Fix bug with stonewall option causing segfault
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38
39unsigned long page_mask;
40unsigned long page_size;
41#define ALIGN(buf) \
42 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
43
44int groupid = 0;
45int thread_number = 0;
46int nr_process = 0;
47int nr_thread = 0;
48int shm_id = 0;
49int temp_stall_ts;
50
51static struct fio_sem *startup_sem;
52static volatile int fio_abort;
53static int exit_value;
54
55struct io_log *agg_io_log[2];
56
57#define TERMINATE_ALL (-1)
58#define JOB_START_TIMEOUT (5 * 1000)
59
60static inline void td_set_runstate(struct thread_data *td, int runstate)
61{
62 td->runstate = runstate;
63}
64
65static void terminate_threads(int group_id)
66{
67 struct thread_data *td;
68 int i;
69
70 for_each_td(td, i) {
71 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
72 /*
73 * if the thread is running, just let it exit
74 */
75 if (td->runstate < TD_RUNNING)
76 kill(td->pid, SIGQUIT);
77 td->terminate = 1;
78 td->o.start_delay = 0;
79 }
80 }
81}
82
83static void sig_handler(int sig)
84{
85 switch (sig) {
86 case SIGALRM:
87 update_io_ticks();
88 disk_util_timer_arm();
89 print_thread_status();
90 break;
91 default:
92 printf("\nfio: terminating on signal %d\n", sig);
93 fflush(stdout);
94 terminate_threads(TERMINATE_ALL);
95 break;
96 }
97}
98
99/*
100 * Check if we are above the minimum rate given.
101 */
102static int check_min_rate(struct thread_data *td, struct timeval *now)
103{
104 unsigned long long bytes = 0;
105 unsigned long iops = 0;
106 unsigned long spent;
107 unsigned long rate;
108
109 /*
110 * No minimum rate set, always ok
111 */
112 if (!td->o.ratemin && !td->o.rate_iops_min)
113 return 0;
114
115 /*
116 * allow a 2 second settle period in the beginning
117 */
118 if (mtime_since(&td->start, now) < 2000)
119 return 0;
120
121 if (td_read(td)) {
122 iops += td->io_blocks[DDIR_READ];
123 bytes += td->this_io_bytes[DDIR_READ];
124 }
125 if (td_write(td)) {
126 iops += td->io_blocks[DDIR_WRITE];
127 bytes += td->this_io_bytes[DDIR_WRITE];
128 }
129
130 /*
131 * if rate blocks is set, sample is running
132 */
133 if (td->rate_bytes || td->rate_blocks) {
134 spent = mtime_since(&td->lastrate, now);
135 if (spent < td->o.ratecycle)
136 return 0;
137
138 if (td->o.rate) {
139 /*
140 * check bandwidth specified rate
141 */
142 if (bytes < td->rate_bytes) {
143 log_err("%s: min rate %u not met\n", td->o.name, td->o.ratemin);
144 return 1;
145 } else {
146 rate = (bytes - td->rate_bytes) / spent;
147 if (rate < td->o.ratemin || bytes < td->rate_bytes) {
148 log_err("%s: min rate %u not met, got %luKiB/sec\n", td->o.name, td->o.ratemin, rate);
149 return 1;
150 }
151 }
152 } else {
153 /*
154 * checks iops specified rate
155 */
156 if (iops < td->o.rate_iops) {
157 log_err("%s: min iops rate %u not met\n", td->o.name, td->o.rate_iops);
158 return 1;
159 } else {
160 rate = (iops - td->rate_blocks) / spent;
161 if (rate < td->o.rate_iops_min || iops < td->rate_blocks) {
162 log_err("%s: min iops rate %u not met, got %lu\n", td->o.name, td->o.rate_iops_min, rate);
163 }
164 }
165 }
166 }
167
168 td->rate_bytes = bytes;
169 td->rate_blocks = iops;
170 memcpy(&td->lastrate, now, sizeof(*now));
171 return 0;
172}
173
174static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
175{
176 if (!td->o.timeout)
177 return 0;
178 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
179 return 1;
180
181 return 0;
182}
183
184/*
185 * When job exits, we can cancel the in-flight IO if we are using async
186 * io. Attempt to do so.
