[PATCH] Allow io engine to do the file setup
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22#include <unistd.h>
23#include <fcntl.h>
24#include <string.h>
25#include <signal.h>
26#include <time.h>
27#include <assert.h>
28#include <sys/stat.h>
29#include <sys/wait.h>
30#include <sys/ipc.h>
31#include <sys/shm.h>
32#include <sys/ioctl.h>
33#include <sys/mman.h>
34
35#include "fio.h"
36#include "os.h"
37
38#define MASK (4095)
39
40#define ALIGN(buf) (char *) (((unsigned long) (buf) + MASK) & ~(MASK))
41
42int groupid = 0;
43int thread_number = 0;
44static char run_str[MAX_JOBS + 1];
45int shm_id = 0;
46static struct timeval genesis;
47static int temp_stall_ts;
48char *fio_inst_prefix = _INST_PREFIX;
49
50static void print_thread_status(void);
51
52extern unsigned long long mlock_size;
53
54/*
55 * Thread life cycle. Once a thread has a runstate beyond TD_INITIALIZED, it
56 * will never back again. It may cycle between running/verififying/fsyncing.
57 * Once the thread reaches TD_EXITED, it is just waiting for the core to
58 * reap it.
59 */
60enum {
61 TD_NOT_CREATED = 0,
62 TD_CREATED,
63 TD_INITIALIZED,
64 TD_RUNNING,
65 TD_VERIFYING,
66 TD_FSYNCING,
67 TD_EXITED,
68 TD_REAPED,
69};
70
71#define should_fsync(td) ((td_write(td) || td_rw(td)) && (!(td)->odirect || (td)->override_sync))
72
73static volatile int startup_sem;
74
75#define TERMINATE_ALL (-1)
76#define JOB_START_TIMEOUT (5 * 1000)
77
78static void terminate_threads(int group_id)
79{
80 int i;
81
82 for (i = 0; i < thread_number; i++) {
83 struct thread_data *td = &threads[i];
84
85 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
86 td->terminate = 1;
87 td->start_delay = 0;
88 }
89 }
90}
91
92static void sig_handler(int sig)
93{
94 switch (sig) {
95 case SIGALRM:
96 update_io_ticks();
97 disk_util_timer_arm();
98 print_thread_status();
99 break;
100 default:
101 printf("\nfio: terminating on signal\n");
102 fflush(stdout);
103 terminate_threads(TERMINATE_ALL);
104 break;
105 }
106}
107
108/*
109 * The ->file_map[] contains a map of blocks we have or have not done io
110 * to yet. Used to make sure we cover the entire range in a fair fashion.
111 */
112static int random_map_free(struct thread_data *td, unsigned long long block)
113{
114 unsigned int idx = RAND_MAP_IDX(td, block);
115 unsigned int bit = RAND_MAP_BIT(td, block);
116
117 return (td->file_map[idx] & (1UL << bit)) == 0;
118}
119
120/*
121 * Return the next free block in the map.
122 */
123static int get_next_free_block(struct thread_data *td, unsigned long long *b)
124{
125 int i;
126
127 *b = 0;
128 i = 0;
129 while ((*b) * td->min_bs < td->io_size) {
130 if (td->file_map[i] != -1UL) {
131 *b += ffz(td->file_map[i]);
132 return 0;
133 }
134
135 *b += BLOCKS_PER_MAP;
136 i++;
137 }
138
139 return 1;
140}
141
142/*
143 * Mark a given offset as used in the map.
144 */
145static void mark_random_map(struct thread_data *td, struct io_u *io_u)
146{
147 unsigned long long block = io_u->offset / (unsigned long long) td->min_bs;
148 unsigned int blocks = 0;
149
150 while (blocks < (io_u->buflen / td->min_bs)) {
151 unsigned int idx, bit;
152
153 if (!random_map_free(td, block))
154 break;
155
156 idx = RAND_MAP_IDX(td, block);
157 bit = RAND_MAP_BIT(td, block);
158
159 assert(idx < td->num_maps);
160
161 td->file_map[idx] |= (1UL << bit);
162 block++;
163 blocks++;
164 }
165
166 if ((blocks * td->min_bs) < io_u->buflen)
167 io_u->buflen = blocks * td->min_bs;
168}
169
170/*
171 * For random io, generate a random new block and see if it's used. Repeat
172 * until we find a free one. For sequential io, just return the end of
173 * the last io issued.
174 */
175static int get_next_offset(struct thread_data *td, unsigned long long *offset)
176{
177 unsigned long long b, rb;
178 long r;
179
180 if (!td->sequential) {
181 unsigned long long max_blocks = td->io_size / td->min_bs;
182 int loops = 50;
183
184 do {
185 r = os_random_long(&td->random_state);
186 b = ((max_blocks - 1) * r / (unsigned long long) (RAND_MAX+1.0));
187 rb = b + (td->file_offset / td->min_bs);
188 loops--;
189 } while (!random_map_free(td, rb) && loops);
190
191 if (!loops) {
192 if (get_next_free_block(td, &b))
193 return 1;
194 }
195 } else
196 b = td->last_pos / td->min_bs;
197
198 *offset = (b * td->min_bs) + td->file_offset;
199 if (*offset > td->real_file_size)
200 return 1;
201
202 return 0;
203}
204
205static unsigned int get_next_buflen(struct thread_data *td)
206{
207 unsigned int buflen;
208 long r;
209
210 if (td->min_bs == td->max_bs)
211 buflen = td->min_bs;
212 else {
213 r = os_random_long(&td->bsrange_state);
214 buflen = (1 + (double) (td->max_bs - 1) * r / (RAND_MAX + 1.0));
215 buflen = (buflen + td->min_bs - 1) & ~(td->min_bs - 1);
216 }
217
218 if (buflen > td->io_size - td->this_io_bytes[td->ddir])
219 buflen = td->io_size - td->this_io_bytes[td->ddir];
220
221 return buflen;
222}
223
224/*
225 * Check if we are above the minimum rate given.
