREATED)
1176 continue;
1177
1178 /*
1179 * never got a chance to start, killed by other
1180 * thread for some reason
1181 */
1182 if (td->terminate) {
1183 todo--;
1184 continue;
1185 }
1186
1187 if (td->o.start_delay) {
1188 spent = mtime_since_genesis();
1189
1190 if (td->o.start_delay * 1000 > spent)
1191 continue;
1192 }
1193
1194 if (td->o.stonewall && (nr_started || nr_running))
1195 break;
1196
1197 /*
1198 * Set state to created. Thread will transition
1199 * to TD_INITIALIZED when it's done setting up.
1200 */
1201 td_set_runstate(td, TD_CREATED);
1202 map[this_jobs++] = td;
1203 nr_started++;
1204
1205 if (td->o.use_thread) {
1206 dprint(FD_PROCESS, "will pthread_create\n");
1207 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1208 perror("thread_create");
1209 nr_started--;
1210 break;
1211 }
1212 } else {
1213 dprint(FD_PROCESS, "will fork\n");
1214 if (!fork()) {
1215 int ret = fork_main(shm_id, i);
1216
1217 exit(ret);
1218 }
1219 }
1220 fio_mutex_down(startup_mutex);
1221 }
1222
1223 /*
1224 * Wait for the started threads to transition to
1225 * TD_INITIALIZED.
1226 */
1227 fio_gettime(&this_start, NULL);
1228 left = this_jobs;
1229 while (left && !fio_abort) {
1230 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1231 break;
1232
1233 usleep(100000);
1234
1235 for (i = 0; i < this_jobs; i++) {
1236 td = map[i];
1237 if (!td)
1238 continue;
1239 if (td->runstate == TD_INITIALIZED) {
1240 map[i] = NULL;
1241 left--;
1242 } else if (td->runstate >= TD_EXITED) {
1243 map[i] = NULL;
1244 left--;
1245 todo--;
1246 nr_running++; /* work-around... */
1247 }
1248 }
1249 }
1250
1251 if (left) {
1252 log_err("fio: %d jobs failed to start\n", left);
1253 for (i = 0; i < this_jobs; i++) {
1254 td = map[i];
1255 if (!td)
1256 continue;
1257 kill(td->pid, SIGTERM);
1258 }
1259 break;
1260 }
1261
1262 /*
1263 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1264 */
1265 for_each_td(td, i) {
1266 if (td->runstate != TD_INITIALIZED)
1267 continue;
1268
1269 td_set_runstate(td, TD_RUNNING);
1270 nr_running++;
1271 nr_started--;
1272 m_rate += td->o.ratemin;
1273 t_rate += td->o.rate;
1274 todo--;
1275 fio_mutex_up(td->mutex);
1276 }
1277
1278 reap_threads(&nr_running, &t_rate, &m_rate);
1279
1280 if (todo)
1281 usleep(100000);
1282 }
1283
1284 while (nr_running) {
1285 reap_threads(&nr_running, &t_rate, &m_rate);
1286 usleep(10000);
1287 }
1288
1289 update_io_ticks();
1290 fio_unpin_memory();
1291}
1292
1293int main(int argc, char *argv[])
1294{
1295 long ps;
1296
1297 /*
1298 * We need locale for number printing, if it isn't set then just
1299 * go with the US format.
1300 */
1301 if (!getenv("LC_NUMERIC"))
1302 setlocale(LC_NUMERIC, "en_US");
1303
1304 if (parse_options(argc, argv))
1305 return 1;
1306
1307 if (!thread_number)
1308 return 0;
1309
1310 ps = sysconf(_SC_PAGESIZE);
1311 if (ps < 0) {
1312 log_err("Failed to get page size\n");
1313 return 1;
1314 }
1315
1316 page_size = ps;
1317 page_mask = ps - 1;
1318
1319 if (write_bw_log) {
1320 setup_log(&agg_io_log[DDIR_READ]);
1321 setup_log(&agg_io_log[DDIR_WRITE]);
1322 }
1323
1324 startup_mutex = fio_mutex_init(0);
1325
1326 set_genesis_time();
1327
1328 disk_util_timer_arm();
1329
1330 run_threads();
1331
1332 if (!fio_abort) {
1333 show_run_stats();
1334 if (write_bw_log) {
1335 __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1336 __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1337 }
1338 }
1339
1340 fio_mutex_remove(startup_mutex);
1341 return exit_value;
1342}