server: initial support for daemonizing
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <sys/stat.h>
34#include <sys/wait.h>
35#include <sys/ipc.h>
36#include <sys/shm.h>
37#include <sys/mman.h>
38
39#include "fio.h"
40#include "hash.h"
41#include "smalloc.h"
42#include "verify.h"
43#include "trim.h"
44#include "diskutil.h"
45#include "cgroup.h"
46#include "profile.h"
47#include "lib/rand.h"
48#include "memalign.h"
49#include "server.h"
50
51unsigned long page_mask;
52unsigned long page_size;
53
54#define PAGE_ALIGN(buf) \
55 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
56
57int groupid = 0;
58int thread_number = 0;
59int nr_process = 0;
60int nr_thread = 0;
61int shm_id = 0;
62int temp_stall_ts;
63unsigned long done_secs = 0;
64
65static struct fio_mutex *startup_mutex;
66static struct fio_mutex *writeout_mutex;
67static volatile int fio_abort;
68static int exit_value;
69static pthread_t gtod_thread;
70static pthread_t disk_util_thread;
71static struct flist_head *cgroup_list;
72static char *cgroup_mnt;
73
74unsigned long arch_flags = 0;
75
76struct io_log *agg_io_log[2];
77
78#define TERMINATE_ALL (-1)
79#define JOB_START_TIMEOUT (5 * 1000)
80
81void td_set_runstate(struct thread_data *td, int runstate)
82{
83 if (td->runstate == runstate)
84 return;
85
86 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
87 td->runstate, runstate);
88 td->runstate = runstate;
89}
90
91static void terminate_threads(int group_id)
92{
93 struct thread_data *td;
94 int i;
95
96 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
97
98 for_each_td(td, i) {
99 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
100 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
101 td->o.name, (int) td->pid);
102 td->terminate = 1;
103 td->o.start_delay = 0;
104
105 /*
106 * if the thread is running, just let it exit
107 */
108 if (!td->pid)
109 continue;
110 else if (td->runstate < TD_RAMP)
111 kill(td->pid, SIGTERM);
112 else {
113 struct ioengine_ops *ops = td->io_ops;
114
115 if (ops && (ops->flags & FIO_SIGTERM))
116 kill(td->pid, SIGTERM);
117 }
118 }
119 }
120}
121
122static void sig_int(int sig)
123{
124 if (threads) {
125 log_info("\nfio: terminating on signal %d\n", sig);
126 exit_backend = 1;
127 fflush(stdout);
128 exit_value = 128;
129 terminate_threads(TERMINATE_ALL);
130 }
131}
132
133static void *disk_thread_main(void *data)
134{
135 fio_mutex_up(startup_mutex);
136
137 while (threads) {
138 usleep(DISK_UTIL_MSEC * 1000);
139 if (!threads)
140 break;
141 update_io_ticks();
142 print_thread_status();
143 }
144
145 return NULL;
146}
147
148static int create_disk_util_thread(void)
149{
150 int ret;
151
152 ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
153 if (ret) {
154 log_err("Can't create disk util thread: %s\n", strerror(ret));
155 return 1;
156 }
157
158 ret = pthread_detach(disk_util_thread);
159 if (ret) {
160 log_err("Can't detatch disk util thread: %s\n", strerror(ret));
161 return 1;
162 }
163
164 dprint(FD_MUTEX, "wait on startup_mutex\n");
165 fio_mutex_down(startup_mutex);
166 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
167 return 0;
168}
169
170static void set_sig_handlers(void)
171{
172 struct sigaction act;
173
174 memset(&act, 0, sizeof(act));
175 act.sa_handler = sig_int;
176 act.sa_flags = SA_RESTART;
177 sigaction(SIGINT, &act, NULL);
178
179 memset(&act, 0, sizeof(act));
180 act.sa_handler = sig_int;
181 act.sa_flags = SA_RESTART;
182 sigaction(SIGTERM, &act, NULL);
183}
184
185/*
186 * Check if we are above the minimum rate given.
187 */
188static int __check_min_rate(struct thread_data *td, struct timeval *now,
189 enum fio_ddir ddir)
190{
191 unsigned long long bytes = 0;
192 unsigned long iops = 0;
193 unsigned long spent;
194 unsigned long rate;
195 unsigned int ratemin = 0;
196 unsigned int rate_iops = 0;
197 unsigned int rate_iops_min = 0;
198
199 assert(ddir_rw(ddir));
200
201 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
202 return 0;
203
204 /*
205 * allow a 2 second settle period in the beginning
206 */
207 if (mtime_since(&td->start, now) < 2000)
208 return 0;
209
210 iops += td->io_blocks[ddir];
211 bytes += td->this_io_bytes[ddir];
212 ratemin += td->o.ratemin[ddir];
213 rate_iops += td->o.rate_iops[ddir];
214 rate_iops_min += td->o.rate_iops_min[ddir];
215
216 /*
217 * if rate blocks is set, sample is running
218 */
219 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
220 spent = mtime_since(&td->lastrate[ddir], now);
221 if (spent < td->o.ratecycle)
222 return 0;
223
224 if (td->o.rate[ddir]) {
225 /*
226 * check bandwidth specified rate
227 */
228 if (bytes < td->rate_bytes[ddir]) {
229 log_err("%s: min rate %u not met\n", td->o.name,
230 ratemin);
231 return 1;
232 } else {
233 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
234 if (rate < ratemin ||
235 bytes < td->rate_bytes[ddir]) {
236 log_err("%s: min rate %u not met, got"
237 " %luKB/sec\n", td->o.name,
238 ratemin, rate);
239 return 1;
240 }
241 }
242 } else {
243 /*
244 * checks iops specified rate
245 */
246 if (iops < rate_iops) {
247 log_err("%s: min iops rate %u not met\n",
248 td->o.name, rate_iops);
249 return 1;
250 } else {
251 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
252 if (rate < rate_iops_min ||
253 iops < td->rate_blocks[ddir]) {
254 log_err("%s: min iops rate %u not met,"
255 " got %lu\n", td->o.name,
256 rate_iops_min, rate);
257 }
258 }
259 }
260 }
261
262 td->rate_bytes[ddir] = bytes;
263 td->rate_blocks[ddir] = iops;
264 memcpy(&td->lastrate[ddir], now, sizeof(*now));
265 return 0;
266}
267
268static int check_min_rate(struct thread_data *td, struct timeval *now,
269 unsigned long *bytes_done)
270{
271 int ret = 0;
272
273 if (bytes_done[0])
274 ret |= __check_min_rate(td, now, 0);
275 if (bytes_done[1])
276 ret |= __check_min_rate(td, now, 1);
277
278 return ret;
279}
280
281static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
282{
283 if (!td->o.timeout)
284 return 0;
285 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
286 return 1;
287
288 return 0;
289}
290
291/*
292 * When job exits, we can cancel the in-flight IO if we are using async
293 * io. Attempt to do so.
