FIO Windows update
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <time.h>
32#include <sys/stat.h>
33#include <sys/wait.h>
34#include <sys/ipc.h>
35#include <sys/shm.h>
36#include <sys/mman.h>
37
38#include "fio.h"
39#include "hash.h"
40#include "smalloc.h"
41#include "verify.h"
42#include "trim.h"
43#include "diskutil.h"
44#include "cgroup.h"
45#include "profile.h"
46#include "lib/rand.h"
47
48unsigned long page_mask;
49unsigned long page_size;
50
51#define PAGE_ALIGN(buf) \
52 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
53
54int groupid = 0;
55int thread_number = 0;
56int nr_process = 0;
57int nr_thread = 0;
58int shm_id = 0;
59int temp_stall_ts;
60unsigned long done_secs = 0;
61
62static struct fio_mutex *startup_mutex;
63static struct fio_mutex *writeout_mutex;
64static volatile int fio_abort;
65static int exit_value;
66static timer_t ival_timer;
67static pthread_t gtod_thread;
68static struct flist_head *cgroup_list;
69static char *cgroup_mnt;
70
71struct io_log *agg_io_log[2];
72
73#define TERMINATE_ALL (-1)
74#define JOB_START_TIMEOUT (5 * 1000)
75
76void td_set_runstate(struct thread_data *td, int runstate)
77{
78 if (td->runstate == runstate)
79 return;
80
81 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
82 td->runstate, runstate);
83 td->runstate = runstate;
84}
85
86static void terminate_threads(int group_id)
87{
88 struct thread_data *td;
89 int i;
90
91 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
92
93 for_each_td(td, i) {
94 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
95 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
96 td->o.name, (int) td->pid);
97 td->terminate = 1;
98 td->o.start_delay = 0;
99
100 /*
101 * if the thread is running, just let it exit
102 */
103 if (td->runstate < TD_RUNNING)
104 kill(td->pid, SIGTERM);
105 else {
106 struct ioengine_ops *ops = td->io_ops;
107
108 if (ops && (ops->flags & FIO_SIGTERM))
109 kill(td->pid, SIGTERM);
110 }
111 }
112 }
113}
114
115static void status_timer_arm(void)
116{
117 struct itimerspec value;
118
119 value.it_value.tv_sec = 0;
120 value.it_value.tv_nsec = DISK_UTIL_MSEC * 1000000;
121 value.it_interval.tv_sec = 0;
122 value.it_interval.tv_nsec = DISK_UTIL_MSEC * 1000000;
123
124 timer_settime(ival_timer, 0, &value, NULL);
125}
126
127static void ival_fn(union sigval sig)
128{
129 if (threads) {
130 update_io_ticks();
131 print_thread_status();
132 }
133}
134
135/*
136 * Happens on thread runs with ctrl-c, ignore our own SIGQUIT
137 */
138static void sig_quit(int sig)
139{
140}
141
142static void sig_int(int sig)
143{
144 if (threads) {
145 log_info("\nfio: terminating on signal %d\n", sig);
146 fflush(stdout);
147 terminate_threads(TERMINATE_ALL);
148 }
149}
150
151static void posix_timer_teardown(void)
152{
153 timer_delete(ival_timer);
154}
155
156static void posix_timer_setup(void)
157{
158 struct sigevent evt;
159
160 memset(&evt, 0, sizeof(evt));
161 evt.sigev_notify = SIGEV_THREAD;
162 evt.sigev_notify_function = ival_fn;
163
164 if (timer_create(FIO_TIMER_CLOCK, &evt, &ival_timer) < 0)
165 perror("timer_create");
166
167}
168
169static void set_sig_handlers(void)
170{
171 struct sigaction act;
172
173 memset(&act, 0, sizeof(act));
174 act.sa_handler = sig_int;
175 act.sa_flags = SA_RESTART;
176 sigaction(SIGINT, &act, NULL);
177
178 memset(&act, 0, sizeof(act));
179 act.sa_handler = sig_quit;
180 act.sa_flags = SA_RESTART;
181 sigaction(SIGTERM, &act, NULL);
182}
183
184/*
185 * Check if we are above the minimum rate given.
186 */
187static int __check_min_rate(struct thread_data *td, struct timeval *now,
188 enum td_ddir ddir)
189{
190 unsigned long long bytes = 0;
191 unsigned long iops = 0;
192 unsigned long spent;
193 unsigned long rate;
194 unsigned int ratemin = 0;
195 unsigned int rate_iops = 0;
196 unsigned int rate_iops_min = 0;
197
198 assert(ddir_rw(ddir));
199
200 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
201 return 0;
202
203 /*
204 * allow a 2 second settle period in the beginning
205 */
206 if (mtime_since(&td->start, now) < 2000)
207 return 0;
208
209 iops += td->io_blocks[ddir];
210 bytes += td->this_io_bytes[ddir];
211 ratemin += td->o.ratemin[ddir];
212 rate_iops += td->o.rate_iops[ddir];
213 rate_iops_min += td->o.rate_iops_min[ddir];
214
215 /*
216 * if rate blocks is set, sample is running
217 */
218 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
219 spent = mtime_since(&td->lastrate[ddir], now);
220 if (spent < td->o.ratecycle)
221 return 0;
222
223 if (td->o.rate[ddir]) {
224 /*
225 * check bandwidth specified rate
226 */
227 if (bytes < td->rate_bytes[ddir]) {
228 log_err("%s: min rate %u not met\n", td->o.name,
229 ratemin);
230 return 1;
231 } else {
232 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
233 if (rate < ratemin ||
234 bytes < td->rate_bytes[ddir]) {
235 log_err("%s: min rate %u not met, got"
236 " %luKB/sec\n", td->o.name,
237 ratemin, rate);
238 return 1;
239 }
240 }
241 } else {
242 /*
243 * checks iops specified rate
244 */
245 if (iops < rate_iops) {
246 log_err("%s: min iops rate %u not met\n",
247 td->o.name, rate_iops);
248 return 1;
249 } else {
250 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
251 if (rate < rate_iops_min ||
252 iops < td->rate_blocks[ddir]) {
253 log_err("%s: min iops rate %u not met,"
254 " got %lu\n", td->o.name,
255 rate_iops_min, rate);
256 }
257 }
258 }
259 }
260
261 td->rate_bytes[ddir] = bytes;
262 td->rate_blocks[ddir] = iops;
263 memcpy(&td->lastrate[ddir], now, sizeof(*now));
264 return 0;
265}
266
267static int check_min_rate(struct thread_data *td, struct timeval *now,
268 unsigned long *bytes_done)
269{
270 int ret = 0;
271
272 if (bytes_done[0])
273 ret |= __check_min_rate(td, now, 0);
274 if (bytes_done[1])
275 ret |= __check_min_rate(td, now, 1);
276
277 return ret;
278}
279
280static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
281{
282 if (!td->o.timeout)
283 return 0;
284 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
285 return 1;
286
287 return 0;
288}
289
290/*
291 * When job exits, we can cancel the in-flight IO if we are using async
292 * io. Attempt to do so.