226 */
227static int check_min_rate(struct thread_data *td, struct timeval *now)
228{
229 unsigned long spent;
230 unsigned long rate;
231 int ddir = td->ddir;
232
233 /*
234 * allow a 2 second settle period in the beginning
235 */
236 if (mtime_since(&td->start, now) < 2000)
237 return 0;
238
239 /*
240 * if rate blocks is set, sample is running
241 */
242 if (td->rate_bytes) {
243 spent = mtime_since(&td->lastrate, now);
244 if (spent < td->ratecycle)
245 return 0;
246
247 rate = (td->this_io_bytes[ddir] - td->rate_bytes) / spent;
248 if (rate < td->ratemin) {
249 fprintf(f_out, "%s: min rate %d not met, got %ldKiB/sec\n", td->name, td->ratemin, rate);
250 if (rate_quit)
251 terminate_threads(td->groupid);
252 return 1;
253 }
254 }
255
256 td->rate_bytes = td->this_io_bytes[ddir];
257 memcpy(&td->lastrate, now, sizeof(*now));
258 return 0;
259}
260
261static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
262{
263 if (!td->timeout)
264 return 0;
265 if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
266 return 1;
267
268 return 0;
269}
270
271static void fill_random_bytes(struct thread_data *td,
272 unsigned char *p, unsigned int len)
273{
274 unsigned int todo;
275 double r;
276
277 while (len) {
278 r = os_random_double(&td->verify_state);
279
280 /*
281 * lrand48_r seems to be broken and only fill the bottom
282 * 32-bits, even on 64-bit archs with 64-bit longs
283 */
284 todo = sizeof(r);
285 if (todo > len)
286 todo = len;
287
288 memcpy(p, &r, todo);
289
290 len -= todo;
291 p += todo;
292 }
293}
294
295static void hexdump(void *buffer, int len)
296{
297 unsigned char *p = buffer;
298 int i;
299
300 for (i = 0; i < len; i++)
301 fprintf(f_out, "%02x", p[i]);
302 fprintf(f_out, "\n");
303}
304
305static int verify_io_u_crc32(struct verify_header *hdr, struct io_u *io_u)
306{
307 unsigned char *p = (unsigned char *) io_u->buf;
308 unsigned long c;
309
310 p += sizeof(*hdr);
311 c = crc32(p, hdr->len - sizeof(*hdr));
312
313 if (c != hdr->crc32) {
314 log_err("crc32: verify failed at %llu/%u\n", io_u->offset, io_u->buflen);
315 log_err("crc32: wanted %lx, got %lx\n", hdr->crc32, c);
316 return 1;
317 }
318
319 return 0;
320}
321
322static int verify_io_u_md5(struct verify_header *hdr, struct io_u *io_u)
323{
324 unsigned char *p = (unsigned char *) io_u->buf;
325 struct md5_ctx md5_ctx;
326
327 memset(&md5_ctx, 0, sizeof(md5_ctx));
328 p += sizeof(*hdr);
329 md5_update(&md5_ctx, p, hdr->len - sizeof(*hdr));
330
331 if (memcmp(hdr->md5_digest, md5_ctx.hash, sizeof(md5_ctx.hash))) {
332 log_err("md5: verify failed at %llu/%u\n", io_u->offset, io_u->buflen);
333 hexdump(hdr->md5_digest, sizeof(hdr->md5_digest));
334 hexdump(md5_ctx.hash, sizeof(md5_ctx.hash));
335 return 1;
336 }
337
338 return 0;
339}
340
341static int verify_io_u(struct io_u *io_u)
342{
343 struct verify_header *hdr = (struct verify_header *) io_u->buf;
344 int ret;
345
346 if (hdr->fio_magic != FIO_HDR_MAGIC)
347 return 1;
348
349 if (hdr->verify_type == VERIFY_MD5)
350 ret = verify_io_u_md5(hdr, io_u);
351 else if (hdr->verify_type == VERIFY_CRC32)
352 ret = verify_io_u_crc32(hdr, io_u);
353 else {
354 log_err("Bad verify type %d\n", hdr->verify_type);
355 ret = 1;
356 }
357
358 return ret;
359}
360
361static void fill_crc32(struct verify_header *hdr, void *p, unsigned int len)
362{
363 hdr->crc32 = crc32(p, len);
364}
365
366static void fill_md5(struct verify_header *hdr, void *p, unsigned int len)
367{
368 struct md5_ctx md5_ctx;
369
370 memset(&md5_ctx, 0, sizeof(md5_ctx));
371 md5_update(&md5_ctx, p, len);
372 memcpy(hdr->md5_digest, md5_ctx.hash, sizeof(md5_ctx.hash));
373}
374
375/*
376 * Return the data direction for the next io_u. If the job is a
377 * mixed read/write workload, check the rwmix cycle and switch if
378 * necessary.
379 */
380static int get_rw_ddir(struct thread_data *td)
381{
382 if (td_rw(td)) {
383 struct timeval now;
384 unsigned long elapsed;
385
386 gettimeofday(&now, NULL);
387 elapsed = mtime_since_now(&td->rwmix_switch);
388
389 /*
390 * Check if it's time to seed a new data direction.
391 */
392 if (elapsed >= td->rwmixcycle) {
393 int v;
394 long r;
395
396 r = os_random_long(&td->rwmix_state);
397 v = 1 + (int) (100.0 * (r / (RAND_MAX + 1.0)));
398 if (v < td->rwmixread)
399 td->rwmix_ddir = DDIR_READ;
400 else
401 td->rwmix_ddir = DDIR_WRITE;
402 memcpy(&td->rwmix_switch, &now, sizeof(now));
403 }
404 return td->rwmix_ddir;
405 } else if (td_read(td))
406 return DDIR_READ;
407 else
408 return DDIR_WRITE;
409}
410
411/*
412 * fill body of io_u->buf with random data and add a header with the
413 * crc32 or md5 sum of that data.
414 */
415static void populate_io_u(struct thread_data *td, struct io_u *io_u)
416{
417 unsigned char *p = (unsigned char *) io_u->buf;
418 struct verify_header hdr;
419
420 hdr.fio_magic = FIO_HDR_MAGIC;
421 hdr.len = io_u->buflen;
422 p += sizeof(hdr);
423 fill_random_bytes(td, p, io_u->buflen - sizeof(hdr));
424
425 if (td->verify == VERIFY_MD5) {
426 fill_md5(&hdr, p, io_u->buflen - sizeof(hdr));
427 hdr.verify_type = VERIFY_MD5;
428 } else {
429 fill_crc32(&hdr, p, io_u->buflen - sizeof(hdr));
430 hdr.verify_type = VERIFY_CRC32;
431 }
432
433 memcpy(io_u->buf, &hdr, sizeof(hdr));
434}
435
436static int td_io_prep(struct thread_data *td, struct io_u *io_u)
437{
438 if (td->io_ops->prep && td->io_ops->prep(td, io_u))
439 return 1;
440
441 return 0;
442}
443
444void put_io_u(struct thread_data *td, struct io_u *io_u)
445{
446 list_del(&io_u->list);
447 list_add(&io_u->list, &td->io_u_freelist);
448 td->cur_depth--;
449}
450
451static int fill_io_u(struct thread_data *td, struct io_u *io_u)
452{
453 /*
454 * If using an iolog, grab next piece if any available.
455 */
456 if (td->read_iolog)
457 return read_iolog_get(td, io_u);
458
459 /*
460 * No log, let the seq/rand engine retrieve the next position.
461 */
462 if (!get_next_offset(td, &io_u->offset)) {
463 io_u->buflen = get_next_buflen(td);
464
465 if (io_u->buflen) {
466 io_u->ddir = get_rw_ddir(td);
467
468 /*
469 * If using a write iolog, store this entry.
470 */
471 if (td->write_iolog)
472 write_iolog_put(td, io_u);
473
474 return 0;
475 }
476 }
477
478 return 1;
479}
480
481#define queue_full(td) list_empty(&(td)->io_u_freelist)
482
483struct io_u *__get_io_u(struct thread_data *td)
484{
485 struct io_u *io_u = NULL;
486
487 if (!queue_full(td)) {
488 io_u = list_entry(td->io_u_freelist.next, struct io_u, list);
489
490 io_u->error = 0;
491 io_u->resid = 0;
492 list_del(&io_u->list);
493 list_add(&io_u->list, &td->io_u_busylist);
494 td->cur_depth++;
495 }
496
497 return io_u;
498}
499
500/*
501 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
502 * etc. The returned io_u is fully ready to be prepped and submitted.