294 */
295static void cleanup_pending_aio(struct thread_data *td)
296{
297 struct flist_head *entry, *n;
298 struct io_u *io_u;
299 int r;
300
301 /*
302 * get immediately available events, if any
303 */
304 r = io_u_queued_complete(td, 0, NULL);
305 if (r < 0)
306 return;
307
308 /*
309 * now cancel remaining active events
310 */
311 if (td->io_ops->cancel) {
312 flist_for_each_safe(entry, n, &td->io_u_busylist) {
313 io_u = flist_entry(entry, struct io_u, list);
314
315 /*
316 * if the io_u isn't in flight, then that generally
317 * means someone leaked an io_u. complain but fix
318 * it up, so we don't stall here.
319 */
320 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
321 log_err("fio: non-busy IO on busy list\n");
322 put_io_u(td, io_u);
323 } else {
324 r = td->io_ops->cancel(td, io_u);
325 if (!r)
326 put_io_u(td, io_u);
327 }
328 }
329 }
330
331 if (td->cur_depth)
332 r = io_u_queued_complete(td, td->cur_depth, NULL);
333}
334
335/*
336 * Helper to handle the final sync of a file. Works just like the normal
337 * io path, just does everything sync.
338 */
339static int fio_io_sync(struct thread_data *td, struct fio_file *f)
340{
341 struct io_u *io_u = __get_io_u(td);
342 int ret;
343
344 if (!io_u)
345 return 1;
346
347 io_u->ddir = DDIR_SYNC;
348 io_u->file = f;
349
350 if (td_io_prep(td, io_u)) {
351 put_io_u(td, io_u);
352 return 1;
353 }
354
355requeue:
356 ret = td_io_queue(td, io_u);
357 if (ret < 0) {
358 td_verror(td, io_u->error, "td_io_queue");
359 put_io_u(td, io_u);
360 return 1;
361 } else if (ret == FIO_Q_QUEUED) {
362 if (io_u_queued_complete(td, 1, NULL) < 0)
363 return 1;
364 } else if (ret == FIO_Q_COMPLETED) {
365 if (io_u->error) {
366 td_verror(td, io_u->error, "td_io_queue");
367 return 1;
368 }
369
370 if (io_u_sync_complete(td, io_u, NULL) < 0)
371 return 1;
372 } else if (ret == FIO_Q_BUSY) {
373 if (td_io_commit(td))
374 return 1;
375 goto requeue;
376 }
377
378 return 0;
379}
380
381static inline void __update_tv_cache(struct thread_data *td)
382{
383 fio_gettime(&td->tv_cache, NULL);
384}
385
386static inline void update_tv_cache(struct thread_data *td)
387{
388 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
389 __update_tv_cache(td);
390}
391
392static int break_on_this_error(struct thread_data *td, int *retptr)
393{
394 int ret = *retptr;
395
396 if (ret < 0 || td->error) {
397 int err;
398
399 if (!td->o.continue_on_error)
400 return 1;
401
402 if (ret < 0)
403 err = -ret;
404 else
405 err = td->error;
406
407 if (td_non_fatal_error(err)) {
408 /*
409 * Continue with the I/Os in case of
410 * a non fatal error.
411 */
412 update_error_count(td, err);
413 td_clear_error(td);
414 *retptr = 0;
415 return 0;
416 } else if (td->o.fill_device && err == ENOSPC) {
417 /*
418 * We expect to hit this error if
419 * fill_device option is set.
420 */
421 td_clear_error(td);
422 td->terminate = 1;
423 return 1;
424 } else {
425 /*
426 * Stop the I/O in case of a fatal
427 * error.
428 */
429 update_error_count(td, err);
430 return 1;
431 }
432 }
433
434 return 0;
435}
436
437/*
438 * The main verify engine. Runs over the writes we previously submitted,
439 * reads the blocks back in, and checks the crc/md5 of the data.
440 */
441static void do_verify(struct thread_data *td)
442{
443 struct fio_file *f;
444 struct io_u *io_u;
445 int ret, min_events;
446 unsigned int i;
447
448 dprint(FD_VERIFY, "starting loop\n");
449
450 /*
451 * sync io first and invalidate cache, to make sure we really
452 * read from disk.
