[PATCH] Fix double free in sg engine error path
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <assert.h>
30#include <sys/stat.h>
31#include <sys/wait.h>
32#include <sys/ipc.h>
33#include <sys/shm.h>
34#include <sys/ioctl.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "os.h"
39
40#define MASK (4095)
41
42#define ALIGN(buf) (char *) (((unsigned long) (buf) + MASK) & ~(MASK))
43
44int groupid = 0;
45int thread_number = 0;
46int shm_id = 0;
47int temp_stall_ts;
48
49static volatile int startup_sem;
50static volatile int fio_abort;
51
52struct io_log *agg_io_log[2];
53
54#define TERMINATE_ALL (-1)
55#define JOB_START_TIMEOUT (5 * 1000)
56
57static inline void td_set_runstate(struct thread_data *td, int runstate)
58{
59 td->runstate = runstate;
60}
61
62static void terminate_threads(int group_id, int forced_kill)
63{
64 struct thread_data *td;
65 int i;
66
67 for_each_td(td, i) {
68 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
69 td->terminate = 1;
70 td->start_delay = 0;
71 if (forced_kill)
72 td_set_runstate(td, TD_EXITED);
73 }
74 }
75}
76
77static void sig_handler(int sig)
78{
79 switch (sig) {
80 case SIGALRM:
81 update_io_ticks();
82 disk_util_timer_arm();
83 print_thread_status();
84 break;
85 case SIGSEGV:
86 fprintf(stderr, "fio: got segfault, aborting\n");
87 terminate_threads(TERMINATE_ALL, 1);
88 fio_abort = 1;
89 exit(0);
90 default:
91 printf("\nfio: terminating on signal %d\n", sig);
92 fflush(stdout);
93 terminate_threads(TERMINATE_ALL, 0);
94 break;
95 }
96}
97
98/*
99 * Check if we are above the minimum rate given.
100 */
101static int check_min_rate(struct thread_data *td, struct timeval *now)
102{
103 unsigned long spent;
104 unsigned long rate;
105 int ddir = td->ddir;
106
107 /*
108 * allow a 2 second settle period in the beginning
109 */
110 if (mtime_since(&td->start, now) < 2000)
111 return 0;
112
113 /*
114 * if rate blocks is set, sample is running
115 */
116 if (td->rate_bytes) {
117 spent = mtime_since(&td->lastrate, now);
118 if (spent < td->ratecycle)
119 return 0;
120
121 rate = (td->this_io_bytes[ddir] - td->rate_bytes) / spent;
122 if (rate < td->ratemin) {
123 fprintf(f_out, "%s: min rate %u not met, got %luKiB/sec\n", td->name, td->ratemin, rate);
124 return 1;
125 }
126 }
127
128 td->rate_bytes = td->this_io_bytes[ddir];
129 memcpy(&td->lastrate, now, sizeof(*now));
130 return 0;
131}
132
133static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
134{
135 if (!td->timeout)
136 return 0;
137 if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
138 return 1;
139
140 return 0;
141}
142
143static struct fio_file *get_next_file(struct thread_data *td)
144{
145 unsigned int old_next_file = td->next_file;
146 struct fio_file *f;
147
148 do {
149 f = &td->files[td->next_file];
150
151 td->next_file++;
152 if (td->next_file >= td->nr_files)
153 td->next_file = 0;
154
155 if (f->fd != -1)
156 break;
157
158 f = NULL;
159 } while (td->next_file != old_next_file);
160
161 return f;
162}
163
164/*
165 * When job exits, we can cancel the in-flight IO if we are using async
166 * io. Attempt to do so.
167 */
168static void cleanup_pending_aio(struct thread_data *td)
169{
170 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
171 struct list_head *entry, *n;
172 struct io_completion_data icd;
173 struct io_u *io_u;
174 int r;
175
176 /*
177 * get immediately available events, if any
178 */
179 r = td_io_getevents(td, 0, td->cur_depth, &ts);
180 if (r > 0) {
181 icd.nr = r;
182 ios_completed(td, &icd);
183 }
184
185 /*
186 * now cancel remaining active events
187 */
188 if (td->io_ops->cancel) {
189 list_for_each_safe(entry, n, &td->io_u_busylist) {
190 io_u = list_entry(entry, struct io_u, list);
191
192 r = td->io_ops->cancel(td, io_u);
193 if (!r)
194 put_io_u(td, io_u);
195 }
196 }
197
198 if (td->cur_depth) {
199 r = td_io_getevents(td, td->cur_depth, td->cur_depth, NULL);
200 if (r > 0) {
201 icd.nr = r;
202 ios_completed(td, &icd);
203 }
204 }
205}
206
207/*
208 * Helper to handle the final sync of a file. Works just like the normal
209 * io path, just does everything sync.