503 */
504static struct io_u *get_io_u(struct thread_data *td)
505{
506 struct io_u *io_u;
507
508 io_u = __get_io_u(td);
509 if (!io_u)
510 return NULL;
511
512 if (td->zone_bytes >= td->zone_size) {
513 td->zone_bytes = 0;
514 td->last_pos += td->zone_skip;
515 }
516
517 if (fill_io_u(td, io_u)) {
518 put_io_u(td, io_u);
519 return NULL;
520 }
521
522 if (io_u->buflen + io_u->offset > td->real_file_size)
523 io_u->buflen = td->real_file_size - io_u->offset;
524
525 if (!io_u->buflen) {
526 put_io_u(td, io_u);
527 return NULL;
528 }
529
530 if (!td->read_iolog && !td->sequential)
531 mark_random_map(td, io_u);
532
533 td->last_pos += io_u->buflen;
534
535 if (td->verify != VERIFY_NONE)
536 populate_io_u(td, io_u);
537
538 if (td_io_prep(td, io_u)) {
539 put_io_u(td, io_u);
540 return NULL;
541 }
542
543 gettimeofday(&io_u->start_time, NULL);
544 return io_u;
545}
546
547static inline void td_set_runstate(struct thread_data *td, int runstate)
548{
549 td->runstate = runstate;
550}
551
552static int get_next_verify(struct thread_data *td, struct io_u *io_u)
553{
554 struct io_piece *ipo;
555
556 if (!list_empty(&td->io_hist_list)) {
557 ipo = list_entry(td->io_hist_list.next, struct io_piece, list);
558
559 list_del(&ipo->list);
560
561 io_u->offset = ipo->offset;
562 io_u->buflen = ipo->len;
563 io_u->ddir = DDIR_READ;
564 free(ipo);
565 return 0;
566 }
567
568 return 1;
569}
570
571static int sync_td(struct thread_data *td)
572{
573 if (td->io_ops->sync)
574 return td->io_ops->sync(td);
575
576 return 0;
577}
578
579static int io_u_getevents(struct thread_data *td, int min, int max,
580 struct timespec *t)
581{
582 return td->io_ops->getevents(td, min, max, t);
583}
584
585static int io_u_queue(struct thread_data *td, struct io_u *io_u)
586{
587 gettimeofday(&io_u->issue_time, NULL);
588
589 return td->io_ops->queue(td, io_u);
590}
591
592#define iocb_time(iocb) ((unsigned long) (iocb)->data)
593
594static void io_completed(struct thread_data *td, struct io_u *io_u,
595 struct io_completion_data *icd)
596{
597 struct timeval e;
598 unsigned long msec;
599
600 gettimeofday(&e, NULL);
601
602 if (!io_u->error) {
603 unsigned int bytes = io_u->buflen - io_u->resid;
604 const int idx = io_u->ddir;
605
606 td->io_blocks[idx]++;
607 td->io_bytes[idx] += bytes;
608 td->zone_bytes += bytes;
609 td->this_io_bytes[idx] += bytes;
610
611 msec = mtime_since(&io_u->issue_time, &e);
612
613 add_clat_sample(td, idx, msec);
614 add_bw_sample(td, idx);
615
616 if ((td_rw(td) || td_write(td)) && idx == DDIR_WRITE)
617 log_io_piece(td, io_u);
618
619 icd->bytes_done[idx] += bytes;
620 } else
621 icd->error = io_u->error;
622}
623
624static void ios_completed(struct thread_data *td,struct io_completion_data *icd)
625{
626 struct io_u *io_u;
627 int i;
628
629 icd->error = 0;
630 icd->bytes_done[0] = icd->bytes_done[1] = 0;
631
632 for (i = 0; i < icd->nr; i++) {
633 io_u = td->io_ops->event(td, i);
634
635 io_completed(td, io_u, icd);
636 put_io_u(td, io_u);
637 }
638}
639
640/*
641 * When job exits, we can cancel the in-flight IO if we are using async
642 * io. Attempt to do so.
643 */
644static void cleanup_pending_aio(struct thread_data *td)
645{
646 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
647 struct list_head *entry, *n;
648 struct io_completion_data icd;
649 struct io_u *io_u;
650 int r;
651
652 /*
653 * get immediately available events, if any
654 */
655 r = io_u_getevents(td, 0, td->cur_depth, &ts);
656 if (r > 0) {
657 icd.nr = r;
658 ios_completed(td, &icd);
659 }
660
661 /*
662 * now cancel remaining active events
663 */
664 if (td->io_ops->cancel) {
665 list_for_each_safe(entry, n, &td->io_u_busylist) {
666 io_u = list_entry(entry, struct io_u, list);
667
668 r = td->io_ops->cancel(td, io_u);
669 if (!r)
670 put_io_u(td, io_u);
671 }
672 }
673
674 if (td->cur_depth) {
675 r = io_u_getevents(td, td->cur_depth, td->cur_depth, NULL);
676 if (r > 0) {
677 icd.nr = r;
678 ios_completed(td, &icd);
679 }
680 }
681}
682
683static int do_io_u_verify(struct thread_data *td, struct io_u **io_u)
684{
685 struct io_u *v_io_u = *io_u;
686 int ret = 0;
687
688 if (v_io_u) {
689 ret = verify_io_u(v_io_u);
690 put_io_u(td, v_io_u);
691 *io_u = NULL;
692 }
693
694 return ret;
695}
696
697/*
698 * The main verify engine. Runs over the writes we previusly submitted,
699 * reads the blocks back in, and checks the crc/md5 of the data.
700 */
701static void do_verify(struct thread_data *td)
702{
703 struct timeval t;
704 struct io_u *io_u, *v_io_u = NULL;
705 struct io_completion_data icd;
706 int ret;
707
708 td_set_runstate(td, TD_VERIFYING);
709
710 do {
711 if (td->terminate)
712 break;
713
714 gettimeofday(&t, NULL);
715 if (runtime_exceeded(td, &t))
716 break;
717
718 io_u = __get_io_u(td);
719 if (!io_u)
720 break;
721
722 if (get_next_verify(td, io_u)) {
723 put_io_u(td, io_u);
724 break;
725 }
726
727 if (td_io_prep(td, io_u)) {
728 put_io_u(td, io_u);
729 break;
730 }
731
732 ret = io_u_queue(td, io_u);
733 if (ret) {
734 put_io_u(td, io_u);
735 td_verror(td, ret);
736 break;
737 }
738
739 /*
740 * we have one pending to verify, do that while
741 * we are doing io on the next one
742 */
743 if (do_io_u_verify(td, &v_io_u))
744 break;
745
746 ret = io_u_getevents(td, 1, 1, NULL);
747 if (ret != 1) {
748 if (ret < 0)
749 td_verror(td, ret);
750 break;
751 }
752
753 v_io_u = td->io_ops->event(td, 0);
754 icd.nr = 1;
755 icd.error = 0;
756 io_completed(td, v_io_u, &icd);
757
758 if (icd.error) {
759 td_verror(td, icd.error);
760 put_io_u(td, v_io_u);
761 v_io_u = NULL;
762 break;
763 }
764
765 /*
766 * if we can't submit more io, we need to verify now
767 */
768 if (queue_full(td) && do_io_u_verify(td, &v_io_u))
769 break;
770
771 } while (1);
772
773 do_io_u_verify(td, &v_io_u);
774
775 if (td->cur_depth)
776 cleanup_pending_aio(td);
777
778 td_set_runstate(td, TD_RUNNING);
779}
780
781/*
782 * Not really an io thread, all it does is burn CPU cycles in the specified
783 * manner.