187 */
188static void cleanup_pending_aio(struct thread_data *td)
189{
190 struct list_head *entry, *n;
191 struct io_u *io_u;
192 int r;
193
194 /*
195 * get immediately available events, if any
196 */
197 r = io_u_queued_complete(td, 0);
198 if (r < 0)
199 return;
200
201 /*
202 * now cancel remaining active events
203 */
204 if (td->io_ops->cancel) {
205 list_for_each_safe(entry, n, &td->io_u_busylist) {
206 io_u = list_entry(entry, struct io_u, list);
207
208 /*
209 * if the io_u isn't in flight, then that generally
210 * means someone leaked an io_u. complain but fix
211 * it up, so we don't stall here.
212 */
213 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
214 log_err("fio: non-busy IO on busy list\n");
215 put_io_u(td, io_u);
216 } else {
217 r = td->io_ops->cancel(td, io_u);
218 if (!r)
219 put_io_u(td, io_u);
220 }
221 }
222 }
223
224 if (td->cur_depth)
225 r = io_u_queued_complete(td, td->cur_depth);
226}
227
228/*
229 * Helper to handle the final sync of a file. Works just like the normal
230 * io path, just does everything sync.
231 */
232static int fio_io_sync(struct thread_data *td, struct fio_file *f)
233{
234 struct io_u *io_u = __get_io_u(td);
235 int ret;
236
237 if (!io_u)
238 return 1;
239
240 io_u->ddir = DDIR_SYNC;
241 io_u->file = f;
242
243 if (td_io_prep(td, io_u)) {
244 put_io_u(td, io_u);
245 return 1;
246 }
247
248requeue:
249 ret = td_io_queue(td, io_u);
250 if (ret < 0) {
251 td_verror(td, io_u->error, "td_io_queue");
252 put_io_u(td, io_u);
253 return 1;
254 } else if (ret == FIO_Q_QUEUED) {
255 if (io_u_queued_complete(td, 1) < 0)
256 return 1;
257 } else if (ret == FIO_Q_COMPLETED) {
258 if (io_u->error) {
259 td_verror(td, io_u->error, "td_io_queue");
260 return 1;
261 }
262
263 if (io_u_sync_complete(td, io_u) < 0)
264 return 1;
265 } else if (ret == FIO_Q_BUSY) {
266 if (td_io_commit(td))
267 return 1;
268 goto requeue;
269 }
270
271 return 0;
272}
273
274/*
275 * The main verify engine. Runs over the writes we previously submitted,
276 * reads the blocks back in, and checks the crc/md5 of the data.
277 */
278static void do_verify(struct thread_data *td)
279{
280 struct fio_file *f;
281 struct io_u *io_u;
282 int ret, min_events;
283 unsigned int i;
284
285 /*
286 * sync io first and invalidate cache, to make sure we really
287 * read from disk.
288 */
289 for_each_file(td, f, i) {
290 if (!(f->flags & FIO_FILE_OPEN))
291 continue;
292 if (fio_io_sync(td, f))
293 break;
294 if (file_invalidate_cache(td, f))
295 break;
296 }
297
298 if (td->error)
299 return;
300
301 td_set_runstate(td, TD_VERIFYING);
302
303 io_u = NULL;
304 while (!td->terminate) {
305 int ret2;
306
307 io_u = __get_io_u(td);
308 if (!io_u)
309 break;
310
311 if (runtime_exceeded(td, &io_u->start_time)) {
312 put_io_u(td, io_u);
313 break;
314 }
315
316 if (get_next_verify(td, io_u)) {
317 put_io_u(td, io_u);
318 break;
319 }
320
321 if (td_io_prep(td, io_u)) {
322 put_io_u(td, io_u);
323 break;
324 }
325
326 io_u->end_io = verify_io_u;
327
328 ret = td_io_queue(td, io_u);
329 switch (ret) {
330 case FIO_Q_COMPLETED:
331 if (io_u->error)
332 ret = -io_u->error;
333 else if (io_u->resid) {
334 int bytes = io_u->xfer_buflen - io_u->resid;
335
336 /*
337 * zero read, fail
338 */
339 if (!bytes) {
340 td_verror(td, ENODATA, "full resid");
341 put_io_u(td, io_u);
342 break;
343 }
344
345 io_u->xfer_buflen = io_u->resid;
346 io_u->xfer_buf += bytes;
347 io_u->offset += bytes;
348
349 if (io_u->offset == io_u->file->real_file_size)
350 goto sync_done;
351
352 requeue_io_u(td, &io_u);
353 } else {
354sync_done:
355 ret = io_u_sync_complete(td, io_u);
356 if (ret < 0)
357 break;
358 }
359 continue;
360 case FIO_Q_QUEUED:
361 break;
362 case FIO_Q_BUSY:
363 requeue_io_u(td, &io_u);
364 ret2 = td_io_commit(td);
365 if (ret2 < 0)
366 ret = ret2;
367 break;
368 default:
369 assert(ret < 0);
370 td_verror(td, -ret, "td_io_queue");
371 break;
372 }
373
374 if (ret < 0 || td->error)
375 break;
376
377 /*
378 * if we can queue more, do so. but check if there are
379 * completed io_u's first.