210 */
211static int fio_io_sync(struct thread_data *td, struct fio_file *f)
212{
213 struct io_u *io_u = __get_io_u(td);
214 struct io_completion_data icd;
215 int ret;
216
217 if (!io_u)
218 return 1;
219
220 io_u->ddir = DDIR_SYNC;
221 io_u->file = f;
222
223 if (td_io_prep(td, io_u)) {
224 put_io_u(td, io_u);
225 return 1;
226 }
227
228 ret = td_io_queue(td, io_u);
229 if (ret) {
230 td_verror(td, io_u->error);
231 put_io_u(td, io_u);
232 return 1;
233 }
234
235 ret = td_io_getevents(td, 1, td->cur_depth, NULL);
236 if (ret < 0) {
237 td_verror(td, ret);
238 return 1;
239 }
240
241 icd.nr = ret;
242 ios_completed(td, &icd);
243 if (icd.error) {
244 td_verror(td, icd.error);
245 return 1;
246 }
247
248 return 0;
249}
250
251/*
252 * The main verify engine. Runs over the writes we previusly submitted,
253 * reads the blocks back in, and checks the crc/md5 of the data.
254 */
255static void do_verify(struct thread_data *td)
256{
257 struct io_u *io_u, *v_io_u = NULL;
258 struct io_completion_data icd;
259 struct fio_file *f;
260 int ret, i;
261
262 /*
263 * sync io first and invalidate cache, to make sure we really
264 * read from disk.
265 */
266 for_each_file(td, f, i) {
267 fio_io_sync(td, f);
268 file_invalidate_cache(td, f);
269 }
270
271 td_set_runstate(td, TD_VERIFYING);
272
273 do {
274 if (td->terminate)
275 break;
276
277 io_u = __get_io_u(td);
278 if (!io_u)
279 break;
280
281 if (runtime_exceeded(td, &io_u->start_time)) {
282 put_io_u(td, io_u);
283 break;
284 }
285
286 if (get_next_verify(td, io_u)) {
287 put_io_u(td, io_u);
288 break;
289 }
290
291 f = get_next_file(td);
292 if (!f)
293 break;
294
295 io_u->file = f;
296
297 if (td_io_prep(td, io_u)) {
298 put_io_u(td, io_u);
299 break;
300 }
301
302 ret = td_io_queue(td, io_u);
303 if (ret) {
304 td_verror(td, io_u->error);
305 put_io_u(td, io_u);
306 break;
307 }
308
309 /*
310 * we have one pending to verify, do that while
311 * we are doing io on the next one
312 */
313 if (do_io_u_verify(td, &v_io_u))
314 break;
315
316 ret = td_io_getevents(td, 1, 1, NULL);
317 if (ret != 1) {
318 if (ret < 0)
319 td_verror(td, ret);
320 break;
321 }
322
323 v_io_u = td->io_ops->event(td, 0);
324 icd.nr = 1;
325 icd.error = 0;
326 fio_gettime(&icd.time, NULL);
327 io_completed(td, v_io_u, &icd);
328
329 if (icd.error) {
330 td_verror(td, icd.error);
331 put_io_u(td, v_io_u);
332 v_io_u = NULL;
333 break;
334 }
335
336 /*
337 * if we can't submit more io, we need to verify now
338 */
339 if (queue_full(td) && do_io_u_verify(td, &v_io_u))
340 break;
341
342 } while (1);
343
344 do_io_u_verify(td, &v_io_u);
345
346 if (td->cur_depth)
347 cleanup_pending_aio(td);
348
349 td_set_runstate(td, TD_RUNNING);
350}
351
352/*
353 * Not really an io thread, all it does is burn CPU cycles in the specified
354 * manner.