784 */
785static void do_cpuio(struct thread_data *td)
786{
787 struct timeval e;
788 int split = 100 / td->cpuload;
789 int i = 0;
790
791 while (!td->terminate) {
792 gettimeofday(&e, NULL);
793
794 if (runtime_exceeded(td, &e))
795 break;
796
797 if (!(i % split))
798 __usec_sleep(10000);
799 else
800 usec_sleep(td, 10000);
801
802 i++;
803 }
804}
805
806/*
807 * Main IO worker function. It retrieves io_u's to process and queues
808 * and reaps them, checking for rate and errors along the way.
809 */
810static void do_io(struct thread_data *td)
811{
812 struct io_completion_data icd;
813 struct timeval s, e;
814 unsigned long usec;
815
816 td_set_runstate(td, TD_RUNNING);
817
818 while (td->this_io_bytes[td->ddir] < td->io_size) {
819 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
820 struct timespec *timeout;
821 int ret, min_evts = 0;
822 struct io_u *io_u;
823
824 if (td->terminate)
825 break;
826
827 io_u = get_io_u(td);
828 if (!io_u)
829 break;
830
831 memcpy(&s, &io_u->start_time, sizeof(s));
832
833 ret = io_u_queue(td, io_u);
834 if (ret) {
835 put_io_u(td, io_u);
836 td_verror(td, ret);
837 break;
838 }
839
840 add_slat_sample(td, io_u->ddir, mtime_since(&io_u->start_time, &io_u->issue_time));
841
842 if (td->cur_depth < td->iodepth) {
843 timeout = &ts;
844 min_evts = 0;
845 } else {
846 timeout = NULL;
847 min_evts = 1;
848 }
849
850 ret = io_u_getevents(td, min_evts, td->cur_depth, timeout);
851 if (ret < 0) {
852 td_verror(td, ret);
853 break;
854 } else if (!ret)
855 continue;
856
857 icd.nr = ret;
858 ios_completed(td, &icd);
859 if (icd.error) {
860 td_verror(td, icd.error);
861 break;
862 }
863
864 /*
865 * the rate is batched for now, it should work for batches
866 * of completions except the very first one which may look
867 * a little bursty
868 */
869 gettimeofday(&e, NULL);
870 usec = utime_since(&s, &e);
871
872 rate_throttle(td, usec, icd.bytes_done[td->ddir]);
873
874 if (check_min_rate(td, &e)) {
875 td_verror(td, ENOMEM);
876 break;
877 }
878
879 if (runtime_exceeded(td, &e))
880 break;
881
882 if (td->thinktime)
883 usec_sleep(td, td->thinktime);
884
885 if (should_fsync(td) && td->fsync_blocks &&
886 (td->io_blocks[DDIR_WRITE] % td->fsync_blocks) == 0)
887 sync_td(td);
888 }
889
890 if (td->cur_depth)
891 cleanup_pending_aio(td);
892
893 if (should_fsync(td) && td->end_fsync) {
894 td_set_runstate(td, TD_FSYNCING);
895 sync_td(td);
896 }
897}
898
899static int init_io(struct thread_data *td)
900{
901 if (td->io_ops->init)
902 return td->io_ops->init(td);
903
904 return 0;
905}
906
907static void cleanup_io_u(struct thread_data *td)
908{
909 struct list_head *entry, *n;
910 struct io_u *io_u;
911
912 list_for_each_safe(entry, n, &td->io_u_freelist) {
913 io_u = list_entry(entry, struct io_u, list);
914
915 list_del(&io_u->list);
916 free(io_u);
917 }
918
919 if (td->mem_type == MEM_MALLOC)
920 free(td->orig_buffer);
921 else if (td->mem_type == MEM_SHM) {
922 struct shmid_ds sbuf;
923
924 shmdt(td->orig_buffer);
925 shmctl(td->shm_id, IPC_RMID, &sbuf);
926 } else if (td->mem_type == MEM_MMAP)
927 munmap(td->orig_buffer, td->orig_buffer_size);
928 else
929 log_err("Bad memory type %d\n", td->mem_type);
930
931 td->orig_buffer = NULL;
932}
933
934static int init_io_u(struct thread_data *td)
935{
936 struct io_u *io_u;
937 int i, max_units;
938 char *p;
939
940 if (td->io_ops->flags & FIO_CPUIO)
941 return 0;
942
943 if (td->io_ops->flags & FIO_SYNCIO)
944 max_units = 1;
945 else
946 max_units = td->iodepth;
947
948 td->orig_buffer_size = td->max_bs * max_units + MASK;
949
950 if (td->mem_type == MEM_MALLOC)
951 td->orig_buffer = malloc(td->orig_buffer_size);
952 else if (td->mem_type == MEM_SHM) {
953 td->shm_id = shmget(IPC_PRIVATE, td->orig_buffer_size, IPC_CREAT | 0600);
954 if (td->shm_id < 0) {
955 td_verror(td, errno);
956 perror("shmget");
957 return 1;
958 }
959
960 td->orig_buffer = shmat(td->shm_id, NULL, 0);
961 if (td->orig_buffer == (void *) -1) {
962 td_verror(td, errno);
963 perror("shmat");
964 td->orig_buffer = NULL;
965 return 1;
966 }
967 } else if (td->mem_type == MEM_MMAP) {
968 td->orig_buffer = mmap(NULL, td->orig_buffer_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | OS_MAP_ANON, 0, 0);
969 if (td->orig_buffer == MAP_FAILED) {
970 td_verror(td, errno);
971 perror("mmap");
972 td->orig_buffer = NULL;
973 return 1;
974 }
975 }
976
977 p = ALIGN(td->orig_buffer);
978 for (i = 0; i < max_units; i++) {
979 io_u = malloc(sizeof(*io_u));
980 memset(io_u, 0, sizeof(*io_u));
981 INIT_LIST_HEAD(&io_u->list);
982
983 io_u->buf = p + td->max_bs * i;
984 io_u->index = i;
985 list_add(&io_u->list, &td->io_u_freelist);
986 }
987
988 return 0;
989}
990
991static int create_file(struct thread_data *td, unsigned long long size)
992{
993 unsigned long long left;
994 unsigned int bs;
995 char *b;
996 int r;
997
998 /*
999 * unless specifically asked for overwrite, let normal io extend it
1000 */
1001 if (!td->overwrite) {
1002 td->real_file_size = size;
1003 return 0;
1004 }
1005
1006 if (!size) {
1007 log_err("Need size for create\n");
1008 td_verror(td, EINVAL);
1009 return 1;
1010 }
1011
1012 temp_stall_ts = 1;
1013 fprintf(f_out, "%s: Laying out IO file (%LuMiB)\n",td->name,size >> 20);
1014
1015 td->fd = open(td->file_name, O_WRONLY | O_CREAT | O_TRUNC, 0644);
1016 if (td->fd < 0) {
1017 td_verror(td, errno);
1018 goto done_noclose;
1019 }
1020
1021 if (ftruncate(td->fd, td->file_size) == -1) {
1022 td_verror(td, errno);
1023 goto done;
1024 }
1025
1026 td->io_size = td->file_size;
1027 b = malloc(td->max_bs);
