Rewrite posixaio back off comment to be closer to actual English
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <sys/stat.h>
34#include <sys/wait.h>
35#include <sys/ipc.h>
36#include <sys/shm.h>
37#include <sys/mman.h>
38
39#include "fio.h"
40#include "hash.h"
41#include "smalloc.h"
42#include "verify.h"
43#include "trim.h"
44#include "diskutil.h"
45#include "cgroup.h"
46#include "profile.h"
47#include "lib/rand.h"
48#include "memalign.h"
49
50unsigned long page_mask;
51unsigned long page_size;
52
53#define PAGE_ALIGN(buf) \
54 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
55
56int groupid = 0;
57int thread_number = 0;
58int nr_process = 0;
59int nr_thread = 0;
60int shm_id = 0;
61int temp_stall_ts;
62unsigned long done_secs = 0;
63
64static struct fio_mutex *startup_mutex;
65static struct fio_mutex *writeout_mutex;
66static volatile int fio_abort;
67static int exit_value;
68static pthread_t gtod_thread;
69static pthread_t disk_util_thread;
70static struct flist_head *cgroup_list;
71static char *cgroup_mnt;
72
73struct io_log *agg_io_log[2];
74
75#define TERMINATE_ALL (-1)
76#define JOB_START_TIMEOUT (5 * 1000)
77
78void td_set_runstate(struct thread_data *td, int runstate)
79{
80 if (td->runstate == runstate)
81 return;
82
83 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
84 td->runstate, runstate);
85 td->runstate = runstate;
86}
87
88static void terminate_threads(int group_id)
89{
90 struct thread_data *td;
91 int i;
92
93 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
94
95 for_each_td(td, i) {
96 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
97 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
98 td->o.name, (int) td->pid);
99 td->terminate = 1;
100 td->o.start_delay = 0;
101
102 /*
103 * if the thread is running, just let it exit
104 */
105 if (td->runstate < TD_RAMP)
106 kill(td->pid, SIGTERM);
107 else {
108 struct ioengine_ops *ops = td->io_ops;
109
110 if (ops && (ops->flags & FIO_SIGTERM))
111 kill(td->pid, SIGTERM);
112 }
113 }
114 }
115}
116
117static void sig_int(int sig)
118{
119 if (threads) {
120 log_info("\nfio: terminating on signal %d\n", sig);
121 fflush(stdout);
122 exit_value = 128;
123 terminate_threads(TERMINATE_ALL);
124 }
125}
126
127static void *disk_thread_main(void *data)
128{
129 fio_mutex_up(startup_mutex);
130
131 while (threads) {
132 usleep(DISK_UTIL_MSEC * 1000);
133 if (!threads)
134 break;
135 update_io_ticks();
136 print_thread_status();
137 }
138
139 return NULL;
140}
141
142static int create_disk_util_thread(void)
143{
144 int ret;
145
146 ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
147 if (ret) {
148 log_err("Can't create disk util thread: %s\n", strerror(ret));
149 return 1;
150 }
151
152 ret = pthread_detach(disk_util_thread);
153 if (ret) {
154 log_err("Can't detatch disk util thread: %s\n", strerror(ret));
155 return 1;
156 }
157
158 dprint(FD_MUTEX, "wait on startup_mutex\n");
159 fio_mutex_down(startup_mutex);
160 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
161 return 0;
162}
163
164static void set_sig_handlers(void)
165{
166 struct sigaction act;
167
168 memset(&act, 0, sizeof(act));
169 act.sa_handler = sig_int;
170 act.sa_flags = SA_RESTART;
171 sigaction(SIGINT, &act, NULL);
172
173 memset(&act, 0, sizeof(act));
174 act.sa_handler = sig_int;
175 act.sa_flags = SA_RESTART;
176 sigaction(SIGTERM, &act, NULL);
177}
178
179/*
180 * Check if we are above the minimum rate given.
181 */
182static int __check_min_rate(struct thread_data *td, struct timeval *now,
183 enum fio_ddir ddir)
184{
185 unsigned long long bytes = 0;
186 unsigned long iops = 0;
187 unsigned long spent;
188 unsigned long rate;
189 unsigned int ratemin = 0;
190 unsigned int rate_iops = 0;
191 unsigned int rate_iops_min = 0;
192
193 assert(ddir_rw(ddir));
194
195 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
196 return 0;
197
198 /*
199 * allow a 2 second settle period in the beginning
200 */
201 if (mtime_since(&td->start, now) < 2000)
202 return 0;
203
204 iops += td->io_blocks[ddir];
205 bytes += td->this_io_bytes[ddir];
206 ratemin += td->o.ratemin[ddir];
207 rate_iops += td->o.rate_iops[ddir];
208 rate_iops_min += td->o.rate_iops_min[ddir];
209
210 /*
211 * if rate blocks is set, sample is running
212 */
213 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
214 spent = mtime_since(&td->lastrate[ddir], now);
215 if (spent < td->o.ratecycle)
216 return 0;
217
218 if (td->o.rate[ddir]) {
219 /*
220 * check bandwidth specified rate
221 */
222 if (bytes < td->rate_bytes[ddir]) {
223 log_err("%s: min rate %u not met\n", td->o.name,
224 ratemin);
225 return 1;
226 } else {
227 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
228 if (rate < ratemin ||
229 bytes < td->rate_bytes[ddir]) {
230 log_err("%s: min rate %u not met, got"
231 " %luKB/sec\n", td->o.name,
232 ratemin, rate);
233 return 1;
234 }
235 }
236 } else {
237 /*
238 * checks iops specified rate
239 */
240 if (iops < rate_iops) {
241 log_err("%s: min iops rate %u not met\n",
242 td->o.name, rate_iops);
243 return 1;
244 } else {
245 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
246 if (rate < rate_iops_min ||
247 iops < td->rate_blocks[ddir]) {
248 log_err("%s: min iops rate %u not met,"
249 " got %lu\n", td->o.name,
250 rate_iops_min, rate);
251 }
252 }
253 }
254 }
255
256 td->rate_bytes[ddir] = bytes;
257 td->rate_blocks[ddir] = iops;
258 memcpy(&td->lastrate[ddir], now, sizeof(*now));
259 return 0;
260}
261
262static int check_min_rate(struct thread_data *td, struct timeval *now,
263 unsigned long *bytes_done)
264{
265 int ret = 0;
266
267 if (bytes_done[0])
268 ret |= __check_min_rate(td, now, 0);
269 if (bytes_done[1])
270 ret |= __check_min_rate(td, now, 1);
271
272 return ret;
273}
274
275static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
276{
277 if (!td->o.timeout)
278 return 0;
279 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
280 return 1;
281
282 return 0;
283}
284
285/*
286 * When job exits, we can cancel the in-flight IO if we are using async
287 * io. Attempt to do so.