355 */
356static void do_cpuio(struct thread_data *td)
357{
358 struct timeval e;
359 int split = 100 / td->cpuload;
360 int i = 0;
361
362 while (!td->terminate) {
363 fio_gettime(&e, NULL);
364
365 if (runtime_exceeded(td, &e))
366 break;
367
368 if (!(i % split))
369 __usec_sleep(10000);
370 else
371 usec_sleep(td, 10000);
372
373 i++;
374 }
375}
376
377/*
378 * Main IO worker function. It retrieves io_u's to process and queues
379 * and reaps them, checking for rate and errors along the way.
380 */
381static void do_io(struct thread_data *td)
382{
383 struct io_completion_data icd;
384 struct timeval s;
385 unsigned long usec;
386 struct fio_file *f;
387 int i, ret = 0;
388
389 td_set_runstate(td, TD_RUNNING);
390
391 while (td->this_io_bytes[td->ddir] < td->io_size) {
392 struct timespec *timeout;
393 int min_evts = 0;
394 struct io_u *io_u;
395
396 if (td->terminate)
397 break;
398
399 f = get_next_file(td);
400 if (!f)
401 break;
402
403 io_u = get_io_u(td, f);
404 if (!io_u)
405 break;
406
407 memcpy(&s, &io_u->start_time, sizeof(s));
408
409 ret = td_io_queue(td, io_u);
410 if (ret) {
411 td_verror(td, io_u->error);
412 put_io_u(td, io_u);
413 break;
414 }
415
416 add_slat_sample(td, io_u->ddir, mtime_since(&io_u->start_time, &io_u->issue_time));
417
418 if (td->cur_depth < td->iodepth) {
419 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
420
421 timeout = &ts;
422 min_evts = 0;
423 } else {
424 timeout = NULL;
425 min_evts = 1;
426 }
427
428 ret = td_io_getevents(td, min_evts, td->cur_depth, timeout);
429 if (ret < 0) {
430 td_verror(td, ret);
431 break;
432 } else if (!ret)
433 continue;
434
435 icd.nr = ret;
436 ios_completed(td, &icd);
437 if (icd.error) {
438 td_verror(td, icd.error);
439 break;
440 }
441
442 /*
443 * the rate is batched for now, it should work for batches
444 * of completions except the very first one which may look
445 * a little bursty
446 */
447 usec = utime_since(&s, &icd.time);
448
449 rate_throttle(td, usec, icd.bytes_done[td->ddir], td->ddir);
450
451 if (check_min_rate(td, &icd.time)) {
452 if (exitall_on_terminate)
453 terminate_threads(td->groupid, 0);
454 td_verror(td, ENODATA);
455 break;
456 }
457
458 if (runtime_exceeded(td, &icd.time))
459 break;
460
461 if (td->thinktime) {
462 unsigned long long b;
463
464 b = td->io_blocks[0] + td->io_blocks[1];
465 if (!(b % td->thinktime_blocks))
466 usec_sleep(td, td->thinktime);
467 }
468 }
469
470 if (!td->error) {
471 if (td->cur_depth)
472 cleanup_pending_aio(td);
473
474 if (should_fsync(td) && td->end_fsync) {
475 td_set_runstate(td, TD_FSYNCING);
476 for_each_file(td, f, i)
477 fio_io_sync(td, f);
478 }
479 }
480}
481
482static void cleanup_io_u(struct thread_data *td)
483{
484 struct list_head *entry, *n;
485 struct io_u *io_u;
486
487 list_for_each_safe(entry, n, &td->io_u_freelist) {
488 io_u = list_entry(entry, struct io_u, list);
489
490 list_del(&io_u->list);
491 free(io_u);
492 }
493
494 free_io_mem(td);
495}
496
497/*
498 * "randomly" fill the buffer contents
499 */
500static void fill_rand_buf(struct io_u *io_u, int max_bs)
501{
502 int *ptr = io_u->buf;
503
504 while ((void *) ptr - io_u->buf < max_bs) {
505 *ptr = rand() * 0x9e370001;
506 ptr++;
507 }
508}
509
510static int init_io_u(struct thread_data *td)
511{
512 struct io_u *io_u;
513 unsigned int max_bs;
514 int i, max_units;
515 char *p;
516
517 if (td->io_ops->flags & FIO_CPUIO)
518 return 0;
519
520 if (td->io_ops->flags & FIO_SYNCIO)
521 max_units = 1;
522 else
523 max_units = td->iodepth;
524
525 max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
526 td->orig_buffer_size = max_bs * max_units;
527
528 if (td->mem_type == MEM_SHMHUGE || td->mem_type == MEM_MMAPHUGE)
529 td->orig_buffer_size = (td->orig_buffer_size + td->hugepage_size - 1) & ~(td->hugepage_size - 1);
530 else
531 td->orig_buffer_size += MASK;
532
533 if (allocate_io_mem(td))
534 return 1;
535
536 p = ALIGN(td->orig_buffer);
537 for (i = 0; i < max_units; i++) {
538 io_u = malloc(sizeof(*io_u));
539 memset(io_u, 0, sizeof(*io_u));
540 INIT_LIST_HEAD(&io_u->list);
541
542 io_u->buf = p + max_bs * i;
543 if (td_write(td) || td_rw(td))
544 fill_rand_buf(io_u, max_bs);
545
546 io_u->index = i;
547 list_add(&io_u->list, &td->io_u_freelist);
548 }
549
550 return 0;
551}
552
553static int switch_ioscheduler(struct thread_data *td)
554{
555 char tmp[256], tmp2[128];
556 FILE *f;
557 int ret;
558
559 if (td->io_ops->flags & FIO_CPUIO)
560 return 0;
561
562 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
563
564 f = fopen(tmp, "r+");
565 if (!f) {
566 td_verror(td, errno);
567 return 1;
568 }
569
570 /*
571 * Set io scheduler.