453 */
454 for_each_file(td, f, i) {
455 if (!fio_file_open(f))
456 continue;
457 if (fio_io_sync(td, f))
458 break;
459 if (file_invalidate_cache(td, f))
460 break;
461 }
462
463 if (td->error)
464 return;
465
466 td_set_runstate(td, TD_VERIFYING);
467
468 io_u = NULL;
469 while (!td->terminate) {
470 int ret2, full;
471
472 update_tv_cache(td);
473
474 if (runtime_exceeded(td, &td->tv_cache)) {
475 __update_tv_cache(td);
476 if (runtime_exceeded(td, &td->tv_cache)) {
477 td->terminate = 1;
478 break;
479 }
480 }
481
482 io_u = __get_io_u(td);
483 if (!io_u)
484 break;
485
486 if (get_next_verify(td, io_u)) {
487 put_io_u(td, io_u);
488 break;
489 }
490
491 if (td_io_prep(td, io_u)) {
492 put_io_u(td, io_u);
493 break;
494 }
495
496 if (td->o.verify_async)
497 io_u->end_io = verify_io_u_async;
498 else
499 io_u->end_io = verify_io_u;
500
501 ret = td_io_queue(td, io_u);
502 switch (ret) {
503 case FIO_Q_COMPLETED:
504 if (io_u->error) {
505 ret = -io_u->error;
506 clear_io_u(td, io_u);
507 } else if (io_u->resid) {
508 int bytes = io_u->xfer_buflen - io_u->resid;
509
510 /*
511 * zero read, fail
512 */
513 if (!bytes) {
514 td_verror(td, EIO, "full resid");
515 put_io_u(td, io_u);
516 break;
517 }
518
519 io_u->xfer_buflen = io_u->resid;
520 io_u->xfer_buf += bytes;
521 io_u->offset += bytes;
522
523 if (ddir_rw(io_u->ddir))
524 td->ts.short_io_u[io_u->ddir]++;
525
526 f = io_u->file;
527 if (io_u->offset == f->real_file_size)
528 goto sync_done;
529
530 requeue_io_u(td, &io_u);
531 } else {
532sync_done:
533 ret = io_u_sync_complete(td, io_u, NULL);
534 if (ret < 0)
535 break;
536 }
537 continue;
538 case FIO_Q_QUEUED:
539 break;
540 case FIO_Q_BUSY:
541 requeue_io_u(td, &io_u);
542 ret2 = td_io_commit(td);
543 if (ret2 < 0)
544 ret = ret2;
545 break;
546 default:
547 assert(ret < 0);
548 td_verror(td, -ret, "td_io_queue");
549 break;
550 }
551
552 if (break_on_this_error(td, &ret))
553 break;
554
555 /*
556 * if we can queue more, do so. but check if there are
557 * completed io_u's first. Note that we can get BUSY even
558 * without IO queued, if the system is resource starved.
559 */
560 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
561 if (full || !td->o.iodepth_batch_complete) {
562 min_events = min(td->o.iodepth_batch_complete,
563 td->cur_depth);
564 if (full && !min_events && td->o.iodepth_batch_complete != 0)
565 min_events = 1;
566
567 do {
568 /*
569 * Reap required number of io units, if any,
570 * and do the verification on them through
571 * the callback handler
572 */
573 if (io_u_queued_complete(td, min_events, NULL) < 0) {
574 ret = -1;
575 break;
576 }
577 } while (full && (td->cur_depth > td->o.iodepth_low));
578 }
579 if (ret < 0)
580 break;
581 }
582
583 if (!td->error) {
584 min_events = td->cur_depth;
585
586 if (min_events)
587 ret = io_u_queued_complete(td, min_events, NULL);
588 } else
589 cleanup_pending_aio(td);
590
591 td_set_runstate(td, TD_RUNNING);
592
593 dprint(FD_VERIFY, "exiting loop\n");
594}
595
596/*
597 * Main IO worker function. It retrieves io_u's to process and queues
598 * and reaps them, checking for rate and errors along the way.
599 */
600static void do_io(struct thread_data *td)
601{
602 unsigned int i;
603 int ret = 0;
604
605 if (in_ramp_time(td))
606 td_set_runstate(td, TD_RAMP);
607 else
608 td_set_runstate(td, TD_RUNNING);
609
610 while ( (td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
611 (!flist_empty(&td->trim_list)) ||
612 ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) ) {
613 struct timeval comp_time;
614 unsigned long bytes_done[2] = { 0, 0 };
615 int min_evts = 0;
616 struct io_u *io_u;
617 int ret2, full;
618
619 if (td->terminate)
620 break;
621
622 update_tv_cache(td);
623
624 if (runtime_exceeded(td, &td->tv_cache)) {
625 __update_tv_cache(td);
626 if (runtime_exceeded(td, &td->tv_cache)) {
627 td->terminate = 1;
628 break;
629 }
630 }
631
632 io_u = get_io_u(td);
633 if (!io_u)
634 break;
635
636 /*
637 * Add verification end_io handler, if asked to verify
638 * a previously written file.
639 */
640 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
641 !td_rw(td)) {
642 if (td->o.verify_async)
643 io_u->end_io = verify_io_u_async;
644 else
645 io_u->end_io = verify_io_u;
646 td_set_runstate(td, TD_VERIFYING);
647 } else if (in_ramp_time(td))
648 td_set_runstate(td, TD_RAMP);
649 else
650 td_set_runstate(td, TD_RUNNING);
651
652 ret = td_io_queue(td, io_u);
653 switch (ret) {
654 case FIO_Q_COMPLETED:
655 if (io_u->error) {
656 ret = -io_u->error;
657 clear_io_u(td, io_u);
658 } else if (io_u->resid) {
659 int bytes = io_u->xfer_buflen - io_u->resid;
660 struct fio_file *f = io_u->file;
661
662 /*
663 * zero read, fail
664 */
665 if (!bytes) {
666 td_verror(td, EIO, "full resid");
667 put_io_u(td, io_u);
668 break;
669 }
670
671 io_u->xfer_buflen = io_u->resid;
672 io_u->xfer_buf += bytes;
673 io_u->offset += bytes;
674
675 if (ddir_rw(io_u->ddir))
676 td->ts.short_io_u[io_u->ddir]++;
677
678 if (io_u->offset == f->real_file_size)
679 goto sync_done;
680
681 requeue_io_u(td, &io_u);
682 } else {
683sync_done:
684 if (__should_check_rate(td, 0) ||
685 __should_check_rate(td, 1))
686 fio_gettime(&comp_time, NULL);
687
688 ret = io_u_sync_complete(td, io_u, bytes_done);
689 if (ret < 0)
690 break;
691 }
692 break;
693 case FIO_Q_QUEUED:
694 /*
695 * if the engine doesn't have a commit hook,
696 * the io_u is really queued. if it does have such
697 * a hook, it has to call io_u_queued() itself.
698 */
699 if (td->io_ops->commit == NULL)
700 io_u_queued(td, io_u);
701 break;
702 case FIO_Q_BUSY:
703 requeue_io_u(td, &io_u);
704 ret2 = td_io_commit(td);
705 if (ret2 < 0)
706 ret = ret2;
707 break;
708 default:
709 assert(ret < 0);
710 put_io_u(td, io_u);
711 break;
712 }
713
714 if (break_on_this_error(td, &ret))
715 break;
716
717 /*
718 * See if we need to complete some commands. Note that we
719 * can get BUSY even without IO queued, if the system is
720 * resource starved.