380 */
381 min_events = 0;
382 if (queue_full(td) || ret == FIO_Q_BUSY) {
383 min_events = 1;
384
385 if (td->cur_depth > td->o.iodepth_low)
386 min_events = td->cur_depth - td->o.iodepth_low;
387 }
388
389 /*
390 * Reap required number of io units, if any, and do the
391 * verification on them through the callback handler
392 */
393 if (io_u_queued_complete(td, min_events) < 0)
394 break;
395 }
396
397 if (!td->error) {
398 min_events = td->cur_depth;
399
400 if (min_events)
401 ret = io_u_queued_complete(td, min_events);
402 } else
403 cleanup_pending_aio(td);
404
405 td_set_runstate(td, TD_RUNNING);
406}
407
408/*
409 * Main IO worker function. It retrieves io_u's to process and queues
410 * and reaps them, checking for rate and errors along the way.
411 */
412static void do_io(struct thread_data *td)
413{
414 struct timeval s;
415 unsigned long usec;
416 unsigned int i;
417 int ret = 0;
418
419 td_set_runstate(td, TD_RUNNING);
420
421 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) {
422 struct timeval comp_time;
423 long bytes_done = 0;
424 int min_evts = 0;
425 struct io_u *io_u;
426 int ret2;
427
428 if (td->terminate)
429 break;
430
431 io_u = get_io_u(td);
432 if (!io_u)
433 break;
434
435 memcpy(&s, &io_u->start_time, sizeof(s));
436
437 if (runtime_exceeded(td, &s)) {
438 put_io_u(td, io_u);
439 break;
440 }
441
442 ret = td_io_queue(td, io_u);
443 switch (ret) {
444 case FIO_Q_COMPLETED:
445 if (io_u->error)
446 ret = -io_u->error;
447 else if (io_u->resid) {
448 int bytes = io_u->xfer_buflen - io_u->resid;
449
450 /*
451 * zero read, fail
452 */
453 if (!bytes) {
454 td_verror(td, ENODATA, "full resid");
455 put_io_u(td, io_u);
456 break;
457 }
458
459 io_u->xfer_buflen = io_u->resid;
460 io_u->xfer_buf += bytes;
461 io_u->offset += bytes;
462
463 if (io_u->offset == io_u->file->real_file_size)
464 goto sync_done;
465
466 requeue_io_u(td, &io_u);
467 } else {
468sync_done:
469 fio_gettime(&comp_time, NULL);
470 bytes_done = io_u_sync_complete(td, io_u);
471 if (bytes_done < 0)
472 ret = bytes_done;
473 }
474 break;
475 case FIO_Q_QUEUED:
476 /*
477 * if the engine doesn't have a commit hook,
478 * the io_u is really queued. if it does have such
479 * a hook, it has to call io_u_queued() itself.