1028 memset(b, 0, td->max_bs);
1029
1030 left = size;
1031 while (left && !td->terminate) {
1032 bs = td->max_bs;
1033 if (bs > left)
1034 bs = left;
1035
1036 r = write(td->fd, b, bs);
1037
1038 if (r == (int) bs) {
1039 left -= bs;
1040 continue;
1041 } else {
1042 if (r < 0)
1043 td_verror(td, errno);
1044 else
1045 td_verror(td, EIO);
1046
1047 break;
1048 }
1049 }
1050
1051 if (td->terminate)
1052 unlink(td->file_name);
1053 else if (td->create_fsync)
1054 fsync(td->fd);
1055
1056 free(b);
1057done:
1058 close(td->fd);
1059 td->fd = -1;
1060done_noclose:
1061 temp_stall_ts = 0;
1062 return 0;
1063}
1064
1065static int file_size(struct thread_data *td)
1066{
1067 struct stat st;
1068
1069 if (td->overwrite) {
1070 if (fstat(td->fd, &st) == -1) {
1071 td_verror(td, errno);
1072 return 1;
1073 }
1074
1075 td->real_file_size = st.st_size;
1076
1077 if (!td->file_size || td->file_size > td->real_file_size)
1078 td->file_size = td->real_file_size;
1079 }
1080
1081 td->file_size -= td->file_offset;
1082 return 0;
1083}
1084
1085static int bdev_size(struct thread_data *td)
1086{
1087 unsigned long long bytes;
1088 int r;
1089
1090 r = blockdev_size(td->fd, &bytes);
1091 if (r) {
1092 td_verror(td, r);
1093 return 1;
1094 }
1095
1096 td->real_file_size = bytes;
1097
1098 /*
1099 * no extend possibilities, so limit size to device size if too large
1100 */
1101 if (!td->file_size || td->file_size > td->real_file_size)
1102 td->file_size = td->real_file_size;
1103
1104 td->file_size -= td->file_offset;
1105 return 0;
1106}
1107
1108static int get_file_size(struct thread_data *td)
1109{
1110 int ret = 0;
1111
1112 if (td->filetype == FIO_TYPE_FILE)
1113 ret = file_size(td);
1114 else if (td->filetype == FIO_TYPE_BD)
1115 ret = bdev_size(td);
1116 else
1117 td->real_file_size = -1;
1118
1119 if (ret)
1120 return ret;
1121
1122 if (td->file_offset > td->real_file_size) {
1123 log_err("%s: offset extends end (%Lu > %Lu)\n", td->name, td->file_offset, td->real_file_size);
1124 return 1;
1125 }
1126
1127 td->io_size = td->file_size;
1128 if (td->io_size == 0) {
1129 log_err("%s: no io blocks\n", td->name);
1130 td_verror(td, EINVAL);
1131 return 1;
1132 }
1133
1134 if (!td->zone_size)
1135 td->zone_size = td->io_size;
1136
1137 td->total_io_size = td->io_size * td->loops;
1138 return 0;
1139}
1140
1141static int setup_file_mmap(struct thread_data *td)
1142{
1143 int flags;
1144
1145 if (td_rw(td))
1146 flags = PROT_READ | PROT_WRITE;
1147 else if (td_write(td)) {
1148 flags = PROT_WRITE;
1149
1150 if (td->verify != VERIFY_NONE)
1151 flags |= PROT_READ;
1152 } else
1153 flags = PROT_READ;
1154
1155 td->mmap = mmap(NULL, td->file_size, flags, MAP_SHARED, td->fd, td->file_offset);
1156 if (td->mmap == MAP_FAILED) {
1157 td->mmap = NULL;
1158 td_verror(td, errno);
1159 return 1;
1160 }
1161
1162 if (td->invalidate_cache) {
1163 if (madvise(td->mmap, td->file_size, MADV_DONTNEED) < 0) {
1164 td_verror(td, errno);
1165 return 1;
1166 }
1167 }
1168
1169 if (td->sequential) {
1170 if (madvise(td->mmap, td->file_size, MADV_SEQUENTIAL) < 0) {
1171 td_verror(td, errno);
1172 return 1;
1173 }
1174 } else {
1175 if (madvise(td->mmap, td->file_size, MADV_RANDOM) < 0) {
1176 td_verror(td, errno);
1177 return 1;
1178 }
1179 }
1180
1181 return 0;
1182}
1183
1184static int setup_file_plain(struct thread_data *td)
1185{
1186 if (td->invalidate_cache) {
1187 if (fadvise(td->fd, td->file_offset, td->file_size, POSIX_FADV_DONTNEED) < 0) {
1188 td_verror(td, errno);
1189 return 1;
1190 }
1191 }
1192
1193 if (td->sequential) {
1194 if (fadvise(td->fd, td->file_offset, td->file_size, POSIX_FADV_SEQUENTIAL) < 0) {
1195 td_verror(td, errno);
1196 return 1;
1197 }
1198 } else {
1199 if (fadvise(td->fd, td->file_offset, td->file_size, POSIX_FADV_RANDOM) < 0) {
1200 td_verror(td, errno);
1201 return 1;
1202 }
1203 }
1204
1205 return 0;
1206}
1207
1208static int setup_file(struct thread_data *td)
1209{
1210 struct stat st;
1211 int flags = 0;
1212
1213 if (td->io_ops->setup)
1214 return td->io_ops->setup(td);
1215
1216 if (stat(td->file_name, &st) == -1) {
1217 if (errno != ENOENT) {
1218 td_verror(td, errno);
1219 return 1;
1220 }
1221 if (!td->create_file) {
1222 td_verror(td, ENOENT);
1223 return 1;
1224 }
1225 if (create_file(td, td->file_size))
1226 return 1;
1227 } else if (td->filetype == FIO_TYPE_FILE &&
1228 st.st_size < (off_t) td->file_size) {
1229 if (create_file(td, td->file_size))
1230 return 1;
1231 }
1232
1233 if (td->odirect)
1234 flags |= OS_O_DIRECT;
1235
1236 if (td_write(td) || td_rw(td)) {
1237 if (td->filetype == FIO_TYPE_FILE) {
1238 if (!td->overwrite)
1239 flags |= O_TRUNC;
1240
1241 flags |= O_CREAT;
1242 }
1243 if (td->sync_io)
1244 flags |= O_SYNC;
1245
1246 flags |= O_RDWR;
1247
1248 td->fd = open(td->file_name, flags, 0600);
1249 } else {
1250 if (td->filetype == FIO_TYPE_CHAR)
1251 flags |= O_RDWR;
1252 else
1253 flags |= O_RDONLY;
1254
1255 td->fd = open(td->file_name, flags);
1256 }
1257
1258 if (td->fd == -1) {
1259 td_verror(td, errno);
1260 return 1;
1261 }
1262
1263 if (get_file_size(td))
1264 return 1;
1265
1266 if (td->io_ops->flags & FIO_MMAPIO)
1267 return setup_file_mmap(td);
1268 else
1269 return setup_file_plain(td);
1270}
1271
1272static int switch_ioscheduler(struct thread_data *td)
1273{
1274 char tmp[256], tmp2[128];
1275 FILE *f;
1276 int ret;
1277
1278 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1279
1280 f = fopen(tmp, "r+");
1281 if (!f) {
1282 td_verror(td, errno);
1283 return 1;
1284 }
1285
1286 /*
1287 * Set io scheduler.