721 */
722 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
723 if (full || !td->o.iodepth_batch_complete) {
724 min_evts = min(td->o.iodepth_batch_complete,
725 td->cur_depth);
726 if (full && !min_evts && td->o.iodepth_batch_complete != 0)
727 min_evts = 1;
728
729 if (__should_check_rate(td, 0) ||
730 __should_check_rate(td, 1))
731 fio_gettime(&comp_time, NULL);
732
733 do {
734 ret = io_u_queued_complete(td, min_evts, bytes_done);
735 if (ret < 0)
736 break;
737
738 } while (full && (td->cur_depth > td->o.iodepth_low));
739 }
740
741 if (ret < 0)
742 break;
743 if (!(bytes_done[0] + bytes_done[1]))
744 continue;
745
746 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
747 if (check_min_rate(td, &comp_time, bytes_done)) {
748 if (exitall_on_terminate)
749 terminate_threads(td->groupid);
750 td_verror(td, EIO, "check_min_rate");
751 break;
752 }
753 }
754
755 if (td->o.thinktime) {
756 unsigned long long b;
757
758 b = td->io_blocks[0] + td->io_blocks[1];
759 if (!(b % td->o.thinktime_blocks)) {
760 int left;
761
762 if (td->o.thinktime_spin)
763 usec_spin(td->o.thinktime_spin);
764
765 left = td->o.thinktime - td->o.thinktime_spin;
766 if (left)
767 usec_sleep(td, left);
768 }
769 }
770 }
771
772 if (td->trim_entries)
773 printf("trim entries %ld\n", td->trim_entries);
774
775 if (td->o.fill_device && td->error == ENOSPC) {
776 td->error = 0;
777 td->terminate = 1;
778 }
779 if (!td->error) {
780 struct fio_file *f;
781
782 i = td->cur_depth;
783 if (i) {
784 ret = io_u_queued_complete(td, i, NULL);
785 if (td->o.fill_device && td->error == ENOSPC)
786 td->error = 0;
787 }
788
789 if (should_fsync(td) && td->o.end_fsync) {
790 td_set_runstate(td, TD_FSYNCING);
791
792 for_each_file(td, f, i) {
793 if (!fio_file_open(f))
794 continue;
795 fio_io_sync(td, f);
796 }
797 }
798 } else
799 cleanup_pending_aio(td);
800
801 /*
802 * stop job if we failed doing any IO
803 */
804 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
805 td->done = 1;
806}
807
808static void cleanup_io_u(struct thread_data *td)
809{
810 struct flist_head *entry, *n;
811 struct io_u *io_u;
812
813 flist_for_each_safe(entry, n, &td->io_u_freelist) {
814 io_u = flist_entry(entry, struct io_u, list);
815
816 flist_del(&io_u->list);
817 fio_memfree(io_u, sizeof(*io_u));
818 }
819
820 free_io_mem(td);
821}
822
823static int init_io_u(struct thread_data *td)
824{
825 struct io_u *io_u;
826 unsigned int max_bs;
827 int cl_align, i, max_units;
828 char *p;
829
830 max_units = td->o.iodepth;
831 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
832 td->orig_buffer_size = (unsigned long long) max_bs
833 * (unsigned long long) max_units;
834
835 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
836 unsigned long bs;
837
838 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
839 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
840 }
841
842 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
843 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
844 return 1;
845 }
846
847 if (allocate_io_mem(td))
848 return 1;
849
850 if (td->o.odirect || td->o.mem_align ||
851 (td->io_ops->flags & FIO_RAWIO))
852 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
853 else
854 p = td->orig_buffer;
855
856 cl_align = os_cache_line_size();
857
858 for (i = 0; i < max_units; i++) {
859 void *ptr;
860
861 if (td->terminate)
862 return 1;
863
864 ptr = fio_memalign(cl_align, sizeof(*io_u));
865 if (!ptr) {
866 log_err("fio: unable to allocate aligned memory\n");
867 break;
868 }
869
870 io_u = ptr;
871 memset(io_u, 0, sizeof(*io_u));
872 INIT_FLIST_HEAD(&io_u->list);
873 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
874
875 if (!(td->io_ops->flags & FIO_NOIO)) {
876 io_u->buf = p + max_bs * i;
877 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
878
879 if (td_write(td))
880 io_u_fill_buffer(td, io_u, max_bs);
881 if (td_write(td) && td->o.verify_pattern_bytes) {
882 /*
883 * Fill the buffer with the pattern if we are
884 * going to be doing writes.
885 */
886 fill_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
887 }
888 }
889
890 io_u->index = i;
891 io_u->flags = IO_U_F_FREE;
892 flist_add(&io_u->list, &td->io_u_freelist);
893 }
894
895 return 0;
896}
897
898static int switch_ioscheduler(struct thread_data *td)
899{
900 char tmp[256], tmp2[128];
901 FILE *f;
902 int ret;
903
904 if (td->io_ops->flags & FIO_DISKLESSIO)
905 return 0;
906
907 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
908
909 f = fopen(tmp, "r+");
910 if (!f) {
911 if (errno == ENOENT) {
912 log_err("fio: os or kernel doesn't support IO scheduler"
913 " switching\n");
914 return 0;
915 }
916 td_verror(td, errno, "fopen iosched");
917 return 1;
918 }
919
920 /*
921 * Set io scheduler.
922 */
923 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
924 if (ferror(f) || ret != 1) {
925 td_verror(td, errno, "fwrite");
926 fclose(f);
927 return 1;
928 }
929
930 rewind(f);
931
932 /*
933 * Read back and check that the selected scheduler is now the default.