572 */
573 ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
574 if (ferror(f) || ret != 1) {
575 td_verror(td, errno);
576 fclose(f);
577 return 1;
578 }
579
580 rewind(f);
581
582 /*
583 * Read back and check that the selected scheduler is now the default.
584 */
585 ret = fread(tmp, 1, sizeof(tmp), f);
586 if (ferror(f) || ret < 0) {
587 td_verror(td, errno);
588 fclose(f);
589 return 1;
590 }
591
592 sprintf(tmp2, "[%s]", td->ioscheduler);
593 if (!strstr(tmp, tmp2)) {
594 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
595 td_verror(td, EINVAL);
596 fclose(f);
597 return 1;
598 }
599
600 fclose(f);
601 return 0;
602}
603
604static void clear_io_state(struct thread_data *td)
605{
606 struct fio_file *f;
607 int i;
608
609 td->stat_io_bytes[0] = td->stat_io_bytes[1] = 0;
610 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
611 td->zone_bytes = 0;
612
613 for_each_file(td, f, i) {
614 f->last_pos = 0;
615 if (td->io_ops->flags & FIO_SYNCIO)
616 lseek(f->fd, SEEK_SET, 0);
617
618 if (f->file_map)
619 memset(f->file_map, 0, f->num_maps * sizeof(long));
620 }
621}
622
623/*
624 * Entry point for the thread based jobs. The process based jobs end up
625 * here as well, after a little setup.
626 */
627static void *thread_main(void *data)
628{
629 unsigned long long runtime[2];
630 struct thread_data *td = data;
631
632 if (!td->use_thread)
633 setsid();
634
635 td->pid = getpid();
636
637 INIT_LIST_HEAD(&td->io_u_freelist);
638 INIT_LIST_HEAD(&td->io_u_busylist);
639 INIT_LIST_HEAD(&td->io_hist_list);
640 INIT_LIST_HEAD(&td->io_log_list);
641
642 if (init_io_u(td))
643 goto err;
644
645 if (fio_setaffinity(td) == -1) {
646 td_verror(td, errno);
647 goto err;
648 }
649
650 if (td_io_init(td))
651 goto err;
652
653 if (init_iolog(td))
654 goto err;
655
656 if (td->ioprio) {
657 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
658 td_verror(td, errno);
659 goto err;
660 }
661 }
662
663 if (nice(td->nice) == -1) {
664 td_verror(td, errno);
665 goto err;
666 }
667
668 if (init_random_state(td))
669 goto err;
670
671 if (td->ioscheduler && switch_ioscheduler(td))
672 goto err;
673
674 td_set_runstate(td, TD_INITIALIZED);
675 fio_sem_up(&startup_sem);
676 fio_sem_down(&td->mutex);
677
678 if (!td->create_serialize && setup_files(td))
679 goto err;
680 if (open_files(td))
681 goto err;
682
683 if (td->exec_prerun)
684 system(td->exec_prerun);
685
686 fio_gettime(&td->epoch, NULL);
687 getrusage(RUSAGE_SELF, &td->ru_start);
688
689 runtime[0] = runtime[1] = 0;
690 while (td->loops--) {
691 fio_gettime(&td->start, NULL);
692 memcpy(&td->stat_sample_time, &td->start, sizeof(td->start));
693
694 if (td->ratemin)
695 memcpy(&td->lastrate, &td->stat_sample_time, sizeof(td->lastrate));
696
697 clear_io_state(td);