293 */
294static void cleanup_pending_aio(struct thread_data *td)
295{
296 struct flist_head *entry, *n;
297 struct io_u *io_u;
298 int r;
299
300 /*
301 * get immediately available events, if any
302 */
303 r = io_u_queued_complete(td, 0, NULL);
304 if (r < 0)
305 return;
306
307 /*
308 * now cancel remaining active events
309 */
310 if (td->io_ops->cancel) {
311 flist_for_each_safe(entry, n, &td->io_u_busylist) {
312 io_u = flist_entry(entry, struct io_u, list);
313
314 /*
315 * if the io_u isn't in flight, then that generally
316 * means someone leaked an io_u. complain but fix
317 * it up, so we don't stall here.
318 */
319 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
320 log_err("fio: non-busy IO on busy list\n");
321 put_io_u(td, io_u);
322 } else {
323 r = td->io_ops->cancel(td, io_u);
324 if (!r)
325 put_io_u(td, io_u);
326 }
327 }
328 }
329
330 if (td->cur_depth)
331 r = io_u_queued_complete(td, td->cur_depth, NULL);
332}
333
334/*
335 * Helper to handle the final sync of a file. Works just like the normal
336 * io path, just does everything sync.
337 */
338static int fio_io_sync(struct thread_data *td, struct fio_file *f)
339{
340 struct io_u *io_u = __get_io_u(td);
341 int ret;
342
343 if (!io_u)
344 return 1;
345
346 io_u->ddir = DDIR_SYNC;
347 io_u->file = f;
348
349 if (td_io_prep(td, io_u)) {
350 put_io_u(td, io_u);
351 return 1;
352 }
353
354requeue:
355 ret = td_io_queue(td, io_u);
356 if (ret < 0) {
357 td_verror(td, io_u->error, "td_io_queue");
358 put_io_u(td, io_u);
359 return 1;
360 } else if (ret == FIO_Q_QUEUED) {
361 if (io_u_queued_complete(td, 1, NULL) < 0)
362 return 1;
363 } else if (ret == FIO_Q_COMPLETED) {
364 if (io_u->error) {
365 td_verror(td, io_u->error, "td_io_queue");
366 return 1;
367 }
368
369 if (io_u_sync_complete(td, io_u, NULL) < 0)
370 return 1;
371 } else if (ret == FIO_Q_BUSY) {
372 if (td_io_commit(td))
373 return 1;
374 goto requeue;
375 }
376
377 return 0;
378}
379
380static inline void update_tv_cache(struct thread_data *td)
381{
382 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
383 fio_gettime(&td->tv_cache, NULL);
384}
385
386static int break_on_this_error(struct thread_data *td, int *retptr)
387{
388 int ret = *retptr;
389
390 if (ret < 0 || td->error) {
391 int err;
392
393 if (!td->o.continue_on_error)
394 return 1;
395
396 if (ret < 0)
397 err = -ret;
398 else
399 err = td->error;
400
401 if (td_non_fatal_error(err)) {
402 /*
403 * Continue with the I/Os in case of
404 * a non fatal error.
405 */
406 update_error_count(td, err);
407 td_clear_error(td);
408 *retptr = 0;
409 return 0;
410 } else if (td->o.fill_device && err == ENOSPC) {
411 /*
412 * We expect to hit this error if
413 * fill_device option is set.
414 */
415 td_clear_error(td);
416 td->terminate = 1;
417 return 1;
418 } else {
419 /*
420 * Stop the I/O in case of a fatal
421 * error.
422 */
423 update_error_count(td, err);
424 return 1;
425 }
426 }
427
428 return 0;
429}
430
431/*
432 * The main verify engine. Runs over the writes we previously submitted,
433 * reads the blocks back in, and checks the crc/md5 of the data.
434 */
435static void do_verify(struct thread_data *td)
436{
437 struct fio_file *f;
438 struct io_u *io_u;
439 int ret, min_events;
440 unsigned int i;
441
442 dprint(FD_VERIFY, "starting loop\n");
443
444 /*
445 * sync io first and invalidate cache, to make sure we really
446 * read from disk.