934 */
935 ret = fread(tmp, 1, sizeof(tmp), f);
936 if (ferror(f) || ret < 0) {
937 td_verror(td, errno, "fread");
938 fclose(f);
939 return 1;
940 }
941
942 sprintf(tmp2, "[%s]", td->o.ioscheduler);
943 if (!strstr(tmp, tmp2)) {
944 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
945 td_verror(td, EINVAL, "iosched_switch");
946 fclose(f);
947 return 1;
948 }
949
950 fclose(f);
951 return 0;
952}
953
954static int keep_running(struct thread_data *td)
955{
956 unsigned long long io_done;
957
958 if (td->done)
959 return 0;
960 if (td->o.time_based)
961 return 1;
962 if (td->o.loops) {
963 td->o.loops--;
964 return 1;
965 }
966
967 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
968 + td->io_skip_bytes;
969 if (io_done < td->o.size)
970 return 1;
971
972 return 0;
973}
974
975static void reset_io_counters(struct thread_data *td)
976{
977 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
978 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
979 td->zone_bytes = 0;
980 td->rate_bytes[0] = td->rate_bytes[1] = 0;
981 td->rate_blocks[0] = td->rate_blocks[1] = 0;
982
983 td->last_was_sync = 0;
984
985 /*
986 * reset file done count if we are to start over
987 */
988 if (td->o.time_based || td->o.loops)
989 td->nr_done_files = 0;
990}
991
992void reset_all_stats(struct thread_data *td)
993{
994 struct timeval tv;
995 int i;
996
997 reset_io_counters(td);
998
999 for (i = 0; i < 2; i++) {
1000 td->io_bytes[i] = 0;
1001 td->io_blocks[i] = 0;
1002 td->io_issues[i] = 0;
1003 td->ts.total_io_u[i] = 0;
1004 }
1005
1006 fio_gettime(&tv, NULL);
1007 td->ts.runtime[0] = 0;
1008 td->ts.runtime[1] = 0;
1009 memcpy(&td->epoch, &tv, sizeof(tv));
1010 memcpy(&td->start, &tv, sizeof(tv));
1011}
1012
1013static void clear_io_state(struct thread_data *td)
1014{
1015 struct fio_file *f;
1016 unsigned int i;
1017
1018 reset_io_counters(td);
1019
1020 close_files(td);
1021 for_each_file(td, f, i)
1022 fio_file_clear_done(f);
1023
1024 /*
1025 * Set the same seed to get repeatable runs
1026 */
1027 td_fill_rand_seeds(td);
1028}
1029
1030static int exec_string(const char *string)
1031{
1032 int ret, newlen = strlen(string) + 1 + 8;
1033 char *str;
1034
1035 str = malloc(newlen);
1036 sprintf(str, "sh -c %s", string);
1037
1038 ret = system(str);
1039 if (ret == -1)
1040 log_err("fio: exec of cmd <%s> failed\n", str);
1041
1042 free(str);
1043 return ret;
1044}
1045
1046/*
1047 * Entry point for the thread based jobs. The process based jobs end up
1048 * here as well, after a little setup.
1049 */
1050static void *thread_main(void *data)
1051{
1052 unsigned long long elapsed;
1053 struct thread_data *td = data;
1054 pthread_condattr_t attr;
1055 int clear_state;
1056
1057 if (!td->o.use_thread) {
1058 setsid();
1059 td->pid = getpid();
1060 } else
1061 td->pid = gettid();
1062
1063 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1064
1065 INIT_FLIST_HEAD(&td->io_u_freelist);
1066 INIT_FLIST_HEAD(&td->io_u_busylist);
1067 INIT_FLIST_HEAD(&td->io_u_requeues);
1068 INIT_FLIST_HEAD(&td->io_log_list);
1069 INIT_FLIST_HEAD(&td->io_hist_list);
1070 INIT_FLIST_HEAD(&td->verify_list);
1071 INIT_FLIST_HEAD(&td->trim_list);
1072 pthread_mutex_init(&td->io_u_lock, NULL);
1073 td->io_hist_tree = RB_ROOT;
1074
1075 pthread_condattr_init(&attr);
1076 pthread_cond_init(&td->verify_cond, &attr);
1077 pthread_cond_init(&td->free_cond, &attr);
1078
1079 td_set_runstate(td, TD_INITIALIZED);
1080 dprint(FD_MUTEX, "up startup_mutex\n");
1081 fio_mutex_up(startup_mutex);
1082 dprint(FD_MUTEX, "wait on td->mutex\n");
1083 fio_mutex_down(td->mutex);
1084 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1085
1086 /*
1087 * the ->mutex mutex is now no longer used, close it to avoid
1088 * eating a file descriptor
1089 */
1090 fio_mutex_remove(td->mutex);
1091
1092 /*
1093 * A new gid requires privilege, so we need to do this before setting
1094 * the uid.
1095 */
1096 if (td->o.gid != -1U && setgid(td->o.gid)) {
1097 td_verror(td, errno, "setgid");
1098 goto err;
1099 }
1100 if (td->o.uid != -1U && setuid(td->o.uid)) {
1101 td_verror(td, errno, "setuid");
1102 goto err;
1103 }
1104
1105 /*
1106 * If we have a gettimeofday() thread, make sure we exclude that
1107 * thread from this job
1108 */
1109 if (td->o.gtod_cpu)
1110 fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
1111
1112 /*
1113 * Set affinity first, in case it has an impact on the memory
1114 * allocations.
1115 */
1116 if (td->o.cpumask_set && fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1117 td_verror(td, errno, "cpu_set_affinity");
1118 goto err;
1119 }
1120
1121 /*
1122 * May alter parameters that init_io_u() will use, so we need to
1123 * do this first.