698 prune_io_piece_log(td);
699
700 if (td->io_ops->flags & FIO_CPUIO)
701 do_cpuio(td);
702 else
703 do_io(td);
704
705 runtime[td->ddir] += utime_since_now(&td->start);
706 if (td_rw(td) && td->io_bytes[td->ddir ^ 1])
707 runtime[td->ddir ^ 1] = runtime[td->ddir];
708
709 if (td->error || td->terminate)
710 break;
711
712 if (td->verify == VERIFY_NONE)
713 continue;
714
715 clear_io_state(td);
716 fio_gettime(&td->start, NULL);
717
718 do_verify(td);
719
720 runtime[DDIR_READ] += utime_since_now(&td->start);
721
722 if (td->error || td->terminate)
723 break;
724 }
725
726 update_rusage_stat(td);
727 fio_gettime(&td->end_time, NULL);
728 td->runtime[0] = runtime[0] / 1000;
729 td->runtime[1] = runtime[1] / 1000;
730
731 if (td->bw_log)
732 finish_log(td, td->bw_log, "bw");
733 if (td->slat_log)
734 finish_log(td, td->slat_log, "slat");
735 if (td->clat_log)
736 finish_log(td, td->clat_log, "clat");
737 if (td->write_iolog_file)
738 write_iolog_close(td);
739 if (td->exec_postrun)
740 system(td->exec_postrun);
741
742 if (exitall_on_terminate)
743 terminate_threads(td->groupid, 0);
744
745err:
746 close_files(td);
747 close_ioengine(td);
748 cleanup_io_u(td);
749 td_set_runstate(td, TD_EXITED);
750 return NULL;
751
752}
753
754/*
755 * We cannot pass the td data into a forked process, so attach the td and
756 * pass it to the thread worker.
757 */
758static void *fork_main(int shmid, int offset)
759{
760 struct thread_data *td;
761 void *data;
762
763 data = shmat(shmid, NULL, 0);
764 if (data == (void *) -1) {
765 perror("shmat");
766 return NULL;
767 }
768
769 td = data + offset * sizeof(struct thread_data);
770 thread_main(td);
771 shmdt(data);
772 return NULL;
773}
774
775/*
776 * Run over the job map and reap the threads that have exited, if any.
777 */
778static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
779{
780 struct thread_data *td;
781 int i, cputhreads, pending;
782
783 /*
784 * reap exited threads (TD_EXITED -> TD_REAPED)
785 */
786 pending = cputhreads = 0;
787 for_each_td(td, i) {
788 /*
789 * ->io_ops is NULL for a thread that has closed its
790 * io engine
791 */
792 if (td->io_ops && td->io_ops->flags & FIO_CPUIO)
793 cputhreads++;
794
795 if (td->runstate != TD_EXITED) {
796 if (td->runstate < TD_RUNNING)
797 pending++;
798
799 continue;
800 }
801
802 td_set_runstate(td, TD_REAPED);
803
804 if (td->use_thread) {
805 long ret;
806
807 if (pthread_join(td->thread, (void *) &ret))
808 perror("thread_join");
809 } else
810 waitpid(td->pid, NULL, 0);
811
812 (*nr_running)--;
813 (*m_rate) -= td->ratemin;
814 (*t_rate) -= td->rate;
815 }
816
817 if (*nr_running == cputhreads && !pending)
818 terminate_threads(TERMINATE_ALL, 0);
819}
820
821/*
822 * Main function for kicking off and reaping jobs, as needed.