480 */
481 if (td->io_ops->commit == NULL)
482 io_u_queued(td, io_u);
483 break;
484 case FIO_Q_BUSY:
485 requeue_io_u(td, &io_u);
486 ret2 = td_io_commit(td);
487 if (ret2 < 0)
488 ret = ret2;
489 break;
490 default:
491 assert(ret < 0);
492 put_io_u(td, io_u);
493 break;
494 }
495
496 if (ret < 0 || td->error)
497 break;
498
499 /*
500 * See if we need to complete some commands
501 */
502 if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) {
503 min_evts = 0;
504 if (queue_full(td) || ret == FIO_Q_BUSY) {
505 min_evts = 1;
506
507 if (td->cur_depth > td->o.iodepth_low)
508 min_evts = td->cur_depth - td->o.iodepth_low;
509 }
510
511 fio_gettime(&comp_time, NULL);
512 bytes_done = io_u_queued_complete(td, min_evts);
513 if (bytes_done < 0)
514 break;
515 }
516
517 if (!bytes_done)
518 continue;
519
520 /*
521 * the rate is batched for now, it should work for batches
522 * of completions except the very first one which may look
523 * a little bursty
524 */
525 usec = utime_since(&s, &comp_time);
526
527 rate_throttle(td, usec, bytes_done);
528
529 if (check_min_rate(td, &comp_time)) {
530 if (exitall_on_terminate)
531 terminate_threads(td->groupid);
532 td_verror(td, ENODATA, "check_min_rate");
533 break;
534 }
535
536 if (td->o.thinktime) {
537 unsigned long long b;
538
539 b = td->io_blocks[0] + td->io_blocks[1];
540 if (!(b % td->o.thinktime_blocks)) {
541 int left;
542
543 if (td->o.thinktime_spin)
544 __usec_sleep(td->o.thinktime_spin);
545
546 left = td->o.thinktime - td->o.thinktime_spin;
547 if (left)
548 usec_sleep(td, left);
549 }
550 }
551 }
552
553 if (!td->error) {
554 struct fio_file *f;
555
556 i = td->cur_depth;
557 if (i)
558 ret = io_u_queued_complete(td, i);
559
560 if (should_fsync(td) && td->o.end_fsync) {
561 td_set_runstate(td, TD_FSYNCING);
562
563 for_each_file(td, f, i) {
564 if (!(f->flags & FIO_FILE_OPEN))
565 continue;
566 fio_io_sync(td, f);
567 }
568 }
569 } else
570 cleanup_pending_aio(td);
571}
572
573static void cleanup_io_u(struct thread_data *td)
574{
575 struct list_head *entry, *n;
576 struct io_u *io_u;
577
578 list_for_each_safe(entry, n, &td->io_u_freelist) {
579 io_u = list_entry(entry, struct io_u, list);
580
581 list_del(&io_u->list);
582 free(io_u);
583 }
584
585 free_io_mem(td);
586}
587
588/*
589 * "randomly" fill the buffer contents
590 */
591static void fill_rand_buf(struct io_u *io_u, int max_bs)
592{
593 int *ptr = io_u->buf;
594
595 while ((void *) ptr - io_u->buf < max_bs) {
596 *ptr = rand() * 0x9e370001;
597 ptr++;
598 }
599}
600
601static int init_io_u(struct thread_data *td)
602{
603 unsigned long long buf_size;
604 struct io_u *io_u;
605 unsigned int max_bs;
606 int i, max_units;
607 char *p;
608
609 if (td->io_ops->flags & FIO_SYNCIO)
610 max_units = 1;
611 else
612 max_units = td->o.iodepth;
613
614 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
615 buf_size = (unsigned long long) max_bs * (unsigned long long) max_units;
616 buf_size += page_mask;
617 if (buf_size != (size_t) buf_size) {
618 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
619 return 1;
620 }
621
622 td->orig_buffer_size = buf_size;
623
624 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE)
625 td->orig_buffer_size = (td->orig_buffer_size + td->o.hugepage_size - 1) & ~(td->o.hugepage_size - 1);
626 else if (td->orig_buffer_size & page_mask)
627 td->orig_buffer_size = (td->orig_buffer_size + page_mask) & ~page_mask;
628
629 if (allocate_io_mem(td))
630 return 1;
631
632 p = ALIGN(td->orig_buffer);
633 for (i = 0; i < max_units; i++) {
634 io_u = malloc(sizeof(*io_u));
635 memset(io_u, 0, sizeof(*io_u));
636 INIT_LIST_HEAD(&io_u->list);
637
638 io_u->buf = p + max_bs * i;
639 if (td_write(td) || td_rw(td))
640 fill_rand_buf(io_u, max_bs);
641
642 io_u->index = i;
643 io_u->flags = IO_U_F_FREE;
644 list_add(&io_u->list, &td->io_u_freelist);
645 }
646
647 io_u_init_timeout();
648
649 return 0;
650}
651
652static int switch_ioscheduler(struct thread_data *td)
653{
654 char tmp[256], tmp2[128];
655 FILE *f;
656 int ret;
657
658 if (td->io_ops->flags & FIO_DISKLESSIO)
659 return 0;
660
661 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
662
663 f = fopen(tmp, "r+");
664 if (!f) {
665 td_verror(td, errno, "fopen");
666 return 1;
667 }
668
669 /*
670 * Set io scheduler.