447 */
448 for_each_file(td, f, i) {
449 if (!fio_file_open(f))
450 continue;
451 if (fio_io_sync(td, f))
452 break;
453 if (file_invalidate_cache(td, f))
454 break;
455 }
456
457 if (td->error)
458 return;
459
460 td_set_runstate(td, TD_VERIFYING);
461
462 io_u = NULL;
463 while (!td->terminate) {
464 int ret2, full;
465
466 update_tv_cache(td);
467
468 if (runtime_exceeded(td, &td->tv_cache)) {
469 td->terminate = 1;
470 break;
471 }
472
473 io_u = __get_io_u(td);
474 if (!io_u)
475 break;
476
477 if (get_next_verify(td, io_u)) {
478 put_io_u(td, io_u);
479 break;
480 }
481
482 if (td_io_prep(td, io_u)) {
483 put_io_u(td, io_u);
484 break;
485 }
486
487 if (td->o.verify_async)
488 io_u->end_io = verify_io_u_async;
489 else
490 io_u->end_io = verify_io_u;
491
492 ret = td_io_queue(td, io_u);
493 switch (ret) {
494 case FIO_Q_COMPLETED:
495 if (io_u->error) {
496 ret = -io_u->error;
497 clear_io_u(td, io_u);
498 } else if (io_u->resid) {
499 int bytes = io_u->xfer_buflen - io_u->resid;
500 struct fio_file *f = io_u->file;
501
502 /*
503 * zero read, fail
504 */
505 if (!bytes) {
506 td_verror(td, EIO, "full resid");
507 put_io_u(td, io_u);
508 break;
509 }
510
511 io_u->xfer_buflen = io_u->resid;
512 io_u->xfer_buf += bytes;
513 io_u->offset += bytes;
514
515 if (ddir_rw(io_u->ddir))
516 td->ts.short_io_u[io_u->ddir]++;
517
518 if (io_u->offset == f->real_file_size)
519 goto sync_done;
520
521 requeue_io_u(td, &io_u);
522 } else {
523sync_done:
524 ret = io_u_sync_complete(td, io_u, NULL);
525 if (ret < 0)
526 break;
527 }
528 continue;
529 case FIO_Q_QUEUED:
530 break;
531 case FIO_Q_BUSY:
532 requeue_io_u(td, &io_u);
533 ret2 = td_io_commit(td);
534 if (ret2 < 0)
535 ret = ret2;
536 break;
537 default:
538 assert(ret < 0);
539 td_verror(td, -ret, "td_io_queue");
540 break;
541 }
542
543 if (break_on_this_error(td, &ret))
544 break;
545
546 /*
547 * if we can queue more, do so. but check if there are
548 * completed io_u's first.
549 */
550 full = queue_full(td) || ret == FIO_Q_BUSY;
551 if (full || !td->o.iodepth_batch_complete) {
552 min_events = min(td->o.iodepth_batch_complete,
553 td->cur_depth);
554 if (full && !min_events)
555 min_events = 1;
556
557 do {
558 /*
559 * Reap required number of io units, if any,
560 * and do the verification on them through
561 * the callback handler
562 */
563 if (io_u_queued_complete(td, min_events, NULL) < 0) {
564 ret = -1;
565 break;
566 }
567 } while (full && (td->cur_depth > td->o.iodepth_low));
568 }
569 if (ret < 0)
570 break;
571 }
572
573 if (!td->error) {
574 min_events = td->cur_depth;
575
576 if (min_events)
577 ret = io_u_queued_complete(td, min_events, NULL);
578 } else
579 cleanup_pending_aio(td);
580
581 td_set_runstate(td, TD_RUNNING);
582
583 dprint(FD_VERIFY, "exiting loop\n");
584}
585
586/*
587 * Main IO worker function. It retrieves io_u's to process and queues
588 * and reaps them, checking for rate and errors along the way.
589 */
590static void do_io(struct thread_data *td)
591{
592 unsigned int i;
593 int ret = 0;
594
595 if (in_ramp_time(td))
596 td_set_runstate(td, TD_RAMP);
597 else
598 td_set_runstate(td, TD_RUNNING);
599
600 while ( (td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
601 (!flist_empty(&td->trim_list)) ||
602 ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) ) {
603 struct timeval comp_time;
604 unsigned long bytes_done[2] = { 0, 0 };
605 int min_evts = 0;
606 struct io_u *io_u;
607 int ret2, full;
608
609 if (td->terminate)
610 break;
611
612 update_tv_cache(td);
613
614 if (runtime_exceeded(td, &td->tv_cache)) {
615 td->terminate = 1;
616 break;
617 }
618
619 io_u = get_io_u(td);
620 if (!io_u)
621 break;
622
623 /*
624 * Add verification end_io handler, if asked to verify
625 * a previously written file.
626 */
627 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
628 !td_rw(td)) {
629 if (td->o.verify_async)
630 io_u->end_io = verify_io_u_async;
631 else
632 io_u->end_io = verify_io_u;
633 td_set_runstate(td, TD_VERIFYING);
634 } else if (in_ramp_time(td))
635 td_set_runstate(td, TD_RAMP);
636 else
637 td_set_runstate(td, TD_RUNNING);
638
639 ret = td_io_queue(td, io_u);
640 switch (ret) {
641 case FIO_Q_COMPLETED:
642 if (io_u->error) {
643 ret = -io_u->error;
644 clear_io_u(td, io_u);
645 } else if (io_u->resid) {
646 int bytes = io_u->xfer_buflen - io_u->resid;
647 struct fio_file *f = io_u->file;
648
649 /*
650 * zero read, fail
651 */
652 if (!bytes) {
653 td_verror(td, EIO, "full resid");
654 put_io_u(td, io_u);
655 break;
656 }
657
658 io_u->xfer_buflen = io_u->resid;
659 io_u->xfer_buf += bytes;
660 io_u->offset += bytes;
661
662 if (ddir_rw(io_u->ddir))
663 td->ts.short_io_u[io_u->ddir]++;
664
665 if (io_u->offset == f->real_file_size)
666 goto sync_done;
667
668 requeue_io_u(td, &io_u);
669 } else {
670sync_done:
671 if (__should_check_rate(td, 0) ||
672 __should_check_rate(td, 1))
673 fio_gettime(&comp_time, NULL);
674
675 ret = io_u_sync_complete(td, io_u, bytes_done);
676 if (ret < 0)
677 break;
678 }
679 break;
680 case FIO_Q_QUEUED:
681 /*
682 * if the engine doesn't have a commit hook,
683 * the io_u is really queued. if it does have such
684 * a hook, it has to call io_u_queued() itself.