1124 */
1125 if (init_iolog(td))
1126 goto err;
1127
1128 if (init_io_u(td))
1129 goto err;
1130
1131 if (td->o.verify_async && verify_async_init(td))
1132 goto err;
1133
1134 if (td->ioprio_set) {
1135 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1136 td_verror(td, errno, "ioprio_set");
1137 goto err;
1138 }
1139 }
1140
1141 if (td->o.cgroup_weight && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1142 goto err;
1143
1144 if (nice(td->o.nice) == -1) {
1145 td_verror(td, errno, "nice");
1146 goto err;
1147 }
1148
1149 if (td->o.ioscheduler && switch_ioscheduler(td))
1150 goto err;
1151
1152 if (!td->o.create_serialize && setup_files(td))
1153 goto err;
1154
1155 if (td_io_init(td))
1156 goto err;
1157
1158 if (init_random_map(td))
1159 goto err;
1160
1161 if (td->o.exec_prerun) {
1162 if (exec_string(td->o.exec_prerun))
1163 goto err;
1164 }
1165
1166 if (td->o.pre_read) {
1167 if (pre_read_files(td) < 0)
1168 goto err;
1169 }
1170
1171 fio_gettime(&td->epoch, NULL);
1172 getrusage(RUSAGE_SELF, &td->ts.ru_start);
1173
1174 clear_state = 0;
1175 while (keep_running(td)) {
1176 fio_gettime(&td->start, NULL);
1177 memcpy(&td->ts.stat_sample_time[0], &td->start,
1178 sizeof(td->start));
1179 memcpy(&td->ts.stat_sample_time[1], &td->start,
1180 sizeof(td->start));
1181 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1182
1183 if (td->o.ratemin[0] || td->o.ratemin[1])
1184 memcpy(&td->lastrate, &td->ts.stat_sample_time,
1185 sizeof(td->lastrate));
1186
1187 if (clear_state)
1188 clear_io_state(td);
1189
1190 prune_io_piece_log(td);
1191
1192 do_io(td);
1193
1194 clear_state = 1;
1195
1196 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1197 elapsed = utime_since_now(&td->start);
1198 td->ts.runtime[DDIR_READ] += elapsed;
1199 }
1200 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1201 elapsed = utime_since_now(&td->start);
1202 td->ts.runtime[DDIR_WRITE] += elapsed;
1203 }
1204
1205 if (td->error || td->terminate)
1206 break;
1207
1208 if (!td->o.do_verify ||
1209 td->o.verify == VERIFY_NONE ||
1210 (td->io_ops->flags & FIO_UNIDIR))
1211 continue;
1212
1213 clear_io_state(td);
1214
1215 fio_gettime(&td->start, NULL);
1216
1217 do_verify(td);
1218
1219 td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1220
1221 if (td->error || td->terminate)
1222 break;
1223 }
1224
1225 update_rusage_stat(td);
1226 td->ts.runtime[0] = (td->ts.runtime[0] + 999) / 1000;
1227 td->ts.runtime[1] = (td->ts.runtime[1] + 999) / 1000;
1228 td->ts.total_run_time = mtime_since_now(&td->epoch);
1229 td->ts.io_bytes[0] = td->io_bytes[0];
1230 td->ts.io_bytes[1] = td->io_bytes[1];
1231
1232 fio_mutex_down(writeout_mutex);
1233 if (td->ts.bw_log) {
1234 if (td->o.bw_log_file) {
1235 finish_log_named(td, td->ts.bw_log,
1236 td->o.bw_log_file, "bw");
1237 } else
1238 finish_log(td, td->ts.bw_log, "bw");
1239 }
1240 if (td->ts.lat_log) {
1241 if (td->o.lat_log_file) {
1242 finish_log_named(td, td->ts.lat_log,
1243 td->o.lat_log_file, "lat");
1244 } else
1245 finish_log(td, td->ts.lat_log, "lat");
1246 }
1247 if (td->ts.slat_log) {
1248 if (td->o.lat_log_file) {
1249 finish_log_named(td, td->ts.slat_log,
1250 td->o.lat_log_file, "slat");
1251 } else
1252 finish_log(td, td->ts.slat_log, "slat");
1253 }
1254 if (td->ts.clat_log) {
1255 if (td->o.lat_log_file) {
1256 finish_log_named(td, td->ts.clat_log,
1257 td->o.lat_log_file, "clat");
1258 } else
1259 finish_log(td, td->ts.clat_log, "clat");
1260 }
1261 fio_mutex_up(writeout_mutex);
1262 if (td->o.exec_postrun)
1263 exec_string(td->o.exec_postrun);
1264
1265 if (exitall_on_terminate)
1266 terminate_threads(td->groupid);
1267
1268err:
1269 if (td->error)
1270 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1271 td->verror);
1272
1273 if (td->o.verify_async)
1274 verify_async_exit(td);
1275
1276 close_and_free_files(td);
1277 close_ioengine(td);
1278 cleanup_io_u(td);
1279 cgroup_shutdown(td, &cgroup_mnt);
1280
1281 if (td->o.cpumask_set) {
1282 int ret = fio_cpuset_exit(&td->o.cpumask);
1283
1284 td_verror(td, ret, "fio_cpuset_exit");
1285 }
1286
1287 /*
1288 * do this very late, it will log file closing as well
1289 */
1290 if (td->o.write_iolog_file)
1291 write_iolog_close(td);
1292
1293 options_mem_free(td);
1294 td_set_runstate(td, TD_EXITED);
1295 return (void *) (unsigned long) td->error;
1296}
1297
1298/*
1299 * We cannot pass the td data into a forked process, so attach the td and
1300 * pass it to the thread worker.
1301 */
1302static int fork_main(int shmid, int offset)
1303{
1304 struct thread_data *td;
1305 void *data, *ret;
1306
1307#ifndef __hpux
1308 data = shmat(shmid, NULL, 0);
1309 if (data == (void *) -1) {
1310 int __err = errno;
1311
1312 perror("shmat");
1313 return __err;
1314 }
1315#else
1316 /*
1317 * HP-UX inherits shm mappings?
1318 */
1319 data = threads;
1320#endif
1321
1322 td = data + offset * sizeof(struct thread_data);
1323 ret = thread_main(td);
1324 shmdt(data);
1325 return (int) (unsigned long) ret;
1326}
1327
1328/*
1329 * Run over the job map and reap the threads that have exited, if any.