1288 */
1289 ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
1290 if (ferror(f) || ret != 1) {
1291 td_verror(td, errno);
1292 fclose(f);
1293 return 1;
1294 }
1295
1296 rewind(f);
1297
1298 /*
1299 * Read back and check that the selected scheduler is now the default.
1300 */
1301 ret = fread(tmp, 1, sizeof(tmp), f);
1302 if (ferror(f) || ret < 0) {
1303 td_verror(td, errno);
1304 fclose(f);
1305 return 1;
1306 }
1307
1308 sprintf(tmp2, "[%s]", td->ioscheduler);
1309 if (!strstr(tmp, tmp2)) {
1310 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
1311 td_verror(td, EINVAL);
1312 fclose(f);
1313 return 1;
1314 }
1315
1316 fclose(f);
1317 return 0;
1318}
1319
1320static void clear_io_state(struct thread_data *td)
1321{
1322 if (td->io_ops->flags & FIO_SYNCIO)
1323 lseek(td->fd, SEEK_SET, 0);
1324
1325 td->last_pos = 0;
1326 td->stat_io_bytes[0] = td->stat_io_bytes[1] = 0;
1327 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
1328 td->zone_bytes = 0;
1329
1330 if (td->file_map)
1331 memset(td->file_map, 0, td->num_maps * sizeof(long));
1332}
1333
1334/*
1335 * Entry point for the thread based jobs. The process based jobs end up
1336 * here as well, after a little setup.
1337 */
1338static void *thread_main(void *data)
1339{
1340 struct thread_data *td = data;
1341
1342 if (!td->use_thread)
1343 setsid();
1344
1345 td->pid = getpid();
1346
1347 INIT_LIST_HEAD(&td->io_u_freelist);
1348 INIT_LIST_HEAD(&td->io_u_busylist);
1349 INIT_LIST_HEAD(&td->io_hist_list);
1350 INIT_LIST_HEAD(&td->io_log_list);
1351
1352 if (init_io_u(td))
1353 goto err;
1354
1355 if (fio_setaffinity(td) == -1) {
1356 td_verror(td, errno);
1357 goto err;
1358 }
1359
1360 if (init_io(td))
1361 goto err;
1362
1363 if (init_iolog(td))
1364 goto err;
1365
1366 if (td->ioprio) {
1367 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1368 td_verror(td, errno);
1369 goto err;
1370 }
1371 }
1372
1373 if (nice(td->nice) == -1) {
1374 td_verror(td, errno);
1375 goto err;
1376 }
1377
1378 if (init_random_state(td))
1379 goto err;
1380
1381 if (td->ioscheduler && switch_ioscheduler(td))
1382 goto err;
1383
1384 td_set_runstate(td, TD_INITIALIZED);
1385 fio_sem_up(&startup_sem);
1386 fio_sem_down(&td->mutex);
1387
1388 if (!td->create_serialize && setup_file(td))
1389 goto err;
1390
1391 gettimeofday(&td->epoch, NULL);
1392
1393 if (td->exec_prerun)
1394 system(td->exec_prerun);
1395
1396 while (td->loops--) {
1397 getrusage(RUSAGE_SELF, &td->ru_start);
1398 gettimeofday(&td->start, NULL);
1399 memcpy(&td->stat_sample_time, &td->start, sizeof(td->start));
1400
1401 if (td->ratemin)
1402 memcpy(&td->lastrate, &td->stat_sample_time, sizeof(td->lastrate));
1403
1404 clear_io_state(td);
1405 prune_io_piece_log(td);
1406
1407 if (td->io_ops->flags & FIO_CPUIO)
1408 do_cpuio(td);
1409 else
1410 do_io(td);
1411
1412 td->runtime[td->ddir] += mtime_since_now(&td->start);
1413 if (td_rw(td) && td->io_bytes[td->ddir ^ 1])
1414 td->runtime[td->ddir ^ 1] = td->runtime[td->ddir];
1415
1416 update_rusage_stat(td);
1417
1418 if (td->error || td->terminate)
1419 break;
1420
1421 if (td->verify == VERIFY_NONE)
1422 continue;
1423
1424 clear_io_state(td);
1425 gettimeofday(&td->start, NULL);
1426
1427 do_verify(td);
1428
1429 td->runtime[DDIR_READ] += mtime_since_now(&td->start);
1430
1431 if (td->error || td->terminate)
1432 break;
1433 }
1434
1435 if (td->bw_log)
1436 finish_log(td, td->bw_log, "bw");
1437 if (td->slat_log)
1438 finish_log(td, td->slat_log, "slat");
1439 if (td->clat_log)
1440 finish_log(td, td->clat_log, "clat");
1441 if (td->write_iolog)
1442 write_iolog_close(td);
1443 if (td->exec_postrun)
1444 system(td->exec_postrun);
1445
1446 if (exitall_on_terminate)
1447 terminate_threads(td->groupid);
1448
1449err:
1450 if (td->fd != -1) {
1451 close(td->fd);
1452 td->fd = -1;
1453 }
1454 if (td->mmap)
1455 munmap(td->mmap, td->file_size);
1456 close_ioengine(td);
1457 cleanup_io_u(td);
1458 td_set_runstate(td, TD_EXITED);
1459 return NULL;
1460
1461}
1462
1463/*
1464 * We cannot pass the td data into a forked process, so attach the td and
1465 * pass it to the thread worker.
1466 */
1467static void *fork_main(int shmid, int offset)
1468{
1469 struct thread_data *td;
1470 void *data;
1471
1472 data = shmat(shmid, NULL, 0);
1473 if (data == (void *) -1) {
1474 perror("shmat");
1475 return NULL;
1476 }
1477
1478 td = data + offset * sizeof(struct thread_data);
1479 thread_main(td);
1480 shmdt(data);
1481 return NULL;
1482}
1483
1484/*
1485 * Sets the status of the 'td' in the printed status map.