685 */
686 if (td->io_ops->commit == NULL)
687 io_u_queued(td, io_u);
688 break;
689 case FIO_Q_BUSY:
690 requeue_io_u(td, &io_u);
691 ret2 = td_io_commit(td);
692 if (ret2 < 0)
693 ret = ret2;
694 break;
695 default:
696 assert(ret < 0);
697 put_io_u(td, io_u);
698 break;
699 }
700
701 if (break_on_this_error(td, &ret))
702 break;
703
704 /*
705 * See if we need to complete some commands
706 */
707 full = queue_full(td) || ret == FIO_Q_BUSY;
708 if (full || !td->o.iodepth_batch_complete) {
709 min_evts = min(td->o.iodepth_batch_complete,
710 td->cur_depth);
711 if (full && !min_evts)
712 min_evts = 1;
713
714 if (__should_check_rate(td, 0) ||
715 __should_check_rate(td, 1))
716 fio_gettime(&comp_time, NULL);
717
718 do {
719 ret = io_u_queued_complete(td, min_evts, bytes_done);
720 if (ret < 0)
721 break;
722
723 } while (full && (td->cur_depth > td->o.iodepth_low));
724 }
725
726 if (ret < 0)
727 break;
728 if (!(bytes_done[0] + bytes_done[1]))
729 continue;
730
731 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
732 if (check_min_rate(td, &comp_time, bytes_done)) {
733 if (exitall_on_terminate)
734 terminate_threads(td->groupid);
735 td_verror(td, EIO, "check_min_rate");
736 break;
737 }
738 }
739
740 if (td->o.thinktime) {
741 unsigned long long b;
742
743 b = td->io_blocks[0] + td->io_blocks[1];
744 if (!(b % td->o.thinktime_blocks)) {
745 int left;
746
747 if (td->o.thinktime_spin)
748 usec_spin(td->o.thinktime_spin);
749
750 left = td->o.thinktime - td->o.thinktime_spin;
751 if (left)
752 usec_sleep(td, left);
753 }
754 }
755 }
756
757 if (td->trim_entries)
758 printf("trim entries %ld\n", td->trim_entries);
759
760 if (td->o.fill_device && td->error == ENOSPC) {
761 td->error = 0;
762 td->terminate = 1;
763 }
764 if (!td->error) {
765 struct fio_file *f;
766
767 i = td->cur_depth;
768 if (i)
769 ret = io_u_queued_complete(td, i, NULL);
770
771 if (should_fsync(td) && td->o.end_fsync) {
772 td_set_runstate(td, TD_FSYNCING);
773
774 for_each_file(td, f, i) {
775 if (!fio_file_open(f))
776 continue;
777 fio_io_sync(td, f);
778 }
779 }
780 } else
781 cleanup_pending_aio(td);
782
783 /*
784 * stop job if we failed doing any IO
785 */
786 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
787 td->done = 1;
788}
789
790static void cleanup_io_u(struct thread_data *td)
791{
792 struct flist_head *entry, *n;
793 struct io_u *io_u;
794
795 flist_for_each_safe(entry, n, &td->io_u_freelist) {
796 io_u = flist_entry(entry, struct io_u, list);
797
798 flist_del(&io_u->list);
799 free(io_u);
800 }
801
802 free_io_mem(td);
803}
804
805static int init_io_u(struct thread_data *td)
806{
807 struct io_u *io_u;
808 unsigned int max_bs;
809 int cl_align, i, max_units;
810 char *p;
811
812 max_units = td->o.iodepth;
813 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
814 td->orig_buffer_size = (unsigned long long) max_bs
815 * (unsigned long long) max_units;
816
817 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
818 unsigned long bs;
819
820 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
821 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
822 }
823
824 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
825 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
826 return 1;
827 }
828
829 if (allocate_io_mem(td))
830 return 1;
831
832 if (td->o.odirect || td->o.mem_align ||
833 (td->io_ops->flags & FIO_RAWIO))
834 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
835 else
836 p = td->orig_buffer;
837
838 cl_align = os_cache_line_size();
839
840 for (i = 0; i < max_units; i++) {
841 void *ptr;
842
843 if (td->terminate)
844 return 1;
845
846 if (posix_memalign(&ptr, cl_align, sizeof(*io_u))) {
847 log_err("fio: posix_memalign=%s\n", strerror(errno));
848 break;
849 }
850
851 io_u = ptr;
852 memset(io_u, 0, sizeof(*io_u));
853 INIT_FLIST_HEAD(&io_u->list);
854 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
855
856 if (!(td->io_ops->flags & FIO_NOIO)) {
857 io_u->buf = p + max_bs * i;
858 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
859
860 if (td_write(td) && !td->o.refill_buffers)
861 io_u_fill_buffer(td, io_u, max_bs);
862 else if (td_write(td) && td->o.verify_pattern_bytes) {
863 /*
864 * Fill the buffer with the pattern if we are
865 * going to be doing writes.
866 */
867 fill_pattern(td, io_u->buf, max_bs, io_u);
868 }
869 }
870
871 io_u->index = i;
872 io_u->flags = IO_U_F_FREE;
873 flist_add(&io_u->list, &td->io_u_freelist);
874 }
875
876 return 0;
877}
878
879static int switch_ioscheduler(struct thread_data *td)
880{
881 char tmp[256], tmp2[128];
882 FILE *f;
883 int ret;
884
885 if (td->io_ops->flags & FIO_DISKLESSIO)
886 return 0;
887
888 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
889
890 f = fopen(tmp, "r+");
891 if (!f) {
892 if (errno == ENOENT) {
893 log_err("fio: os or kernel doesn't support IO scheduler"
894 " switching\n");
895 return 0;
896 }
897 td_verror(td, errno, "fopen iosched");
898 return 1;
899 }
900
901 /*
902 * Set io scheduler.
903 */
904 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
905 if (ferror(f) || ret != 1) {
906 td_verror(td, errno, "fwrite");
907 fclose(f);
908 return 1;
909 }
910
911 rewind(f);
912
913 /*
914 * Read back and check that the selected scheduler is now the default.