288 */
289static void cleanup_pending_aio(struct thread_data *td)
290{
291 struct flist_head *entry, *n;
292 struct io_u *io_u;
293 int r;
294
295 /*
296 * get immediately available events, if any
297 */
298 r = io_u_queued_complete(td, 0, NULL);
299 if (r < 0)
300 return;
301
302 /*
303 * now cancel remaining active events
304 */
305 if (td->io_ops->cancel) {
306 flist_for_each_safe(entry, n, &td->io_u_busylist) {
307 io_u = flist_entry(entry, struct io_u, list);
308
309 /*
310 * if the io_u isn't in flight, then that generally
311 * means someone leaked an io_u. complain but fix
312 * it up, so we don't stall here.
313 */
314 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
315 log_err("fio: non-busy IO on busy list\n");
316 put_io_u(td, io_u);
317 } else {
318 r = td->io_ops->cancel(td, io_u);
319 if (!r)
320 put_io_u(td, io_u);
321 }
322 }
323 }
324
325 if (td->cur_depth)
326 r = io_u_queued_complete(td, td->cur_depth, NULL);
327}
328
329/*
330 * Helper to handle the final sync of a file. Works just like the normal
331 * io path, just does everything sync.
332 */
333static int fio_io_sync(struct thread_data *td, struct fio_file *f)
334{
335 struct io_u *io_u = __get_io_u(td);
336 int ret;
337
338 if (!io_u)
339 return 1;
340
341 io_u->ddir = DDIR_SYNC;
342 io_u->file = f;
343
344 if (td_io_prep(td, io_u)) {
345 put_io_u(td, io_u);
346 return 1;
347 }
348
349requeue:
350 ret = td_io_queue(td, io_u);
351 if (ret < 0) {
352 td_verror(td, io_u->error, "td_io_queue");
353 put_io_u(td, io_u);
354 return 1;
355 } else if (ret == FIO_Q_QUEUED) {
356 if (io_u_queued_complete(td, 1, NULL) < 0)
357 return 1;
358 } else if (ret == FIO_Q_COMPLETED) {
359 if (io_u->error) {
360 td_verror(td, io_u->error, "td_io_queue");
361 return 1;
362 }
363
364 if (io_u_sync_complete(td, io_u, NULL) < 0)
365 return 1;
366 } else if (ret == FIO_Q_BUSY) {
367 if (td_io_commit(td))
368 return 1;
369 goto requeue;
370 }
371
372 return 0;
373}
374
375static inline void __update_tv_cache(struct thread_data *td)
376{
377 fio_gettime(&td->tv_cache, NULL);
378}
379
380static inline void update_tv_cache(struct thread_data *td)
381{
382 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
383 __update_tv_cache(td);
384}
385
386static int break_on_this_error(struct thread_data *td, int *retptr)
387{
388 int ret = *retptr;
389
390 if (ret < 0 || td->error) {
391 int err;
392
393 if (!td->o.continue_on_error)
394 return 1;
395
396 if (ret < 0)
397 err = -ret;
398 else
399 err = td->error;
400
401 if (td_non_fatal_error(err)) {
402 /*
403 * Continue with the I/Os in case of
404 * a non fatal error.
405 */
406 update_error_count(td, err);
407 td_clear_error(td);
408 *retptr = 0;
409 return 0;
410 } else if (td->o.fill_device && err == ENOSPC) {
411 /*
412 * We expect to hit this error if
413 * fill_device option is set.
414 */
415 td_clear_error(td);
416 td->terminate = 1;
417 return 1;
418 } else {
419 /*
420 * Stop the I/O in case of a fatal
421 * error.
422 */
423 update_error_count(td, err);
424 return 1;
425 }
426 }
427
428 return 0;
429}
430
431/*
432 * The main verify engine. Runs over the writes we previously submitted,
433 * reads the blocks back in, and checks the crc/md5 of the data.
434 */
435static void do_verify(struct thread_data *td)
436{
437 struct fio_file *f;
438 struct io_u *io_u;
439 int ret, min_events;
440 unsigned int i;
441
442 dprint(FD_VERIFY, "starting loop\n");
443
444 /*
445 * sync io first and invalidate cache, to make sure we really
446 * read from disk.