1486 */
1487static void check_str_update(struct thread_data *td)
1488{
1489 char c = run_str[td->thread_number - 1];
1490
1491 switch (td->runstate) {
1492 case TD_REAPED:
1493 c = '_';
1494 break;
1495 case TD_EXITED:
1496 c = 'E';
1497 break;
1498 case TD_RUNNING:
1499 if (td_rw(td)) {
1500 if (td->sequential)
1501 c = 'M';
1502 else
1503 c = 'm';
1504 } else if (td_read(td)) {
1505 if (td->sequential)
1506 c = 'R';
1507 else
1508 c = 'r';
1509 } else {
1510 if (td->sequential)
1511 c = 'W';
1512 else
1513 c = 'w';
1514 }
1515 break;
1516 case TD_VERIFYING:
1517 c = 'V';
1518 break;
1519 case TD_FSYNCING:
1520 c = 'F';
1521 break;
1522 case TD_CREATED:
1523 c = 'C';
1524 break;
1525 case TD_INITIALIZED:
1526 c = 'I';
1527 break;
1528 case TD_NOT_CREATED:
1529 c = 'P';
1530 break;
1531 default:
1532 log_err("state %d\n", td->runstate);
1533 }
1534
1535 run_str[td->thread_number - 1] = c;
1536}
1537
1538/*
1539 * Convert seconds to a printable string.
1540 */
1541static void eta_to_str(char *str, int eta_sec)
1542{
1543 unsigned int d, h, m, s;
1544 static int always_d, always_h;
1545
1546 d = h = m = s = 0;
1547
1548 s = eta_sec % 60;
1549 eta_sec /= 60;
1550 m = eta_sec % 60;
1551 eta_sec /= 60;
1552 h = eta_sec % 24;
1553 eta_sec /= 24;
1554 d = eta_sec;
1555
1556 if (d || always_d) {
1557 always_d = 1;
1558 str += sprintf(str, "%02dd:", d);
1559 }
1560 if (h || always_h) {
1561 always_h = 1;
1562 str += sprintf(str, "%02dh:", h);
1563 }
1564
1565 str += sprintf(str, "%02dm:", m);
1566 str += sprintf(str, "%02ds", s);
1567}
1568
1569/*
1570 * Best effort calculation of the estimated pending runtime of a job.
1571 */
1572static int thread_eta(struct thread_data *td, unsigned long elapsed)
1573{
1574 unsigned long long bytes_total, bytes_done;
1575 unsigned int eta_sec = 0;
1576
1577 bytes_total = td->total_io_size;
1578
1579 /*
1580 * if writing, bytes_total will be twice the size. If mixing,
1581 * assume a 50/50 split and thus bytes_total will be 50% larger.
1582 */
1583 if (td->verify) {
1584 if (td_rw(td))
1585 bytes_total = bytes_total * 3 / 2;
1586 else
1587 bytes_total <<= 1;
1588 }
1589 if (td->zone_size && td->zone_skip)
1590 bytes_total /= (td->zone_skip / td->zone_size);
1591
1592 if (td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING) {
1593 double perc;
1594
1595 bytes_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE];
1596 perc = (double) bytes_done / (double) bytes_total;
1597 if (perc > 1.0)
1598 perc = 1.0;
1599
1600 eta_sec = (elapsed * (1.0 / perc)) - elapsed;
1601
1602 if (td->timeout && eta_sec > (td->timeout - elapsed))
1603 eta_sec = td->timeout - elapsed;
1604 } else if (td->runstate == TD_NOT_CREATED || td->runstate == TD_CREATED
1605 || td->runstate == TD_INITIALIZED) {
1606 int t_eta = 0, r_eta = 0;
1607
1608 /*
1609 * We can only guess - assume it'll run the full timeout
1610 * if given, otherwise assume it'll run at the specified rate.
1611 */
1612 if (td->timeout)
1613 t_eta = td->timeout + td->start_delay - elapsed;
1614 if (td->rate) {
1615 r_eta = (bytes_total / 1024) / td->rate;
1616 r_eta += td->start_delay - elapsed;
1617 }
1618
1619 if (r_eta && t_eta)
1620 eta_sec = min(r_eta, t_eta);
1621 else if (r_eta)
1622 eta_sec = r_eta;
1623 else if (t_eta)
1624 eta_sec = t_eta;
1625 else
1626 eta_sec = 0;
1627 } else {
1628 /*
1629 * thread is already done or waiting for fsync
1630 */
1631 eta_sec = 0;
1632 }
1633
1634 return eta_sec;
1635}
1636
1637/*
1638 * Print status of the jobs we know about. This includes rate estimates,
1639 * ETA, thread state, etc.
1640 */
1641static void print_thread_status(void)
1642{
1643 unsigned long elapsed = time_since_now(&genesis);
1644 int i, nr_running, nr_pending, t_rate, m_rate, *eta_secs, eta_sec;
1645 char eta_str[32];
1646 double perc = 0.0;
1647
1648 if (temp_stall_ts || terse_output)
1649 return;
1650
1651 eta_secs = malloc(thread_number * sizeof(int));
1652 memset(eta_secs, 0, thread_number * sizeof(int));
1653
1654 nr_pending = nr_running = t_rate = m_rate = 0;
1655 for (i = 0; i < thread_number; i++) {
1656 struct thread_data *td = &threads[i];
1657
1658 if (td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING||
1659 td->runstate == TD_FSYNCING) {
1660 nr_running++;
1661 t_rate += td->rate;
1662 m_rate += td->ratemin;
1663 } else if (td->runstate < TD_RUNNING)
1664 nr_pending++;
1665
1666 if (elapsed >= 3)
1667 eta_secs[i] = thread_eta(td, elapsed);
1668 else
1669 eta_secs[i] = INT_MAX;
1670
1671 check_str_update(td);
1672 }
1673
1674 if (exitall_on_terminate)
1675 eta_sec = INT_MAX;
1676 else
1677 eta_sec = 0;
1678
1679 for (i = 0; i < thread_number; i++) {
1680 if (exitall_on_terminate) {
1681 if (eta_secs[i] < eta_sec)
1682 eta_sec = eta_secs[i];
1683 } else {
1684 if (eta_secs[i] > eta_sec)
1685 eta_sec = eta_secs[i];
1686 }
1687 }
1688
1689 if (eta_sec != INT_MAX && elapsed) {
1690 perc = (double) elapsed / (double) (elapsed + eta_sec);
1691 eta_to_str(eta_str, eta_sec);
1692 }
1693
1694 if (!nr_running && !nr_pending)
1695 return;
1696
1697 printf("Threads running: %d", nr_running);
1698 if (m_rate || t_rate)
1699 printf(", commitrate %d/%dKiB/sec", t_rate, m_rate);
1700 if (eta_sec != INT_MAX && nr_running) {
1701 perc *= 100.0;
1702 printf(": [%s] [%3.2f%% done] [eta %s]", run_str, perc,eta_str);
1703 }
1704 printf("\r");
1705 fflush(stdout);
1706 free(eta_secs);
1707}
1708
1709/*
1710 * Run over the job map and reap the threads that have exited, if any.