915 */
916 ret = fread(tmp, 1, sizeof(tmp), f);
917 if (ferror(f) || ret < 0) {
918 td_verror(td, errno, "fread");
919 fclose(f);
920 return 1;
921 }
922
923 sprintf(tmp2, "[%s]", td->o.ioscheduler);
924 if (!strstr(tmp, tmp2)) {
925 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
926 td_verror(td, EINVAL, "iosched_switch");
927 fclose(f);
928 return 1;
929 }
930
931 fclose(f);
932 return 0;
933}
934
935static int keep_running(struct thread_data *td)
936{
937 unsigned long long io_done;
938
939 if (td->done)
940 return 0;
941 if (td->o.time_based)
942 return 1;
943 if (td->o.loops) {
944 td->o.loops--;
945 return 1;
946 }
947
948 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
949 + td->io_skip_bytes;
950 if (io_done < td->o.size)
951 return 1;
952
953 return 0;
954}
955
956static void reset_io_counters(struct thread_data *td)
957{
958 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
959 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
960 td->zone_bytes = 0;
961 td->rate_bytes[0] = td->rate_bytes[1] = 0;
962 td->rate_blocks[0] = td->rate_blocks[1] = 0;
963
964 td->last_was_sync = 0;
965
966 /*
967 * reset file done count if we are to start over
968 */
969 if (td->o.time_based || td->o.loops)
970 td->nr_done_files = 0;
971
972 /*
973 * Set the same seed to get repeatable runs
974 */
975 td_fill_rand_seeds(td);
976}
977
978void reset_all_stats(struct thread_data *td)
979{
980 struct timeval tv;
981 int i;
982
983 reset_io_counters(td);
984
985 for (i = 0; i < 2; i++) {
986 td->io_bytes[i] = 0;
987 td->io_blocks[i] = 0;
988 td->io_issues[i] = 0;
989 td->ts.total_io_u[i] = 0;
990 }
991
992 fio_gettime(&tv, NULL);
993 td->ts.runtime[0] = 0;
994 td->ts.runtime[1] = 0;
995 memcpy(&td->epoch, &tv, sizeof(tv));
996 memcpy(&td->start, &tv, sizeof(tv));
997}
998
999static void clear_io_state(struct thread_data *td)
1000{
1001 struct fio_file *f;
1002 unsigned int i;
1003
1004 reset_io_counters(td);
1005
1006 close_files(td);
1007 for_each_file(td, f, i)
1008 fio_file_clear_done(f);
1009}
1010
1011static int exec_string(const char *string)
1012{
1013 int ret, newlen = strlen(string) + 1 + 8;
1014 char *str;
1015
1016 str = malloc(newlen);
1017 sprintf(str, "sh -c %s", string);
1018
1019 ret = system(str);
1020 if (ret == -1)
1021 log_err("fio: exec of cmd <%s> failed\n", str);
1022
1023 free(str);
1024 return ret;
1025}
1026
1027/*
1028 * Entry point for the thread based jobs. The process based jobs end up
1029 * here as well, after a little setup.
1030 */
1031static void *thread_main(void *data)
1032{
1033 unsigned long long elapsed;
1034 struct thread_data *td = data;
1035 pthread_condattr_t attr;
1036 int clear_state;
1037
1038 if (!td->o.use_thread)
1039 setsid();
1040
1041 td->pid = getpid();
1042
1043 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1044
1045 INIT_FLIST_HEAD(&td->io_u_freelist);
1046 INIT_FLIST_HEAD(&td->io_u_busylist);
1047 INIT_FLIST_HEAD(&td->io_u_requeues);
1048 INIT_FLIST_HEAD(&td->io_log_list);
1049 INIT_FLIST_HEAD(&td->io_hist_list);
1050 INIT_FLIST_HEAD(&td->verify_list);
1051 INIT_FLIST_HEAD(&td->trim_list);
1052 pthread_mutex_init(&td->io_u_lock, NULL);
1053 td->io_hist_tree = RB_ROOT;
1054
1055 pthread_condattr_init(&attr);
1056 pthread_cond_init(&td->verify_cond, &attr);
1057 pthread_cond_init(&td->free_cond, &attr);
1058
1059 td_set_runstate(td, TD_INITIALIZED);
1060 dprint(FD_MUTEX, "up startup_mutex\n");
1061 fio_mutex_up(startup_mutex);
1062 dprint(FD_MUTEX, "wait on td->mutex\n");
1063 fio_mutex_down(td->mutex);
1064 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1065
1066 /*
1067 * the ->mutex mutex is now no longer used, close it to avoid
1068 * eating a file descriptor
1069 */
1070 fio_mutex_remove(td->mutex);
1071
1072 if (td->o.uid != -1U && setuid(td->o.uid)) {
1073 td_verror(td, errno, "setuid");
1074 goto err;
1075 }
1076 if (td->o.gid != -1U && setgid(td->o.gid)) {
1077 td_verror(td, errno, "setgid");
1078 goto err;
1079 }
1080
1081 /*
1082 * May alter parameters that init_io_u() will use, so we need to
1083 * do this first.