447 */
448 for_each_file(td, f, i) {
449 if (!fio_file_open(f))
450 continue;
451 if (fio_io_sync(td, f))
452 break;
453 if (file_invalidate_cache(td, f))
454 break;
455 }
456
457 if (td->error)
458 return;
459
460 td_set_runstate(td, TD_VERIFYING);
461
462 io_u = NULL;
463 while (!td->terminate) {
464 int ret2, full;
465
466 update_tv_cache(td);
467
468 if (runtime_exceeded(td, &td->tv_cache)) {
469 __update_tv_cache(td);
470 if (runtime_exceeded(td, &td->tv_cache)) {
471 td->terminate = 1;
472 break;
473 }
474 }
475
476 io_u = __get_io_u(td);
477 if (!io_u)
478 break;
479
480 if (get_next_verify(td, io_u)) {
481 put_io_u(td, io_u);
482 break;
483 }
484
485 if (td_io_prep(td, io_u)) {
486 put_io_u(td, io_u);
487 break;
488 }
489
490 if (td->o.verify_async)
491 io_u->end_io = verify_io_u_async;
492 else
493 io_u->end_io = verify_io_u;
494
495 ret = td_io_queue(td, io_u);
496 switch (ret) {
497 case FIO_Q_COMPLETED:
498 if (io_u->error) {
499 ret = -io_u->error;
500 clear_io_u(td, io_u);
501 } else if (io_u->resid) {
502 int bytes = io_u->xfer_buflen - io_u->resid;
503
504 /*
505 * zero read, fail
506 */
507 if (!bytes) {
508 td_verror(td, EIO, "full resid");
509 put_io_u(td, io_u);
510 break;
511 }
512
513 io_u->xfer_buflen = io_u->resid;
514 io_u->xfer_buf += bytes;
515 io_u->offset += bytes;
516
517 if (ddir_rw(io_u->ddir))
518 td->ts.short_io_u[io_u->ddir]++;
519
520 f = io_u->file;
521 if (io_u->offset == f->real_file_size)
522 goto sync_done;
523
524 requeue_io_u(td, &io_u);
525 } else {
526sync_done:
527 ret = io_u_sync_complete(td, io_u, NULL);
528 if (ret < 0)
529 break;
530 }
531 continue;
532 case FIO_Q_QUEUED:
533 break;
534 case FIO_Q_BUSY:
535 requeue_io_u(td, &io_u);
536 ret2 = td_io_commit(td);
537 if (ret2 < 0)
538 ret = ret2;
539 break;
540 default:
541 assert(ret < 0);
542 td_verror(td, -ret, "td_io_queue");
543 break;
544 }
545
546 if (break_on_this_error(td, &ret))
547 break;
548
549 /*
550 * if we can queue more, do so. but check if there are
551 * completed io_u's first.
552 */
553 full = queue_full(td) || ret == FIO_Q_BUSY;
554 if (full || !td->o.iodepth_batch_complete) {
555 min_events = min(td->o.iodepth_batch_complete,
556 td->cur_depth);
557 if (full && !min_events)
558 min_events = 1;
559
560 do {
561 /*
562 * Reap required number of io units, if any,
563 * and do the verification on them through
564 * the callback handler
565 */
566 if (io_u_queued_complete(td, min_events, NULL) < 0) {
567 ret = -1;
568 break;
569 }
570 } while (full && (td->cur_depth > td->o.iodepth_low));
571 }
572 if (ret < 0)
573 break;
574 }
575
576 if (!td->error) {
577 min_events = td->cur_depth;
578
579 if (min_events)
580 ret = io_u_queued_complete(td, min_events, NULL);
581 } else
582 cleanup_pending_aio(td);
583
584 td_set_runstate(td, TD_RUNNING);
585
586 dprint(FD_VERIFY, "exiting loop\n");
587}
588
589/*
590 * Main IO worker function. It retrieves io_u's to process and queues
591 * and reaps them, checking for rate and errors along the way.
592 */
593static void do_io(struct thread_data *td)
594{
595 unsigned int i;
596 int ret = 0;
597
598 if (in_ramp_time(td))
599 td_set_runstate(td, TD_RAMP);
600 else
601 td_set_runstate(td, TD_RUNNING);
602
603 while ( (td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
604 (!flist_empty(&td->trim_list)) ||
605 ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) ) {
606 struct timeval comp_time;
607 unsigned long bytes_done[2] = { 0, 0 };
608 int min_evts = 0;
609 struct io_u *io_u;
610 int ret2, full;
611
612 if (td->terminate)
613 break;
614
615 update_tv_cache(td);
616
617 if (runtime_exceeded(td, &td->tv_cache)) {
618 __update_tv_cache(td);
619 if (runtime_exceeded(td, &td->tv_cache)) {
620 td->terminate = 1;
621 break;
622 }
623 }
624
625 io_u = get_io_u(td);
626 if (!io_u)
627 break;
628
629 /*
630 * Add verification end_io handler, if asked to verify
631 * a previously written file.
632 */
633 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
634 !td_rw(td)) {
635 if (td->o.verify_async)
636 io_u->end_io = verify_io_u_async;
637 else
638 io_u->end_io = verify_io_u;
639 td_set_runstate(td, TD_VERIFYING);
640 } else if (in_ramp_time(td))
641 td_set_runstate(td, TD_RAMP);
642 else
643 td_set_runstate(td, TD_RUNNING);
644
645 ret = td_io_queue(td, io_u);
646 switch (ret) {
647 case FIO_Q_COMPLETED:
648 if (io_u->error) {
649 ret = -io_u->error;
650 clear_io_u(td, io_u);
651 } else if (io_u->resid) {
652 int bytes = io_u->xfer_buflen - io_u->resid;
653 struct fio_file *f = io_u->file;
654
655 /*
656 * zero read, fail
657 */
658 if (!bytes) {
659 td_verror(td, EIO, "full resid");
660 put_io_u(td, io_u);
661 break;
662 }
663
664 io_u->xfer_buflen = io_u->resid;
665 io_u->xfer_buf += bytes;
666 io_u->offset += bytes;
667
668 if (ddir_rw(io_u->ddir))
669 td->ts.short_io_u[io_u->ddir]++;
670
671 if (io_u->offset == f->real_file_size)
672 goto sync_done;
673
674 requeue_io_u(td, &io_u);
675 } else {
676sync_done:
677 if (__should_check_rate(td, 0) ||
678 __should_check_rate(td, 1))
679 fio_gettime(&comp_time, NULL);
680
681 ret = io_u_sync_complete(td, io_u, bytes_done);
682 if (ret < 0)
683 break;
684 }
685 break;
686 case FIO_Q_QUEUED:
687 /*
688 * if the engine doesn't have a commit hook,
689 * the io_u is really queued. if it does have such
690 * a hook, it has to call io_u_queued() itself.