671 */
672 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
673 if (ferror(f) || ret != 1) {
674 td_verror(td, errno, "fwrite");
675 fclose(f);
676 return 1;
677 }
678
679 rewind(f);
680
681 /*
682 * Read back and check that the selected scheduler is now the default.
683 */
684 ret = fread(tmp, 1, sizeof(tmp), f);
685 if (ferror(f) || ret < 0) {
686 td_verror(td, errno, "fread");
687 fclose(f);
688 return 1;
689 }
690
691 sprintf(tmp2, "[%s]", td->o.ioscheduler);
692 if (!strstr(tmp, tmp2)) {
693 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
694 td_verror(td, EINVAL, "iosched_switch");
695 fclose(f);
696 return 1;
697 }
698
699 fclose(f);
700 return 0;
701}
702
703static int clear_io_state(struct thread_data *td)
704{
705 struct fio_file *f;
706 unsigned int i;
707 int ret;
708
709 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
710 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
711 td->zone_bytes = 0;
712 td->rate_bytes = 0;
713 td->rate_blocks = 0;
714 td->rw_end_set[0] = td->rw_end_set[1] = 0;
715
716 td->last_was_sync = 0;
717
718 for_each_file(td, f, i)
719 td_io_close_file(td, f);
720
721 ret = 0;
722 for_each_file(td, f, i) {
723 ret = td_io_open_file(td, f);
724 if (ret)
725 break;
726 }
727
728 return ret;
729}
730
731/*
732 * Entry point for the thread based jobs. The process based jobs end up
733 * here as well, after a little setup.
734 */
735static void *thread_main(void *data)
736{
737 unsigned long long runtime[2];
738 struct thread_data *td = data;
739 unsigned long elapsed;
740 int clear_state;
741
742 if (!td->o.use_thread)
743 setsid();
744
745 td->pid = getpid();
746
747 INIT_LIST_HEAD(&td->io_u_freelist);
748 INIT_LIST_HEAD(&td->io_u_busylist);
749 INIT_LIST_HEAD(&td->io_u_requeues);
750 INIT_LIST_HEAD(&td->io_log_list);
751 INIT_LIST_HEAD(&td->io_hist_list);
752 td->io_hist_tree = RB_ROOT;
753
754 if (init_io_u(td))
755 goto err_sem;
756
757 if (fio_setaffinity(td) == -1) {
758 td_verror(td, errno, "cpu_set_affinity");
759 goto err_sem;
760 }
761
762 if (init_iolog(td))
763 goto err_sem;
764
765 if (td->ioprio) {
766 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
767 td_verror(td, errno, "ioprio_set");
768 goto err_sem;
769 }
770 }
771
772 if (nice(td->o.nice) == -1) {
773 td_verror(td, errno, "nice");
774 goto err_sem;
775 }
776
777 if (td->o.ioscheduler && switch_ioscheduler(td))
778 goto err_sem;
779
780 td_set_runstate(td, TD_INITIALIZED);
781 fio_sem_up(startup_sem);
782 fio_sem_down(td->mutex);
783
784 /*
785 * the ->mutex semaphore is now no longer used, close it to avoid
786 * eating a file descriptor
787 */
788 fio_sem_remove(td->mutex);
789
790 if (!td->o.create_serialize && setup_files(td))
791 goto err;
792
793 if (td_io_init(td))
794 goto err;
795
796 if (open_files(td))
797 goto err;
798
799 if (init_random_map(td))
800 goto err;
801
802 if (td->o.exec_prerun) {
803 if (system(td->o.exec_prerun) < 0)
804 goto err;
805 }
806
807 fio_gettime(&td->epoch, NULL);