1084 */
1085 if (init_iolog(td))
1086 goto err;
1087
1088 if (init_io_u(td))
1089 goto err;
1090
1091 if (td->o.verify_async && verify_async_init(td))
1092 goto err;
1093
1094 if (td->o.cpumask_set && fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1095 td_verror(td, errno, "cpu_set_affinity");
1096 goto err;
1097 }
1098
1099 /*
1100 * If we have a gettimeofday() thread, make sure we exclude that
1101 * thread from this job
1102 */
1103 if (td->o.gtod_cpu) {
1104 fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
1105 if (fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1106 td_verror(td, errno, "cpu_set_affinity");
1107 goto err;
1108 }
1109 }
1110
1111 if (td->ioprio_set) {
1112 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1113 td_verror(td, errno, "ioprio_set");
1114 goto err;
1115 }
1116 }
1117
1118 if (td->o.cgroup_weight && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1119 goto err;
1120
1121 if (nice(td->o.nice) == -1) {
1122 td_verror(td, errno, "nice");
1123 goto err;
1124 }
1125
1126 if (td->o.ioscheduler && switch_ioscheduler(td))
1127 goto err;
1128
1129 if (!td->o.create_serialize && setup_files(td))
1130 goto err;
1131
1132 if (td_io_init(td))
1133 goto err;
1134
1135 if (init_random_map(td))
1136 goto err;
1137
1138 if (td->o.exec_prerun) {
1139 if (exec_string(td->o.exec_prerun))
1140 goto err;
1141 }
1142
1143 if (td->o.pre_read) {
1144 if (pre_read_files(td) < 0)
1145 goto err;
1146 }
1147
1148 fio_gettime(&td->epoch, NULL);
1149 getrusage(RUSAGE_SELF, &td->ts.ru_start);
1150
1151 clear_state = 0;
1152 while (keep_running(td)) {
1153 fio_gettime(&td->start, NULL);
1154 memcpy(&td->ts.stat_sample_time[0], &td->start,
1155 sizeof(td->start));
1156 memcpy(&td->ts.stat_sample_time[1], &td->start,
1157 sizeof(td->start));
1158 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1159
1160 if (td->o.ratemin[0] || td->o.ratemin[1])
1161 memcpy(&td->lastrate, &td->ts.stat_sample_time,
1162 sizeof(td->lastrate));
1163
1164 if (clear_state)
1165 clear_io_state(td);
1166
1167 prune_io_piece_log(td);
1168
1169 do_io(td);
1170
1171 clear_state = 1;
1172
1173 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1174 elapsed = utime_since_now(&td->start);
1175 td->ts.runtime[DDIR_READ] += elapsed;
1176 }
1177 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1178 elapsed = utime_since_now(&td->start);
1179 td->ts.runtime[DDIR_WRITE] += elapsed;
1180 }
1181
1182 if (td->error || td->terminate)
1183 break;
1184
1185 if (!td->o.do_verify ||
1186 td->o.verify == VERIFY_NONE ||
1187 (td->io_ops->flags & FIO_UNIDIR))
1188 continue;
1189
1190 clear_io_state(td);
1191
1192 fio_gettime(&td->start, NULL);
1193
1194 do_verify(td);
1195
1196 td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1197
1198 if (td->error || td->terminate)
1199 break;
1200 }
1201
1202 update_rusage_stat(td);
1203 td->ts.runtime[0] = (td->ts.runtime[0] + 999) / 1000;
1204 td->ts.runtime[1] = (td->ts.runtime[1] + 999) / 1000;
1205 td->ts.total_run_time = mtime_since_now(&td->epoch);
1206 td->ts.io_bytes[0] = td->io_bytes[0];
1207 td->ts.io_bytes[1] = td->io_bytes[1];
1208
1209 fio_mutex_down(writeout_mutex);
1210 if (td->ts.bw_log) {
1211 if (td->o.bw_log_file) {
1212 finish_log_named(td, td->ts.bw_log,
1213 td->o.bw_log_file, "bw");
1214 } else
1215 finish_log(td, td->ts.bw_log, "bw");
1216 }
1217 if (td->ts.lat_log) {
1218 if (td->o.lat_log_file) {
1219 finish_log_named(td, td->ts.lat_log,
1220 td->o.lat_log_file, "lat");
1221 } else
1222 finish_log(td, td->ts.lat_log, "lat");
1223 }
1224 if (td->ts.slat_log) {
1225 if (td->o.lat_log_file) {
1226 finish_log_named(td, td->ts.slat_log,
1227 td->o.lat_log_file, "slat");
1228 } else
1229 finish_log(td, td->ts.slat_log, "slat");
1230 }
1231 if (td->ts.clat_log) {
1232 if (td->o.lat_log_file) {
1233 finish_log_named(td, td->ts.clat_log,
1234 td->o.lat_log_file, "clat");
1235 } else
1236 finish_log(td, td->ts.clat_log, "clat");
1237 }
1238 fio_mutex_up(writeout_mutex);
1239 if (td->o.exec_postrun)
1240 exec_string(td->o.exec_postrun);
1241
1242 if (exitall_on_terminate)
1243 terminate_threads(td->groupid);
1244
1245err:
1246 if (td->error)
1247 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1248 td->verror);
1249
1250 if (td->o.verify_async)
1251 verify_async_exit(td);
1252
1253 close_and_free_files(td);
1254 close_ioengine(td);
1255 cleanup_io_u(td);
1256 cgroup_shutdown(td, &cgroup_mnt);
1257
1258 if (td->o.cpumask_set) {
1259 int ret = fio_cpuset_exit(&td->o.cpumask);
1260
1261 td_verror(td, ret, "fio_cpuset_exit");
1262 }
1263
1264 /*
1265 * do this very late, it will log file closing as well
1266 */
1267 if (td->o.write_iolog_file)
1268 write_iolog_close(td);
1269
1270 options_mem_free(td);
1271 td_set_runstate(td, TD_EXITED);
1272 return (void *) (unsigned long) td->error;
1273}
1274
1275/*
1276 * We cannot pass the td data into a forked process, so attach the td and
1277 * pass it to the thread worker.
1278 */
1279static int fork_main(int shmid, int offset)
1280{
1281 struct thread_data *td;
1282 void *data, *ret;
1283
1284 data = shmat(shmid, NULL, 0);
1285 if (data == (void *) -1) {
1286 int __err = errno;
1287
1288 perror("shmat");
1289 return __err;
1290 }
1291
1292 td = data + offset * sizeof(struct thread_data);
1293 ret = thread_main(td);
1294 shmdt(data);
1295 return (int) (unsigned long) ret;
1296}
1297
1298/*
1299 * Run over the job map and reap the threads that have exited, if any.