691 */
692 if (td->io_ops->commit == NULL)
693 io_u_queued(td, io_u);
694 break;
695 case FIO_Q_BUSY:
696 requeue_io_u(td, &io_u);
697 ret2 = td_io_commit(td);
698 if (ret2 < 0)
699 ret = ret2;
700 break;
701 default:
702 assert(ret < 0);
703 put_io_u(td, io_u);
704 break;
705 }
706
707 if (break_on_this_error(td, &ret))
708 break;
709
710 /*
711 * See if we need to complete some commands
712 */
713 full = queue_full(td) || ret == FIO_Q_BUSY;
714 if (full || !td->o.iodepth_batch_complete) {
715 min_evts = min(td->o.iodepth_batch_complete,
716 td->cur_depth);
717 if (full && !min_evts)
718 min_evts = 1;
719
720 if (__should_check_rate(td, 0) ||
721 __should_check_rate(td, 1))
722 fio_gettime(&comp_time, NULL);
723
724 do {
725 ret = io_u_queued_complete(td, min_evts, bytes_done);
726 if (ret < 0)
727 break;
728
729 } while (full && (td->cur_depth > td->o.iodepth_low));
730 }
731
732 if (ret < 0)
733 break;
734 if (!(bytes_done[0] + bytes_done[1]))
735 continue;
736
737 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
738 if (check_min_rate(td, &comp_time, bytes_done)) {
739 if (exitall_on_terminate)
740 terminate_threads(td->groupid);
741 td_verror(td, EIO, "check_min_rate");
742 break;
743 }
744 }
745
746 if (td->o.thinktime) {
747 unsigned long long b;
748
749 b = td->io_blocks[0] + td->io_blocks[1];
750 if (!(b % td->o.thinktime_blocks)) {
751 int left;
752
753 if (td->o.thinktime_spin)
754 usec_spin(td->o.thinktime_spin);
755
756 left = td->o.thinktime - td->o.thinktime_spin;
757 if (left)
758 usec_sleep(td, left);
759 }
760 }
761 }
762
763 if (td->trim_entries)
764 printf("trim entries %ld\n", td->trim_entries);
765
766 if (td->o.fill_device && td->error == ENOSPC) {
767 td->error = 0;
768 td->terminate = 1;
769 }
770 if (!td->error) {
771 struct fio_file *f;
772
773 i = td->cur_depth;
774 if (i) {
775 ret = io_u_queued_complete(td, i, NULL);
776 if (td->o.fill_device && td->error == ENOSPC)
777 td->error = 0;
778 }
779
780 if (should_fsync(td) && td->o.end_fsync) {
781 td_set_runstate(td, TD_FSYNCING);
782
783 for_each_file(td, f, i) {
784 if (!fio_file_open(f))
785 continue;
786 fio_io_sync(td, f);
787 }
788 }
789 } else
790 cleanup_pending_aio(td);
791
792 /*
793 * stop job if we failed doing any IO
794 */
795 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
796 td->done = 1;
797}
798
799static void cleanup_io_u(struct thread_data *td)
800{
801 struct flist_head *entry, *n;
802 struct io_u *io_u;
803
804 flist_for_each_safe(entry, n, &td->io_u_freelist) {
805 io_u = flist_entry(entry, struct io_u, list);
806
807 flist_del(&io_u->list);
808 fio_memfree(io_u, sizeof(*io_u));
809 }
810
811 free_io_mem(td);
812}
813
814static int init_io_u(struct thread_data *td)
815{
816 struct io_u *io_u;
817 unsigned int max_bs;
818 int cl_align, i, max_units;
819 char *p;
820
821 max_units = td->o.iodepth;
822 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
823 td->orig_buffer_size = (unsigned long long) max_bs
824 * (unsigned long long) max_units;
825
826 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
827 unsigned long bs;
828
829 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
830 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
831 }
832
833 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
834 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
835 return 1;
836 }
837
838 if (allocate_io_mem(td))
839 return 1;
840
841 if (td->o.odirect || td->o.mem_align ||
842 (td->io_ops->flags & FIO_RAWIO))
843 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
844 else
845 p = td->orig_buffer;
846
847 cl_align = os_cache_line_size();
848
849 for (i = 0; i < max_units; i++) {
850 void *ptr;
851
852 if (td->terminate)
853 return 1;
854
855 ptr = fio_memalign(cl_align, sizeof(*io_u));
856 if (!ptr) {
857 log_err("fio: unable to allocate aligned memory\n");
858 break;
859 }
860
861 io_u = ptr;
862 memset(io_u, 0, sizeof(*io_u));
863 INIT_FLIST_HEAD(&io_u->list);
864 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
865
866 if (!(td->io_ops->flags & FIO_NOIO)) {
867 io_u->buf = p + max_bs * i;
868 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
869
870 if (td_write(td) && !td->o.refill_buffers)
871 io_u_fill_buffer(td, io_u, max_bs);
872 else if (td_write(td) && td->o.verify_pattern_bytes) {
873 /*
874 * Fill the buffer with the pattern if we are
875 * going to be doing writes.