808 memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch));
809 getrusage(RUSAGE_SELF, &td->ts.ru_start);
810
811 runtime[0] = runtime[1] = 0;
812 clear_state = 0;
813 while (td->o.loops--) {
814 fio_gettime(&td->start, NULL);
815 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
816
817 if (td->o.ratemin)
818 memcpy(&td->lastrate, &td->ts.stat_sample_time, sizeof(td->lastrate));
819
820 if (clear_state && clear_io_state(td))
821 break;
822
823 prune_io_piece_log(td);
824
825 do_io(td);
826
827 clear_state = 1;
828
829 if (td_read(td) && td->io_bytes[DDIR_READ]) {
830 if (td->rw_end_set[DDIR_READ])
831 elapsed = utime_since(&td->start, &td->rw_end[DDIR_READ]);
832 else
833 elapsed = utime_since_now(&td->start);
834
835 runtime[DDIR_READ] += elapsed;
836 }
837 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
838 if (td->rw_end_set[DDIR_WRITE])
839 elapsed = utime_since(&td->start, &td->rw_end[DDIR_WRITE]);
840 else
841 elapsed = utime_since_now(&td->start);
842
843 runtime[DDIR_WRITE] += elapsed;
844 }
845
846 if (td->error || td->terminate)
847 break;
848
849 if (td->o.verify == VERIFY_NONE)
850 continue;
851
852 if (clear_io_state(td))
853 break;
854
855 fio_gettime(&td->start, NULL);
856
857 do_verify(td);
858
859 runtime[DDIR_READ] += utime_since_now(&td->start);
860
861 if (td->error || td->terminate)
862 break;
863 }
864
865 update_rusage_stat(td);
866 td->ts.runtime[0] = runtime[0] / 1000;
867 td->ts.runtime[1] = runtime[1] / 1000;
868 td->ts.total_run_time = mtime_since_now(&td->epoch);
869 td->ts.io_bytes[0] = td->io_bytes[0];
870 td->ts.io_bytes[1] = td->io_bytes[1];
871
872 if (td->ts.bw_log)
873 finish_log(td, td->ts.bw_log, "bw");
874 if (td->ts.slat_log)
875 finish_log(td, td->ts.slat_log, "slat");
876 if (td->ts.clat_log)
877 finish_log(td, td->ts.clat_log, "clat");
878 if (td->o.write_iolog_file)
879 write_iolog_close(td);
880 if (td->o.exec_postrun) {
881 if (system(td->o.exec_postrun) < 0)
882 log_err("fio: postrun %s failed\n", td->o.exec_postrun);
883 }
884
885 if (exitall_on_terminate)
886 terminate_threads(td->groupid);
887
888err:
889 if (td->error)
890 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
891 close_files(td);
892 close_ioengine(td);
893 cleanup_io_u(td);
894 options_mem_free(td);
895 td_set_runstate(td, TD_EXITED);
896 return (void *) (unsigned long) td->error;
897err_sem:
898 fio_sem_up(startup_sem);
899 goto err;
900}
901
902/*
903 * We cannot pass the td data into a forked process, so attach the td and
904 * pass it to the thread worker.
905 */
906static int fork_main(int shmid, int offset)
907{
908 struct thread_data *td;
909 void *data, *ret;
910
911 data = shmat(shmid, NULL, 0);
912 if (data == (void *) -1) {
913 int __err = errno;
914
915 perror("shmat");
916 return __err;
917 }
918
919 td = data + offset * sizeof(struct thread_data);
920 ret = thread_main(td);
921 shmdt(data);
922 return (int) (unsigned long) ret;
923}
924
925/*
926 * Run over the job map and reap the threads that have exited, if any.