1300 */
1301static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1302{
1303 struct thread_data *td;
1304 int i, cputhreads, realthreads, pending, status, ret;
1305
1306 /*
1307 * reap exited threads (TD_EXITED -> TD_REAPED)
1308 */
1309 realthreads = pending = cputhreads = 0;
1310 for_each_td(td, i) {
1311 int flags = 0;
1312
1313 /*
1314 * ->io_ops is NULL for a thread that has closed its
1315 * io engine
1316 */
1317 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1318 cputhreads++;
1319 else
1320 realthreads++;
1321
1322 if (!td->pid) {
1323 pending++;
1324 continue;
1325 }
1326 if (td->runstate == TD_REAPED)
1327 continue;
1328 if (td->o.use_thread) {
1329 if (td->runstate == TD_EXITED) {
1330 td_set_runstate(td, TD_REAPED);
1331 goto reaped;
1332 }
1333 continue;
1334 }
1335
1336 flags = WNOHANG;
1337 if (td->runstate == TD_EXITED)
1338 flags = 0;
1339
1340 /*
1341 * check if someone quit or got killed in an unusual way
1342 */
1343 ret = waitpid(td->pid, &status, flags);
1344 if (ret < 0) {
1345 if (errno == ECHILD) {
1346 log_err("fio: pid=%d disappeared %d\n",
1347 (int) td->pid, td->runstate);
1348 td_set_runstate(td, TD_REAPED);
1349 goto reaped;
1350 }
1351 perror("waitpid");
1352 } else if (ret == td->pid) {
1353 if (WIFSIGNALED(status)) {
1354 int sig = WTERMSIG(status);
1355
1356 if (sig != SIGTERM)
1357 log_err("fio: pid=%d, got signal=%d\n",
1358 (int) td->pid, sig);
1359 td_set_runstate(td, TD_REAPED);
1360 goto reaped;
1361 }
1362 if (WIFEXITED(status)) {
1363 if (WEXITSTATUS(status) && !td->error)
1364 td->error = WEXITSTATUS(status);
1365
1366 td_set_runstate(td, TD_REAPED);
1367 goto reaped;
1368 }
1369 }
1370
1371 /*
1372 * thread is not dead, continue
1373 */
1374 pending++;
1375 continue;
1376reaped:
1377 (*nr_running)--;
1378 (*m_rate) -= (td->o.ratemin[0] + td->o.ratemin[1]);
1379 (*t_rate) -= (td->o.rate[0] + td->o.rate[1]);
1380 if (!td->pid)
1381 pending--;
1382
1383 if (td->error)
1384 exit_value++;
1385
1386 done_secs += mtime_since_now(&td->epoch) / 1000;
1387 }
1388
1389 if (*nr_running == cputhreads && !pending && realthreads)
1390 terminate_threads(TERMINATE_ALL);
1391}
1392
1393static void *gtod_thread_main(void *data)
1394{
1395 fio_mutex_up(startup_mutex);
1396
1397 /*
1398 * As long as we have jobs around, update the clock. It would be nice
1399 * to have some way of NOT hammering that CPU with gettimeofday(),
1400 * but I'm not sure what to use outside of a simple CPU nop to relax
1401 * it - we don't want to lose precision.
1402 */
1403 while (threads) {
1404 fio_gtod_update();
1405 nop;
1406 }
1407
1408 return NULL;
1409}
1410
1411static int fio_start_gtod_thread(void)
1412{
1413 pthread_attr_t attr;
1414 int ret;
1415
1416 pthread_attr_init(&attr);
1417 pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN);
1418 ret = pthread_create(&gtod_thread, &attr, gtod_thread_main, NULL);
1419 pthread_attr_destroy(&attr);
1420 if (ret) {
1421 log_err("Can't create gtod thread: %s\n", strerror(ret));
1422 return 1;
1423 }
1424
1425 ret = pthread_detach(gtod_thread);
1426 if (ret) {
1427 log_err("Can't detatch gtod thread: %s\n", strerror(ret));
1428 return 1;
1429 }
1430
1431 dprint(FD_MUTEX, "wait on startup_mutex\n");
1432 fio_mutex_down(startup_mutex);
1433 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1434 return 0;
1435}
1436
1437/*
1438 * Main function for kicking off and reaping jobs, as needed.
1439 */
1440static void run_threads(void)
1441{
1442 struct thread_data *td;
1443 unsigned long spent;
1444 int i, todo, nr_running, m_rate, t_rate, nr_started;
1445
1446 if (fio_pin_memory())
1447 return;
1448
1449 if (fio_gtod_offload && fio_start_gtod_thread())
1450 return;
1451
1452 if (!terse_output) {
1453 log_info("Starting ");
1454 if (nr_thread)
1455 log_info("%d thread%s", nr_thread,
1456 nr_thread > 1 ? "s" : "");
1457 if (nr_process) {
1458 if (nr_thread)
1459 printf(" and ");
1460 log_info("%d process%s", nr_process,
1461 nr_process > 1 ? "es" : "");
1462 }
1463 log_info("\n");
1464 fflush(stdout);
1465 }
1466
1467 set_sig_handlers();
1468
1469 todo = thread_number;
1470 nr_running = 0;
1471 nr_started = 0;
1472 m_rate = t_rate = 0;
1473
1474 for_each_td(td, i) {
1475 print_status_init(td->thread_number - 1);
1476
1477 if (!td->o.create_serialize) {
1478 init_disk_util(td);
1479 continue;
1480 }
1481
1482 /*
1483 * do file setup here so it happens sequentially,
1484 * we don't want X number of threads getting their
1485 * client data interspersed on disk
1486 */
1487 if (setup_files(td)) {
1488 exit_value++;
1489 if (td->error)
1490 log_err("fio: pid=%d, err=%d/%s\n",
1491 (int) td->pid, td->error, td->verror);
1492 td_set_runstate(td, TD_REAPED);
1493 todo--;
1494 } else {
1495 struct fio_file *f;
1496 unsigned int i;
1497
1498 /*
1499 * for sharing to work, each job must always open
1500 * its own files. so close them, if we opened them
1501 * for creation
1502 */
1503 for_each_file(td, f, i) {
1504 if (fio_file_open(f))
1505 td_io_close_file(td, f);
1506 }
1507 }
1508
1509 init_disk_util(td);
1510 }
1511
1512 set_genesis_time();
1513
1514 while (todo) {
1515 struct thread_data *map[MAX_JOBS];
1516 struct timeval this_start;
1517 int this_jobs = 0, left;
1518
1519 /*
1520 * create threads (TD_NOT_CREATED -> TD_CREATED)
1521 */
1522 for_each_td(td, i) {
1523 if (td->runstate != TD_NOT_CREATED)
1524 continue;
1525
1526 /*
1527 * never got a chance to start, killed by other
1528 * thread for some reason
1529 */
1530 if (td->terminate) {
1531 todo--;
1532 continue;
1533 }
1534
1535 if (td->o.start_delay) {
1536 spent = mtime_since_genesis();
1537
1538 if (td->o.start_delay * 1000 > spent)
1539 continue;
1540 }
1541
1542 if (td->o.stonewall && (nr_started || nr_running)) {
1543 dprint(FD_PROCESS, "%s: stonewall wait\n",
1544 td->o.name);
1545 break;
1546 }
1547
1548 /*
1549 * Set state to created. Thread will transition
1550 * to TD_INITIALIZED when it's done setting up.