876 */
877 fill_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
878 }
879 }
880
881 io_u->index = i;
882 io_u->flags = IO_U_F_FREE;
883 flist_add(&io_u->list, &td->io_u_freelist);
884 }
885
886 return 0;
887}
888
889static int switch_ioscheduler(struct thread_data *td)
890{
891 char tmp[256], tmp2[128];
892 FILE *f;
893 int ret;
894
895 if (td->io_ops->flags & FIO_DISKLESSIO)
896 return 0;
897
898 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
899
900 f = fopen(tmp, "r+");
901 if (!f) {
902 if (errno == ENOENT) {
903 log_err("fio: os or kernel doesn't support IO scheduler"
904 " switching\n");
905 return 0;
906 }
907 td_verror(td, errno, "fopen iosched");
908 return 1;
909 }
910
911 /*
912 * Set io scheduler.
913 */
914 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
915 if (ferror(f) || ret != 1) {
916 td_verror(td, errno, "fwrite");
917 fclose(f);
918 return 1;
919 }
920
921 rewind(f);
922
923 /*
924 * Read back and check that the selected scheduler is now the default.
925 */
926 ret = fread(tmp, 1, sizeof(tmp), f);
927 if (ferror(f) || ret < 0) {
928 td_verror(td, errno, "fread");
929 fclose(f);
930 return 1;
931 }
932
933 sprintf(tmp2, "[%s]", td->o.ioscheduler);
934 if (!strstr(tmp, tmp2)) {
935 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
936 td_verror(td, EINVAL, "iosched_switch");
937 fclose(f);
938 return 1;
939 }
940
941 fclose(f);
942 return 0;
943}
944
945static int keep_running(struct thread_data *td)
946{
947 unsigned long long io_done;
948
949 if (td->done)
950 return 0;
951 if (td->o.time_based)
952 return 1;
953 if (td->o.loops) {
954 td->o.loops--;
955 return 1;
956 }
957
958 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
959 + td->io_skip_bytes;
960 if (io_done < td->o.size)
961 return 1;
962
963 return 0;
964}
965
966static void reset_io_counters(struct thread_data *td)
967{
968 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
969 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
970 td->zone_bytes = 0;
971 td->rate_bytes[0] = td->rate_bytes[1] = 0;
972 td->rate_blocks[0] = td->rate_blocks[1] = 0;
973
974 td->last_was_sync = 0;
975
976 /*
977 * reset file done count if we are to start over
978 */
979 if (td->o.time_based || td->o.loops)
980 td->nr_done_files = 0;
981}
982
983void reset_all_stats(struct thread_data *td)
984{
985 struct timeval tv;
986 int i;
987
988 reset_io_counters(td);
989
990 for (i = 0; i < 2; i++) {
991 td->io_bytes[i] = 0;
992 td->io_blocks[i] = 0;
993 td->io_issues[i] = 0;
994 td->ts.total_io_u[i] = 0;
995 }
996
997 fio_gettime(&tv, NULL);
998 td->ts.runtime[0] = 0;
999 td->ts.runtime[1] = 0;
1000 memcpy(&td->epoch, &tv, sizeof(tv));
1001 memcpy(&td->start, &tv, sizeof(tv));
1002}
1003
1004static void clear_io_state(struct thread_data *td)
1005{
1006 struct fio_file *f;
1007 unsigned int i;
1008
1009 reset_io_counters(td);
1010
1011 close_files(td);
1012 for_each_file(td, f, i)
1013 fio_file_clear_done(f);
1014
1015 /*
1016 * Set the same seed to get repeatable runs
1017 */
1018 td_fill_rand_seeds(td);
1019}
1020
1021static int exec_string(const char *string)
1022{
1023 int ret, newlen = strlen(string) + 1 + 8;
1024 char *str;
1025
1026 str = malloc(newlen);
1027 sprintf(str, "sh -c %s", string);
1028
1029 ret = system(str);
1030 if (ret == -1)
1031 log_err("fio: exec of cmd <%s> failed\n", str);
1032
1033 free(str);
1034 return ret;
1035}
1036
1037/*
1038 * Entry point for the thread based jobs. The process based jobs end up
1039 * here as well, after a little setup.
1040 */
1041static void *thread_main(void *data)
1042{
1043 unsigned long long elapsed;
1044 struct thread_data *td = data;
1045 pthread_condattr_t attr;
1046 int clear_state;
1047
1048 if (!td->o.use_thread)
1049 setsid();
1050
1051 td->pid = getpid();
1052
1053 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1054
1055 INIT_FLIST_HEAD(&td->io_u_freelist);
1056 INIT_FLIST_HEAD(&td->io_u_busylist);
1057 INIT_FLIST_HEAD(&td->io_u_requeues);
1058 INIT_FLIST_HEAD(&td->io_log_list);
1059 INIT_FLIST_HEAD(&td->io_hist_list);
1060 INIT_FLIST_HEAD(&td->verify_list);
1061 INIT_FLIST_HEAD(&td->trim_list);
1062 pthread_mutex_init(&td->io_u_lock, NULL);
1063 td->io_hist_tree = RB_ROOT;
1064
1065 pthread_condattr_init(&attr);
1066 pthread_cond_init(&td->verify_cond, &attr);
1067 pthread_cond_init(&td->free_cond, &attr);
1068
1069 td_set_runstate(td, TD_INITIALIZED);
1070 dprint(FD_MUTEX, "up startup_mutex\n");
1071 fio_mutex_up(startup_mutex);
1072 dprint(FD_MUTEX, "wait on td->mutex\n");
1073 fio_mutex_down(td->mutex);
1074 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1075
1076 /*
1077 * the ->mutex mutex is now no longer used, close it to avoid
1078 * eating a file descriptor
1079 */
1080 fio_mutex_remove(td->mutex);
1081
1082 /*
1083 * A new gid requires privilege, so we need to do this before setting
1084 * the uid.