1330 */
1331static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1332{
1333 struct thread_data *td;
1334 int i, cputhreads, realthreads, pending, status, ret;
1335
1336 /*
1337 * reap exited threads (TD_EXITED -> TD_REAPED)
1338 */
1339 realthreads = pending = cputhreads = 0;
1340 for_each_td(td, i) {
1341 int flags = 0;
1342
1343 /*
1344 * ->io_ops is NULL for a thread that has closed its
1345 * io engine
1346 */
1347 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1348 cputhreads++;
1349 else
1350 realthreads++;
1351
1352 if (!td->pid) {
1353 pending++;
1354 continue;
1355 }
1356 if (td->runstate == TD_REAPED)
1357 continue;
1358 if (td->o.use_thread) {
1359 if (td->runstate == TD_EXITED) {
1360 td_set_runstate(td, TD_REAPED);
1361 goto reaped;
1362 }
1363 continue;
1364 }
1365
1366 flags = WNOHANG;
1367 if (td->runstate == TD_EXITED)
1368 flags = 0;
1369
1370 /*
1371 * check if someone quit or got killed in an unusual way
1372 */
1373 ret = waitpid(td->pid, &status, flags);
1374 if (ret < 0) {
1375 if (errno == ECHILD) {
1376 log_err("fio: pid=%d disappeared %d\n",
1377 (int) td->pid, td->runstate);
1378 td_set_runstate(td, TD_REAPED);
1379 goto reaped;
1380 }
1381 perror("waitpid");
1382 } else if (ret == td->pid) {
1383 if (WIFSIGNALED(status)) {
1384 int sig = WTERMSIG(status);
1385
1386 if (sig != SIGTERM)
1387 log_err("fio: pid=%d, got signal=%d\n",
1388 (int) td->pid, sig);
1389 td_set_runstate(td, TD_REAPED);
1390 goto reaped;
1391 }
1392 if (WIFEXITED(status)) {
1393 if (WEXITSTATUS(status) && !td->error)
1394 td->error = WEXITSTATUS(status);
1395
1396 td_set_runstate(td, TD_REAPED);
1397 goto reaped;
1398 }
1399 }
1400
1401 /*
1402 * thread is not dead, continue
1403 */
1404 pending++;
1405 continue;
1406reaped:
1407 (*nr_running)--;
1408 (*m_rate) -= (td->o.ratemin[0] + td->o.ratemin[1]);
1409 (*t_rate) -= (td->o.rate[0] + td->o.rate[1]);
1410 if (!td->pid)
1411 pending--;
1412
1413 if (td->error)
1414 exit_value++;
1415
1416 done_secs += mtime_since_now(&td->epoch) / 1000;
1417 }
1418
1419 if (*nr_running == cputhreads && !pending && realthreads)
1420 terminate_threads(TERMINATE_ALL);
1421}
1422
1423static void *gtod_thread_main(void *data)
1424{
1425 fio_mutex_up(startup_mutex);
1426
1427 /*
1428 * As long as we have jobs around, update the clock. It would be nice
1429 * to have some way of NOT hammering that CPU with gettimeofday(),
1430 * but I'm not sure what to use outside of a simple CPU nop to relax
1431 * it - we don't want to lose precision.
1432 */
1433 while (threads) {
1434 fio_gtod_update();
1435 nop;
1436 }
1437
1438 return NULL;
1439}
1440
1441static int fio_start_gtod_thread(void)
1442{
1443 pthread_attr_t attr;
1444 int ret;
1445
1446 pthread_attr_init(&attr);
1447 pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN);
1448 ret = pthread_create(&gtod_thread, &attr, gtod_thread_main, NULL);
1449 pthread_attr_destroy(&attr);
1450 if (ret) {
1451 log_err("Can't create gtod thread: %s\n", strerror(ret));
1452 return 1;
1453 }
1454
1455 ret = pthread_detach(gtod_thread);
1456 if (ret) {
1457 log_err("Can't detatch gtod thread: %s\n", strerror(ret));
1458 return 1;
1459 }
1460
1461 dprint(FD_MUTEX, "wait on startup_mutex\n");
1462 fio_mutex_down(startup_mutex);
1463 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1464 return 0;
1465}
1466
1467/*
1468 * Main function for kicking off and reaping jobs, as needed.
1469 */
1470static void run_threads(void)
1471{
1472 struct thread_data *td;
1473 unsigned long spent;
1474 int i, todo, nr_running, m_rate, t_rate, nr_started;
1475
1476 if (fio_pin_memory())
1477 return;
1478
1479 if (fio_gtod_offload && fio_start_gtod_thread())
1480 return;
1481
1482 if (!terse_output) {
1483 log_info("Starting ");
1484 if (nr_thread)
1485 log_info("%d thread%s", nr_thread,
1486 nr_thread > 1 ? "s" : "");
1487 if (nr_process) {
1488 if (nr_thread)
1489 printf(" and ");
1490 log_info("%d process%s", nr_process,
1491 nr_process > 1 ? "es" : "");
1492 }
1493 log_info("\n");
1494 fflush(stdout);
1495 }
1496
1497 set_sig_handlers();
1498
1499 todo = thread_number;
1500 nr_running = 0;
1501 nr_started = 0;
1502 m_rate = t_rate = 0;
1503
1504 for_each_td(td, i) {
1505 print_status_init(td->thread_number - 1);
1506
1507 if (!td->o.create_serialize)
1508 continue;
1509
1510 /*
1511 * do file setup here so it happens sequentially,
1512 * we don't want X number of threads getting their
1513 * client data interspersed on disk
1514 */
1515 if (setup_files(td)) {
1516 exit_value++;
1517 if (td->error)
1518 log_err("fio: pid=%d, err=%d/%s\n",
1519 (int) td->pid, td->error, td->verror);
1520 td_set_runstate(td, TD_REAPED);
1521 todo--;
1522 } else {
1523 struct fio_file *f;
1524 unsigned int j;
1525
1526 /*
1527 * for sharing to work, each job must always open
1528 * its own files. so close them, if we opened them
1529 * for creation
1530 */
1531 for_each_file(td, f, j) {
1532 if (fio_file_open(f))
1533 td_io_close_file(td, f);
1534 }
1535 }
1536 }
1537
1538 set_genesis_time();
1539
1540 while (todo) {
1541 struct thread_data *map[REAL_MAX_JOBS];
1542 struct timeval this_start;
1543 int this_jobs = 0, left;
1544
1545 /*
1546 * create threads (TD_NOT_CREATED -> TD_CREATED)
1547 */
1548 for_each_td(td, i) {
1549 if (td->runstate != TD_NOT_CREATED)
1550 continue;
1551
1552 /*
1553 * never got a chance to start, killed by other
1554 * thread for some reason
1555 */
1556 if (td->terminate) {
1557 todo--;
1558 continue;
1559 }
1560
1561 if (td->o.start_delay) {
1562 spent = mtime_since_genesis();
1563
1564 if (td->o.start_delay * 1000 > spent)
1565 continue;
1566 }
1567
1568 if (td->o.stonewall && (nr_started || nr_running)) {
1569 dprint(FD_PROCESS, "%s: stonewall wait\n",
1570 td->o.name);
1571 break;
1572 }
1573
1574 init_disk_util(td);
1575
1576 /*
1577 * Set state to created. Thread will transition
1578 * to TD_INITIALIZED when it's done setting up.