927 */
928static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
929{
930 struct thread_data *td;
931 int i, cputhreads, pending, status, ret;
932
933 /*
934 * reap exited threads (TD_EXITED -> TD_REAPED)
935 */
936 pending = cputhreads = 0;
937 for_each_td(td, i) {
938 int flags = 0;
939
940 /*
941 * ->io_ops is NULL for a thread that has closed its
942 * io engine
943 */
944 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
945 cputhreads++;
946
947 if (!td->pid || td->runstate == TD_REAPED)
948 continue;
949 if (td->o.use_thread) {
950 if (td->runstate == TD_EXITED) {
951 td_set_runstate(td, TD_REAPED);
952 goto reaped;
953 }
954 continue;
955 }
956
957 flags = WNOHANG;
958 if (td->runstate == TD_EXITED)
959 flags = 0;
960
961 /*
962 * check if someone quit or got killed in an unusual way
963 */
964 ret = waitpid(td->pid, &status, flags);
965 if (ret < 0) {
966 if (errno == ECHILD) {
967 log_err("fio: pid=%d disappeared %d\n", td->pid, td->runstate);
968 td_set_runstate(td, TD_REAPED);
969 goto reaped;
970 }
971 perror("waitpid");
972 } else if (ret == td->pid) {
973 if (WIFSIGNALED(status)) {
974 int sig = WTERMSIG(status);
975
976 if (sig != SIGQUIT)
977 log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
978 td_set_runstate(td, TD_REAPED);
979 goto reaped;
980 }
981 if (WIFEXITED(status)) {
982 if (WEXITSTATUS(status) && !td->error)
983 td->error = WEXITSTATUS(status);
984
985 td_set_runstate(td, TD_REAPED);
986 goto reaped;
987 }
988 }
989
990 /*
991 * thread is not dead, continue
992 */
993 pending++;
994 continue;
995reaped:
996 if (td->o.use_thread) {
997 long ret;
998
999 if (pthread_join(td->thread, (void *) &ret))
1000 perror("pthread_join");
1001 }
1002
1003 (*nr_running)--;
1004 (*m_rate) -= td->o.ratemin;
1005 (*t_rate) -= td->o.rate;
1006 pending--;
1007
1008 if (td->error)
1009 exit_value++;
1010 }
1011
1012 if (*nr_running == cputhreads && !pending)
1013 terminate_threads(TERMINATE_ALL);
1014}
1015
1016/*
1017 * Main function for kicking off and reaping jobs, as needed.
1018 */
1019static void run_threads(void)
1020{
1021 struct thread_data *td;
1022 unsigned long spent;
1023 int i, todo, nr_running, m_rate, t_rate, nr_started;
1024
1025 if (fio_pin_memory())
1026 return;
1027
1028 if (!terse_output) {
1029 printf("Starting ");
1030 if (nr_thread)
1031 printf("%d thread%s", nr_thread, nr_thread > 1 ? "s" : "");
1032 if (nr_process) {
1033 if (nr_thread)
1034 printf(" and ");
1035 printf("%d process%s", nr_process, nr_process > 1 ? "es" : "");
1036 }
1037 printf("\n");
1038 fflush(stdout);
1039 }
1040
1041 signal(SIGINT, sig_handler);
1042 signal(SIGALRM, sig_handler);
1043
1044 todo = thread_number;
1045 nr_running = 0;
1046 nr_started = 0;
1047 m_rate = t_rate = 0;
1048
1049 for_each_td(td, i) {
1050 print_status_init(td->thread_number - 1);
1051
1052 if (!td->o.create_serialize) {
1053 init_disk_util(td);
1054 continue;
1055 }
1056
1057 /*
1058 * do file setup here so it happens sequentially,
1059 * we don't want X number of threads getting their
1060 * client data interspersed on disk
1061 */
1062 if (setup_files(td)) {
1063 exit_value++;
1064 if (td->error)
1065 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
1066 td_set_runstate(td, TD_REAPED);
1067 todo--;
1068 }
1069
1070 init_disk_util(td);
1071 }
1072
1073 set_genesis_time();
1074
1075 while (todo) {
1076 struct thread_data *map[MAX_JOBS];
1077 struct timeval this_start;
1078 int this_jobs = 0, left;
1079
1080 /*
1081 * create threads (TD_NOT_CREATED -> TD_CREATED)
1082 */
1083 for_each_td(td, i) {
1084 if (td->runstate != TD_NOT_CREATED)
1085 continue;
1086
1087 /*
1088 * never got a chance to start, killed by other
1089 * thread for some reason
1090 */
1091 if (td->terminate) {
1092 todo--;
1093 continue;
1094 }
1095
1096 if (td->o.start_delay) {
1097 spent = mtime_since_genesis();
1098
1099 if (td->o.start_delay * 1000 > spent)
1100 continue;
1101 }
1102
1103 if (td->o.stonewall && (nr_started || nr_running))
1104 break;
1105
1106 /*
1107 * Set state to created. Thread will transition
1108 * to TD_INITIALIZED when it's done setting up.