1551 */
1552 td_set_runstate(td, TD_CREATED);
1553 map[this_jobs++] = td;
1554 nr_started++;
1555
1556 if (td->o.use_thread) {
1557 int ret;
1558
1559 dprint(FD_PROCESS, "will pthread_create\n");
1560 ret = pthread_create(&td->thread, NULL,
1561 thread_main, td);
1562 if (ret) {
1563 log_err("pthread_create: %s\n",
1564 strerror(ret));
1565 nr_started--;
1566 break;
1567 }
1568 ret = pthread_detach(td->thread);
1569 if (ret)
1570 log_err("pthread_detach: %s",
1571 strerror(ret));
1572 } else {
1573 pid_t pid;
1574 dprint(FD_PROCESS, "will fork\n");
1575 pid = fork();
1576 if (!pid) {
1577 int ret = fork_main(shm_id, i);
1578
1579 _exit(ret);
1580 } else if (i == fio_debug_jobno)
1581 *fio_debug_jobp = pid;
1582 }
1583 dprint(FD_MUTEX, "wait on startup_mutex\n");
1584 if (fio_mutex_down_timeout(startup_mutex, 10)) {
1585 log_err("fio: job startup hung? exiting.\n");
1586 terminate_threads(TERMINATE_ALL);
1587 fio_abort = 1;
1588 nr_started--;
1589 break;
1590 }
1591 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1592 }
1593
1594 /*
1595 * Wait for the started threads to transition to
1596 * TD_INITIALIZED.
1597 */
1598 fio_gettime(&this_start, NULL);
1599 left = this_jobs;
1600 while (left && !fio_abort) {
1601 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1602 break;
1603
1604 usleep(100000);
1605
1606 for (i = 0; i < this_jobs; i++) {
1607 td = map[i];
1608 if (!td)
1609 continue;
1610 if (td->runstate == TD_INITIALIZED) {
1611 map[i] = NULL;
1612 left--;
1613 } else if (td->runstate >= TD_EXITED) {
1614 map[i] = NULL;
1615 left--;
1616 todo--;
1617 nr_running++; /* work-around... */
1618 }
1619 }
1620 }
1621
1622 if (left) {
1623 log_err("fio: %d jobs failed to start\n", left);
1624 for (i = 0; i < this_jobs; i++) {
1625 td = map[i];
1626 if (!td)
1627 continue;
1628 kill(td->pid, SIGTERM);
1629 }
1630 break;
1631 }
1632
1633 /*
1634 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1635 */
1636 for_each_td(td, i) {
1637 if (td->runstate != TD_INITIALIZED)
1638 continue;
1639
1640 if (in_ramp_time(td))
1641 td_set_runstate(td, TD_RAMP);
1642 else
1643 td_set_runstate(td, TD_RUNNING);
1644 nr_running++;
1645 nr_started--;
1646 m_rate += td->o.ratemin[0] + td->o.ratemin[1];
1647 t_rate += td->o.rate[0] + td->o.rate[1];
1648 todo--;
1649 fio_mutex_up(td->mutex);
1650 }
1651
1652 reap_threads(&nr_running, &t_rate, &m_rate);
1653
1654 if (todo)
1655 usleep(100000);
1656 }
1657
1658 while (nr_running) {
1659 reap_threads(&nr_running, &t_rate, &m_rate);
1660 usleep(10000);
1661 }
1662
1663 update_io_ticks();
1664 fio_unpin_memory();
1665}
1666
1667int main(int argc, char *argv[])
1668{
1669 long ps;
1670
1671 sinit();
1672 init_rand(&__fio_rand_state);
1673
1674 /*
1675 * We need locale for number printing, if it isn't set then just
1676 * go with the US format.
1677 */
1678 if (!getenv("LC_NUMERIC"))
1679 setlocale(LC_NUMERIC, "en_US");
1680
1681 ps = sysconf(_SC_PAGESIZE);
1682 if (ps < 0) {
1683 log_err("Failed to get page size\n");
1684 return 1;
1685 }
1686
1687 page_size = ps;
1688 page_mask = ps - 1;
1689
1690 fio_keywords_init();
1691
1692 if (parse_options(argc, argv))
1693 return 1;
1694
1695 if (exec_profile && load_profile(exec_profile))
1696 return 1;
1697
1698 if (!thread_number)
1699 return 0;
1700
1701 if (write_bw_log) {
1702 setup_log(&agg_io_log[DDIR_READ]);
1703 setup_log(&agg_io_log[DDIR_WRITE]);
1704 }
1705
1706 startup_mutex = fio_mutex_init(0);
1707 if (startup_mutex == NULL)
1708 return 1;
1709 writeout_mutex = fio_mutex_init(1);
1710 if (writeout_mutex == NULL)
1711 return 1;
1712
1713 set_genesis_time();
1714
1715 posix_timer_setup();
1716 status_timer_arm();
1717
1718 cgroup_list = smalloc(sizeof(*cgroup_list));
1719 INIT_FLIST_HEAD(cgroup_list);
1720
1721 run_threads();
1722
1723 if (!fio_abort) {
1724 show_run_stats();
1725 if (write_bw_log) {
1726 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1727 __finish_log(agg_io_log[DDIR_WRITE],
1728 "agg-write_bw.log");
1729 }
1730 }
1731
1732 cgroup_kill(cgroup_list);
1733 sfree(cgroup_list);
1734 sfree(cgroup_mnt);
1735
1736 posix_timer_teardown();
1737 fio_mutex_remove(startup_mutex);
1738 fio_mutex_remove(writeout_mutex);
1739 return exit_value;
1740}