1085 */
1086 if (td->o.gid != -1U && setgid(td->o.gid)) {
1087 td_verror(td, errno, "setgid");
1088 goto err;
1089 }
1090 if (td->o.uid != -1U && setuid(td->o.uid)) {
1091 td_verror(td, errno, "setuid");
1092 goto err;
1093 }
1094
1095 /*
1096 * May alter parameters that init_io_u() will use, so we need to
1097 * do this first.
1098 */
1099 if (init_iolog(td))
1100 goto err;
1101
1102 if (init_io_u(td))
1103 goto err;
1104
1105 if (td->o.verify_async && verify_async_init(td))
1106 goto err;
1107
1108 if (td->o.cpumask_set && fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1109 td_verror(td, errno, "cpu_set_affinity");
1110 goto err;
1111 }
1112
1113 /*
1114 * If we have a gettimeofday() thread, make sure we exclude that
1115 * thread from this job
1116 */
1117 if (td->o.gtod_cpu) {
1118 fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
1119 if (fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1120 td_verror(td, errno, "cpu_set_affinity");
1121 goto err;
1122 }
1123 }
1124
1125 if (td->ioprio_set) {
1126 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1127 td_verror(td, errno, "ioprio_set");
1128 goto err;
1129 }
1130 }
1131
1132 if (td->o.cgroup_weight && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1133 goto err;
1134
1135 if (nice(td->o.nice) == -1) {
1136 td_verror(td, errno, "nice");
1137 goto err;
1138 }
1139
1140 if (td->o.ioscheduler && switch_ioscheduler(td))
1141 goto err;
1142
1143 if (!td->o.create_serialize && setup_files(td))
1144 goto err;
1145
1146 if (td_io_init(td))
1147 goto err;
1148
1149 if (init_random_map(td))
1150 goto err;
1151
1152 if (td->o.exec_prerun) {
1153 if (exec_string(td->o.exec_prerun))
1154 goto err;
1155 }
1156
1157 if (td->o.pre_read) {
1158 if (pre_read_files(td) < 0)
1159 goto err;
1160 }
1161
1162 fio_gettime(&td->epoch, NULL);
1163 getrusage(RUSAGE_SELF, &td->ts.ru_start);
1164
1165 clear_state = 0;
1166 while (keep_running(td)) {
1167 fio_gettime(&td->start, NULL);
1168 memcpy(&td->ts.stat_sample_time[0], &td->start,
1169 sizeof(td->start));
1170 memcpy(&td->ts.stat_sample_time[1], &td->start,
1171 sizeof(td->start));
1172 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1173
1174 if (td->o.ratemin[0] || td->o.ratemin[1])
1175 memcpy(&td->lastrate, &td->ts.stat_sample_time,
1176 sizeof(td->lastrate));
1177
1178 if (clear_state)
1179 clear_io_state(td);
1180
1181 prune_io_piece_log(td);
1182
1183 do_io(td);
1184
1185 clear_state = 1;
1186
1187 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1188 elapsed = utime_since_now(&td->start);
1189 td->ts.runtime[DDIR_READ] += elapsed;
1190 }
1191 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1192 elapsed = utime_since_now(&td->start);
1193 td->ts.runtime[DDIR_WRITE] += elapsed;
1194 }
1195
1196 if (td->error || td->terminate)
1197 break;
1198
1199 if (!td->o.do_verify ||
1200 td->o.verify == VERIFY_NONE ||
1201 (td->io_ops->flags & FIO_UNIDIR))
1202 continue;
1203
1204 clear_io_state(td);
1205
1206 fio_gettime(&td->start, NULL);
1207
1208 do_verify(td);
1209
1210 td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1211
1212 if (td->error || td->terminate)
1213 break;
1214 }
1215
1216 update_rusage_stat(td);
1217 td->ts.runtime[0] = (td->ts.runtime[0] + 999) / 1000;
1218 td->ts.runtime[1] = (td->ts.runtime[1] + 999) / 1000;
1219 td->ts.total_run_time = mtime_since_now(&td->epoch);
1220 td->ts.io_bytes[0] = td->io_bytes[0];
1221 td->ts.io_bytes[1] = td->io_bytes[1];
1222
1223 fio_mutex_down(writeout_mutex);
1224 if (td->ts.bw_log) {
1225 if (td->o.bw_log_file) {
1226 finish_log_named(td, td->ts.bw_log,
1227 td->o.bw_log_file, "bw");
1228 } else
1229 finish_log(td, td->ts.bw_log, "bw");
1230 }
1231 if (td->ts.lat_log) {
1232 if (td->o.lat_log_file) {
1233 finish_log_named(td, td->ts.lat_log,
1234 td->o.lat_log_file, "lat");
1235 } else
1236 finish_log(td, td->ts.lat_log, "lat");
1237 }
1238 if (td->ts.slat_log) {
1239 if (td->o.lat_log_file) {
1240 finish_log_named(td, td->ts.slat_log,
1241 td->o.lat_log_file, "slat");
1242 } else
1243 finish_log(td, td->ts.slat_log, "slat");
1244 }
1245 if (td->ts.clat_log) {
1246 if (td->o.lat_log_file) {
1247 finish_log_named(td, td->ts.clat_log,
1248 td->o.lat_log_file, "clat");
1249 } else
1250 finish_log(td, td->ts.clat_log, "clat");
1251 }
1252 fio_mutex_up(writeout_mutex);
1253 if (td->o.exec_postrun)
1254 exec_string(td->o.exec_postrun);
1255
1256 if (exitall_on_terminate)
1257 terminate_threads(td->groupid);
1258
1259err:
1260 if (td->error)
1261 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1262 td->verror);
1263
1264 if (td->o.verify_async)
1265 verify_async_exit(td);
1266
1267 close_and_free_files(td);
1268 close_ioengine(td);
1269 cleanup_io_u(td);
1270 cgroup_shutdown(td, &cgroup_mnt);
1271
1272 if (td->o.cpumask_set) {
1273 int ret = fio_cpuset_exit(&td->o.cpumask);
1274
1275 td_verror(td, ret, "fio_cpuset_exit");
1276 }
1277
1278 /*
1279 * do this very late, it will log file closing as well
1280 */
1281 if (td->o.write_iolog_file)
1282 write_iolog_close(td);
1283
1284 options_mem_free(td);
1285 td_set_runstate(td, TD_EXITED);
1286 return (void *) (unsigned long) td->error;
1287}
1288
1289/*
1290 * We cannot pass the td data into a forked process, so attach the td and
1291 * pass it to the thread worker.