1711 */
1712static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1713{
1714 int i, cputhreads;
1715
1716 /*
1717 * reap exited threads (TD_EXITED -> TD_REAPED)
1718 */
1719 for (i = 0, cputhreads = 0; i < thread_number; i++) {
1720 struct thread_data *td = &threads[i];
1721
1722 if (td->io_ops->flags & FIO_CPUIO)
1723 cputhreads++;
1724
1725 if (td->runstate != TD_EXITED)
1726 continue;
1727
1728 td_set_runstate(td, TD_REAPED);
1729
1730 if (td->use_thread) {
1731 long ret;
1732
1733 if (pthread_join(td->thread, (void *) &ret))
1734 perror("thread_join");
1735 } else
1736 waitpid(td->pid, NULL, 0);
1737
1738 (*nr_running)--;
1739 (*m_rate) -= td->ratemin;
1740 (*t_rate) -= td->rate;
1741 }
1742
1743 if (*nr_running == cputhreads)
1744 terminate_threads(TERMINATE_ALL);
1745}
1746
1747static void fio_unpin_memory(void *pinned)
1748{
1749 if (pinned) {
1750 if (munlock(pinned, mlock_size) < 0)
1751 perror("munlock");
1752 munmap(pinned, mlock_size);
1753 }
1754}
1755
1756static void *fio_pin_memory(void)
1757{
1758 unsigned long long phys_mem;
1759 void *ptr;
1760
1761 if (!mlock_size)
1762 return NULL;
1763
1764 /*
1765 * Don't allow mlock of more than real_mem-128MB
1766 */
1767 phys_mem = os_phys_mem();
1768 if (phys_mem) {
1769 if ((mlock_size + 128 * 1024 * 1024) > phys_mem) {
1770 mlock_size = phys_mem - 128 * 1024 * 1024;
1771 fprintf(f_out, "fio: limiting mlocked memory to %lluMiB\n", mlock_size >> 20);
1772 }
1773 }
1774
1775 ptr = mmap(NULL, mlock_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | OS_MAP_ANON, 0, 0);
1776 if (!ptr) {
1777 perror("malloc locked mem");
1778 return NULL;
1779 }
1780 if (mlock(ptr, mlock_size) < 0) {
1781 munmap(ptr, mlock_size);
1782 perror("mlock");
1783 return NULL;
1784 }
1785
1786 return ptr;
1787}
1788
1789/*
1790 * Main function for kicking off and reaping jobs, as needed.
1791 */
1792static void run_threads(void)
1793{
1794 struct thread_data *td;
1795 unsigned long spent;
1796 int i, todo, nr_running, m_rate, t_rate, nr_started;
1797 void *mlocked_mem;
1798
1799 mlocked_mem = fio_pin_memory();
1800
1801 if (!terse_output) {
1802 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
1803 fflush(stdout);
1804 }
1805
1806 signal(SIGINT, sig_handler);
1807 signal(SIGALRM, sig_handler);
1808
1809 todo = thread_number;
1810 nr_running = 0;
1811 nr_started = 0;
1812 m_rate = t_rate = 0;
1813
1814 for (i = 0; i < thread_number; i++) {
1815 td = &threads[i];
1816
1817 run_str[td->thread_number - 1] = 'P';
1818
1819 init_disk_util(td);
1820
1821 if (!td->create_serialize)
1822 continue;
1823
1824 /*
1825 * do file setup here so it happens sequentially,
1826 * we don't want X number of threads getting their
1827 * client data interspersed on disk
1828 */
1829 if (setup_file(td)) {
1830 td_set_runstate(td, TD_REAPED);
1831 todo--;
1832 }
1833 }
1834
1835 gettimeofday(&genesis, NULL);
1836
1837 while (todo) {
1838 struct thread_data *map[MAX_JOBS];
1839 struct timeval this_start;
1840 int this_jobs = 0, left;
1841
1842 /*
1843 * create threads (TD_NOT_CREATED -> TD_CREATED)
1844 */
1845 for (i = 0; i < thread_number; i++) {
1846 td = &threads[i];
1847
1848 if (td->runstate != TD_NOT_CREATED)
1849 continue;
1850
1851 /*
1852 * never got a chance to start, killed by other
1853 * thread for some reason
1854 */
1855 if (td->terminate) {
1856 todo--;
1857 continue;
1858 }
1859
1860 if (td->start_delay) {
1861 spent = mtime_since_now(&genesis);
1862
1863 if (td->start_delay * 1000 > spent)
1864 continue;
1865 }
1866
1867 if (td->stonewall && (nr_started || nr_running))
1868 break;
1869
1870 /*
1871 * Set state to created. Thread will transition
1872 * to TD_INITIALIZED when it's done setting up.
1873 */
1874 td_set_runstate(td, TD_CREATED);
1875 map[this_jobs++] = td;
1876 fio_sem_init(&startup_sem, 1);
1877 nr_started++;
1878
1879 if (td->use_thread) {
1880 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1881 perror("thread_create");
1882 nr_started--;
1883 }
1884 } else {
1885 if (fork())
1886 fio_sem_down(&startup_sem);
1887 else {
1888 fork_main(shm_id, i);
1889 exit(0);
1890 }
1891 }
1892 }
1893
1894 /*
1895 * Wait for the started threads to transition to
1896 * TD_INITIALIZED.
1897 */
1898 gettimeofday(&this_start, NULL);
1899 left = this_jobs;
1900 while (left) {
1901 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1902 break;
1903
1904 usleep(100000);
1905
1906 for (i = 0; i < this_jobs; i++) {
1907 td = map[i];
1908 if (!td)
1909 continue;
1910 if (td->runstate == TD_INITIALIZED) {
1911 map[i] = NULL;
1912 left--;
1913 } else if (td->runstate >= TD_EXITED) {
1914 map[i] = NULL;
1915 left--;
1916 todo--;
1917 nr_running++; /* work-around... */
1918 }
1919 }
1920 }
1921
1922 if (left) {
1923 log_err("fio: %d jobs failed to start\n", left);
1924 for (i = 0; i < this_jobs; i++) {
1925 td = map[i];
1926 if (!td)
1927 continue;
1928 kill(td->pid, SIGTERM);
1929 }
1930 break;
1931 }
1932
1933 /*
1934 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1935 */
1936 for (i = 0; i < thread_number; i++) {
1937 td = &threads[i];
1938
1939 if (td->runstate != TD_INITIALIZED)
1940 continue;
1941
1942 td_set_runstate(td, TD_RUNNING);
1943 nr_running++;
1944 nr_started--;
1945 m_rate += td->ratemin;
1946 t_rate += td->rate;
1947 todo--;
1948 fio_sem_up(&td->mutex);
1949 }
1950
1951 reap_threads(&nr_running, &t_rate, &m_rate);
1952
1953 if (todo)
1954 usleep(100000);
1955 }
1956
1957 while (nr_running) {
1958 reap_threads(&nr_running, &t_rate, &m_rate);
1959 usleep(10000);
1960 }
1961
1962 update_io_ticks();
1963 fio_unpin_memory(mlocked_mem);
1964}
1965
1966int main(int argc, char *argv[])
1967{
1968 if (parse_options(argc, argv))
1969 return 1;
1970
1971 if (!thread_number) {
1972 log_err("Nothing to do\n");
1973 return 1;
1974 }
1975
1976 disk_util_timer_arm();
1977
1978 run_threads();
1979 show_run_stats();
1980
1981 return 0;
1982}