823 */
824static void run_threads(void)
825{
826 struct thread_data *td;
827 unsigned long spent;
828 int i, todo, nr_running, m_rate, t_rate, nr_started;
829
830 if (fio_pin_memory())
831 return;
832
833 if (!terse_output) {
834 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
835 fflush(stdout);
836 }
837
838 signal(SIGINT, sig_handler);
839 signal(SIGALRM, sig_handler);
840 signal(SIGSEGV, sig_handler);
841
842 todo = thread_number;
843 nr_running = 0;
844 nr_started = 0;
845 m_rate = t_rate = 0;
846
847 for_each_td(td, i) {
848 print_status_init(td->thread_number - 1);
849
850 if (!td->create_serialize) {
851 init_disk_util(td);
852 continue;
853 }
854
855 /*
856 * do file setup here so it happens sequentially,
857 * we don't want X number of threads getting their
858 * client data interspersed on disk
859 */
860 if (setup_files(td)) {
861 td_set_runstate(td, TD_REAPED);
862 todo--;
863 }
864
865 init_disk_util(td);
866 }
867
868 while (todo) {
869 struct thread_data *map[MAX_JOBS];
870 struct timeval this_start;
871 int this_jobs = 0, left;
872
873 /*
874 * create threads (TD_NOT_CREATED -> TD_CREATED)
875 */
876 for_each_td(td, i) {
877 if (td->runstate != TD_NOT_CREATED)
878 continue;
879
880 /*
881 * never got a chance to start, killed by other
882 * thread for some reason
883 */
884 if (td->terminate) {
885 todo--;
886 continue;
887 }
888
889 if (td->start_delay) {
890 spent = mtime_since_genesis();
891
892 if (td->start_delay * 1000 > spent)
893 continue;
894 }
895
896 if (td->stonewall && (nr_started || nr_running))
897 break;
898
899 /*
900 * Set state to created. Thread will transition
901 * to TD_INITIALIZED when it's done setting up.
902 */
903 td_set_runstate(td, TD_CREATED);
904 map[this_jobs++] = td;
905 fio_sem_init(&startup_sem, 1);
906 nr_started++;
907
908 if (td->use_thread) {
909 if (pthread_create(&td->thread, NULL, thread_main, td)) {
910 perror("thread_create");
911 nr_started--;
912 }
913 } else {
914 if (fork())
915 fio_sem_down(&startup_sem);
916 else {
917 fork_main(shm_id, i);
918 exit(0);
919 }
920 }
921 }
922
923 /*
924 * Wait for the started threads to transition to
925 * TD_INITIALIZED.
926 */
927 fio_gettime(&this_start, NULL);
928 left = this_jobs;
929 while (left && !fio_abort) {
930 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
931 break;
932
933 usleep(100000);
934
935 for (i = 0; i < this_jobs; i++) {
936 td = map[i];
937 if (!td)
938 continue;
939 if (td->runstate == TD_INITIALIZED) {
940 map[i] = NULL;
941 left--;
942 } else if (td->runstate >= TD_EXITED) {
943 map[i] = NULL;
944 left--;
945 todo--;
946 nr_running++; /* work-around... */
947 }
948 }
949 }
950
951 if (left) {
952 log_err("fio: %d jobs failed to start\n", left);
953 for (i = 0; i < this_jobs; i++) {
954 td = map[i];
955 if (!td)
956 continue;
957 kill(td->pid, SIGTERM);
958 }
959 break;
960 }
961
962 /*
963 * start created threads (TD_INITIALIZED -> TD_RUNNING).
964 */
965 for_each_td(td, i) {
966 if (td->runstate != TD_INITIALIZED)
967 continue;
968
969 td_set_runstate(td, TD_RUNNING);
970 nr_running++;
971 nr_started--;
972 m_rate += td->ratemin;
973 t_rate += td->rate;
974 todo--;
975 fio_sem_up(&td->mutex);
976 }
977
978 reap_threads(&nr_running, &t_rate, &m_rate);
979
980 if (todo)
981 usleep(100000);
982 }
983
984 while (nr_running) {
985 reap_threads(&nr_running, &t_rate, &m_rate);
986 usleep(10000);
987 }
988
989 update_io_ticks();
990 fio_unpin_memory();
991}
992
993int main(int argc, char *argv[])
994{
995 if (parse_options(argc, argv))
996 return 1;
997
998 if (!thread_number) {
999 log_err("Nothing to do\n");
1000 return 1;
1001 }
1002
1003 if (write_bw_log) {
1004 setup_log(&agg_io_log[DDIR_READ]);
1005 setup_log(&agg_io_log[DDIR_WRITE]);
1006 }
1007
1008 disk_util_timer_arm();
1009
1010 run_threads();
1011
1012 if (!fio_abort) {
1013 show_run_stats();
1014 if (write_bw_log) {
1015 __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1016 __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1017 }
1018 }
1019
1020 return 0;
1021}