1292 */
1293static int fork_main(int shmid, int offset)
1294{
1295 struct thread_data *td;
1296 void *data, *ret;
1297
1298 data = shmat(shmid, NULL, 0);
1299 if (data == (void *) -1) {
1300 int __err = errno;
1301
1302 perror("shmat");
1303 return __err;
1304 }
1305
1306 td = data + offset * sizeof(struct thread_data);
1307 ret = thread_main(td);
1308 shmdt(data);
1309 return (int) (unsigned long) ret;
1310}
1311
1312/*
1313 * Run over the job map and reap the threads that have exited, if any.
1314 */
1315static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1316{
1317 struct thread_data *td;
1318 int i, cputhreads, realthreads, pending, status, ret;
1319
1320 /*
1321 * reap exited threads (TD_EXITED -> TD_REAPED)
1322 */
1323 realthreads = pending = cputhreads = 0;
1324 for_each_td(td, i) {
1325 int flags = 0;
1326
1327 /*
1328 * ->io_ops is NULL for a thread that has closed its
1329 * io engine
1330 */
1331 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1332 cputhreads++;
1333 else
1334 realthreads++;
1335
1336 if (!td->pid) {
1337 pending++;
1338 continue;
1339 }
1340 if (td->runstate == TD_REAPED)
1341 continue;
1342 if (td->o.use_thread) {
1343 if (td->runstate == TD_EXITED) {
1344 td_set_runstate(td, TD_REAPED);
1345 goto reaped;
1346 }
1347 continue;
1348 }
1349
1350 flags = WNOHANG;
1351 if (td->runstate == TD_EXITED)
1352 flags = 0;
1353
1354 /*
1355 * check if someone quit or got killed in an unusual way
1356 */
1357 ret = waitpid(td->pid, &status, flags);
1358 if (ret < 0) {
1359 if (errno == ECHILD) {
1360 log_err("fio: pid=%d disappeared %d\n",
1361 (int) td->pid, td->runstate);
1362 td_set_runstate(td, TD_REAPED);
1363 goto reaped;
1364 }
1365 perror("waitpid");
1366 } else if (ret == td->pid) {
1367 if (WIFSIGNALED(status)) {
1368 int sig = WTERMSIG(status);
1369
1370 if (sig != SIGTERM)
1371 log_err("fio: pid=%d, got signal=%d\n",
1372 (int) td->pid, sig);
1373 td_set_runstate(td, TD_REAPED);
1374 goto reaped;
1375 }
1376 if (WIFEXITED(status)) {
1377 if (WEXITSTATUS(status) && !td->error)
1378 td->error = WEXITSTATUS(status);
1379
1380 td_set_runstate(td, TD_REAPED);
1381 goto reaped;
1382 }
1383 }
1384
1385 /*
1386 * thread is not dead, continue
1387 */
1388 pending++;
1389 continue;
1390reaped:
1391 (*nr_running)--;
1392 (*m_rate) -= (td->o.ratemin[0] + td->o.ratemin[1]);
1393 (*t_rate) -= (td->o.rate[0] + td->o.rate[1]);
1394 if (!td->pid)
1395 pending--;
1396
1397 if (td->error)
1398 exit_value++;
1399
1400 done_secs += mtime_since_now(&td->epoch) / 1000;
1401 }
1402
1403 if (*nr_running == cputhreads && !pending && realthreads)
1404 terminate_threads(TERMINATE_ALL);
1405}
1406
1407static void *gtod_thread_main(void *data)
1408{
1409 fio_mutex_up(startup_mutex);
1410
1411 /*
1412 * As long as we have jobs around, update the clock. It would be nice
1413 * to have some way of NOT hammering that CPU with gettimeofday(),
1414 * but I'm not sure what to use outside of a simple CPU nop to relax
1415 * it - we don't want to lose precision.
1416 */
1417 while (threads) {
1418 fio_gtod_update();
1419 nop;
1420 }
1421
1422 return NULL;
1423}
1424
1425static int fio_start_gtod_thread(void)
1426{
1427 pthread_attr_t attr;
1428 int ret;
1429
1430 pthread_attr_init(&attr);
1431 pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN);
1432 ret = pthread_create(&gtod_thread, &attr, gtod_thread_main, NULL);
1433 pthread_attr_destroy(&attr);
1434 if (ret) {
1435 log_err("Can't create gtod thread: %s\n", strerror(ret));
1436 return 1;
1437 }
1438
1439 ret = pthread_detach(gtod_thread);
1440 if (ret) {
1441 log_err("Can't detatch gtod thread: %s\n", strerror(ret));
1442 return 1;
1443 }
1444
1445 dprint(FD_MUTEX, "wait on startup_mutex\n");
1446 fio_mutex_down(startup_mutex);
1447 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1448 return 0;
1449}
1450
1451/*
1452 * Main function for kicking off and reaping jobs, as needed.