1109 */
1110 td_set_runstate(td, TD_CREATED);
1111 map[this_jobs++] = td;
1112 nr_started++;
1113
1114 if (td->o.use_thread) {
1115 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1116 perror("thread_create");
1117 nr_started--;
1118 break;
1119 }
1120 } else {
1121 if (!fork()) {
1122 int ret = fork_main(shm_id, i);
1123
1124 exit(ret);
1125 }
1126 }
1127 fio_sem_down(startup_sem);
1128 }
1129
1130 /*
1131 * Wait for the started threads to transition to
1132 * TD_INITIALIZED.
1133 */
1134 fio_gettime(&this_start, NULL);
1135 left = this_jobs;
1136 while (left && !fio_abort) {
1137 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1138 break;
1139
1140 usleep(100000);
1141
1142 for (i = 0; i < this_jobs; i++) {
1143 td = map[i];
1144 if (!td)
1145 continue;
1146 if (td->runstate == TD_INITIALIZED) {
1147 map[i] = NULL;
1148 left--;
1149 } else if (td->runstate >= TD_EXITED) {
1150 map[i] = NULL;
1151 left--;
1152 todo--;
1153 nr_running++; /* work-around... */
1154 }
1155 }
1156 }
1157
1158 if (left) {
1159 log_err("fio: %d jobs failed to start\n", left);
1160 for (i = 0; i < this_jobs; i++) {
1161 td = map[i];
1162 if (!td)
1163 continue;
1164 kill(td->pid, SIGTERM);
1165 }
1166 break;
1167 }
1168
1169 /*
1170 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1171 */
1172 for_each_td(td, i) {
1173 if (td->runstate != TD_INITIALIZED)
1174 continue;
1175
1176 td_set_runstate(td, TD_RUNNING);
1177 nr_running++;
1178 nr_started--;
1179 m_rate += td->o.ratemin;
1180 t_rate += td->o.rate;
1181 todo--;
1182 fio_sem_up(td->mutex);
1183 }
1184
1185 reap_threads(&nr_running, &t_rate, &m_rate);
1186
1187 if (todo)
1188 usleep(100000);
1189 }
1190
1191 while (nr_running) {
1192 reap_threads(&nr_running, &t_rate, &m_rate);
1193 usleep(10000);
1194 }
1195
1196 update_io_ticks();
1197 fio_unpin_memory();
1198}
1199
1200int main(int argc, char *argv[])
1201{
1202 long ps;
1203
1204 /*
1205 * We need locale for number printing, if it isn't set then just
1206 * go with the US format.
1207 */
1208 if (!getenv("LC_NUMERIC"))
1209 setlocale(LC_NUMERIC, "en_US");
1210
1211 if (parse_options(argc, argv))
1212 return 1;
1213
1214 if (!thread_number)
1215 return 0;
1216
1217 ps = sysconf(_SC_PAGESIZE);
1218 if (ps < 0) {
1219 log_err("Failed to get page size\n");
1220 return 1;
1221 }
1222
1223 page_size = ps;
1224 page_mask = ps - 1;
1225
1226 if (write_bw_log) {
1227 setup_log(&agg_io_log[DDIR_READ]);
1228 setup_log(&agg_io_log[DDIR_WRITE]);
1229 }
1230
1231 startup_sem = fio_sem_init(0);
1232
1233 set_genesis_time();
1234
1235 disk_util_timer_arm();
1236
1237 run_threads();
1238
1239 if (!fio_abort) {
1240 show_run_stats();
1241 if (write_bw_log) {
1242 __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1243 __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1244 }
1245 }
1246
1247 fio_sem_remove(startup_sem);
1248 return exit_value;
1249}