1579 */
1580 td_set_runstate(td, TD_CREATED);
1581 map[this_jobs++] = td;
1582 nr_started++;
1583
1584 if (td->o.use_thread) {
1585 int ret;
1586
1587 dprint(FD_PROCESS, "will pthread_create\n");
1588 ret = pthread_create(&td->thread, NULL,
1589 thread_main, td);
1590 if (ret) {
1591 log_err("pthread_create: %s\n",
1592 strerror(ret));
1593 nr_started--;
1594 break;
1595 }
1596 ret = pthread_detach(td->thread);
1597 if (ret)
1598 log_err("pthread_detach: %s",
1599 strerror(ret));
1600 } else {
1601 pid_t pid;
1602 dprint(FD_PROCESS, "will fork\n");
1603 pid = fork();
1604 if (!pid) {
1605 int ret = fork_main(shm_id, i);
1606
1607 _exit(ret);
1608 } else if (i == fio_debug_jobno)
1609 *fio_debug_jobp = pid;
1610 }
1611 dprint(FD_MUTEX, "wait on startup_mutex\n");
1612 if (fio_mutex_down_timeout(startup_mutex, 10)) {
1613 log_err("fio: job startup hung? exiting.\n");
1614 terminate_threads(TERMINATE_ALL);
1615 fio_abort = 1;
1616 nr_started--;
1617 break;
1618 }
1619 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1620 }
1621
1622 /*
1623 * Wait for the started threads to transition to
1624 * TD_INITIALIZED.
1625 */
1626 fio_gettime(&this_start, NULL);
1627 left = this_jobs;
1628 while (left && !fio_abort) {
1629 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1630 break;
1631
1632 usleep(100000);
1633
1634 for (i = 0; i < this_jobs; i++) {
1635 td = map[i];
1636 if (!td)
1637 continue;
1638 if (td->runstate == TD_INITIALIZED) {
1639 map[i] = NULL;
1640 left--;
1641 } else if (td->runstate >= TD_EXITED) {
1642 map[i] = NULL;
1643 left--;
1644 todo--;
1645 nr_running++; /* work-around... */
1646 }
1647 }
1648 }
1649
1650 if (left) {
1651 log_err("fio: %d jobs failed to start\n", left);
1652 for (i = 0; i < this_jobs; i++) {
1653 td = map[i];
1654 if (!td)
1655 continue;
1656 kill(td->pid, SIGTERM);
1657 }
1658 break;
1659 }
1660
1661 /*
1662 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1663 */
1664 for_each_td(td, i) {
1665 if (td->runstate != TD_INITIALIZED)
1666 continue;
1667
1668 if (in_ramp_time(td))
1669 td_set_runstate(td, TD_RAMP);
1670 else
1671 td_set_runstate(td, TD_RUNNING);
1672 nr_running++;
1673 nr_started--;
1674 m_rate += td->o.ratemin[0] + td->o.ratemin[1];
1675 t_rate += td->o.rate[0] + td->o.rate[1];
1676 todo--;
1677 fio_mutex_up(td->mutex);
1678 }
1679
1680 reap_threads(&nr_running, &t_rate, &m_rate);
1681
1682 if (todo)
1683 usleep(100000);
1684 }
1685
1686 while (nr_running) {
1687 reap_threads(&nr_running, &t_rate, &m_rate);
1688 usleep(10000);
1689 }
1690
1691 update_io_ticks();
1692 fio_unpin_memory();
1693}
1694
1695int exec_run(void)
1696{
1697 if (nr_clients)
1698 return fio_handle_clients();
1699 if (exec_profile && load_profile(exec_profile))
1700 return 1;
1701
1702 if (!thread_number)
1703 return 0;
1704
1705 if (write_bw_log) {
1706 setup_log(&agg_io_log[DDIR_READ]);
1707 setup_log(&agg_io_log[DDIR_WRITE]);
1708 }
1709
1710 startup_mutex = fio_mutex_init(0);
1711 if (startup_mutex == NULL)
1712 return 1;
1713 writeout_mutex = fio_mutex_init(1);
1714 if (writeout_mutex == NULL)
1715 return 1;
1716
1717 set_genesis_time();
1718 create_disk_util_thread();
1719
1720 cgroup_list = smalloc(sizeof(*cgroup_list));
1721 INIT_FLIST_HEAD(cgroup_list);
1722
1723 run_threads();
1724
1725 if (!fio_abort) {
1726 show_run_stats();
1727 if (write_bw_log) {
1728 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1729 __finish_log(agg_io_log[DDIR_WRITE],
1730 "agg-write_bw.log");
1731 }
1732 }
1733
1734 cgroup_kill(cgroup_list);
1735 sfree(cgroup_list);
1736 sfree(cgroup_mnt);
1737
1738 fio_mutex_remove(startup_mutex);
1739 fio_mutex_remove(writeout_mutex);
1740 return exit_value;
1741}
1742
1743void reset_fio_state(void)
1744{
1745 groupid = 0;
1746 thread_number = 0;
1747 nr_process = 0;
1748 nr_thread = 0;
1749 done_secs = 0;
1750}
1751
1752int main(int argc, char *argv[], char *envp[])
1753{
1754 long ps;
1755
1756 arch_init(envp);
1757
1758 sinit();
1759
1760 /*
1761 * We need locale for number printing, if it isn't set then just
1762 * go with the US format.
1763 */
1764 if (!getenv("LC_NUMERIC"))
1765 setlocale(LC_NUMERIC, "en_US");
1766
1767 ps = sysconf(_SC_PAGESIZE);
1768 if (ps < 0) {
1769 log_err("Failed to get page size\n");
1770 return 1;
1771 }
1772
1773 page_size = ps;
1774 page_mask = ps - 1;
1775
1776 fio_keywords_init();
1777
1778 if (parse_options(argc, argv))
1779 return 1;
1780
1781 return exec_run();
1782}