1453 */
1454static void run_threads(void)
1455{
1456 struct thread_data *td;
1457 unsigned long spent;
1458 int i, todo, nr_running, m_rate, t_rate, nr_started;
1459
1460 if (fio_pin_memory())
1461 return;
1462
1463 if (fio_gtod_offload && fio_start_gtod_thread())
1464 return;
1465
1466 if (!terse_output) {
1467 log_info("Starting ");
1468 if (nr_thread)
1469 log_info("%d thread%s", nr_thread,
1470 nr_thread > 1 ? "s" : "");
1471 if (nr_process) {
1472 if (nr_thread)
1473 printf(" and ");
1474 log_info("%d process%s", nr_process,
1475 nr_process > 1 ? "es" : "");
1476 }
1477 log_info("\n");
1478 fflush(stdout);
1479 }
1480
1481 set_sig_handlers();
1482
1483 todo = thread_number;
1484 nr_running = 0;
1485 nr_started = 0;
1486 m_rate = t_rate = 0;
1487
1488 for_each_td(td, i) {
1489 print_status_init(td->thread_number - 1);
1490
1491 if (!td->o.create_serialize) {
1492 init_disk_util(td);
1493 continue;
1494 }
1495
1496 /*
1497 * do file setup here so it happens sequentially,
1498 * we don't want X number of threads getting their
1499 * client data interspersed on disk
1500 */
1501 if (setup_files(td)) {
1502 exit_value++;
1503 if (td->error)
1504 log_err("fio: pid=%d, err=%d/%s\n",
1505 (int) td->pid, td->error, td->verror);
1506 td_set_runstate(td, TD_REAPED);
1507 todo--;
1508 } else {
1509 struct fio_file *f;
1510 unsigned int j;
1511
1512 /*
1513 * for sharing to work, each job must always open
1514 * its own files. so close them, if we opened them
1515 * for creation
1516 */
1517 for_each_file(td, f, j) {
1518 if (fio_file_open(f))
1519 td_io_close_file(td, f);
1520 }
1521 }
1522
1523 init_disk_util(td);
1524 }
1525
1526 set_genesis_time();
1527
1528 while (todo) {
1529 struct thread_data *map[REAL_MAX_JOBS];
1530 struct timeval this_start;
1531 int this_jobs = 0, left;
1532
1533 /*
1534 * create threads (TD_NOT_CREATED -> TD_CREATED)
1535 */
1536 for_each_td(td, i) {
1537 if (td->runstate != TD_NOT_CREATED)
1538 continue;
1539
1540 /*
1541 * never got a chance to start, killed by other
1542 * thread for some reason
1543 */
1544 if (td->terminate) {
1545 todo--;
1546 continue;
1547 }
1548
1549 if (td->o.start_delay) {
1550 spent = mtime_since_genesis();
1551
1552 if (td->o.start_delay * 1000 > spent)
1553 continue;
1554 }
1555
1556 if (td->o.stonewall && (nr_started || nr_running)) {
1557 dprint(FD_PROCESS, "%s: stonewall wait\n",
1558 td->o.name);
1559 break;
1560 }
1561
1562 /*
1563 * Set state to created. Thread will transition
1564 * to TD_INITIALIZED when it's done setting up.
1565 */
1566 td_set_runstate(td, TD_CREATED);
1567 map[this_jobs++] = td;
1568 nr_started++;
1569
1570 if (td->o.use_thread) {
1571 int ret;
1572
1573 dprint(FD_PROCESS, "will pthread_create\n");
1574 ret = pthread_create(&td->thread, NULL,
1575 thread_main, td);
1576 if (ret) {
1577 log_err("pthread_create: %s\n",
1578 strerror(ret));
1579 nr_started--;
1580 break;
1581 }
1582 ret = pthread_detach(td->thread);
1583 if (ret)
1584 log_err("pthread_detach: %s",
1585 strerror(ret));
1586 } else {
1587 pid_t pid;
1588 dprint(FD_PROCESS, "will fork\n");
1589 pid = fork();
1590 if (!pid) {
1591 int ret = fork_main(shm_id, i);
1592
1593 _exit(ret);
1594 } else if (i == fio_debug_jobno)
1595 *fio_debug_jobp = pid;
1596 }
1597 dprint(FD_MUTEX, "wait on startup_mutex\n");
1598 if (fio_mutex_down_timeout(startup_mutex, 10)) {
1599 log_err("fio: job startup hung? exiting.\n");
1600 terminate_threads(TERMINATE_ALL);
1601 fio_abort = 1;
1602 nr_started--;
1603 break;
1604 }
1605 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1606 }
1607
1608 /*
1609 * Wait for the started threads to transition to
1610 * TD_INITIALIZED.
1611 */
1612 fio_gettime(&this_start, NULL);
1613 left = this_jobs;
1614 while (left && !fio_abort) {
1615 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1616 break;
1617
1618 usleep(100000);
1619
1620 for (i = 0; i < this_jobs; i++) {
1621 td = map[i];
1622 if (!td)
1623 continue;
1624 if (td->runstate == TD_INITIALIZED) {
1625 map[i] = NULL;
1626 left--;
1627 } else if (td->runstate >= TD_EXITED) {
1628 map[i] = NULL;
1629 left--;
1630 todo--;
1631 nr_running++; /* work-around... */
1632 }
1633 }
1634 }
1635
1636 if (left) {
1637 log_err("fio: %d jobs failed to start\n", left);
1638 for (i = 0; i < this_jobs; i++) {
1639 td = map[i];
1640 if (!td)
1641 continue;
1642 kill(td->pid, SIGTERM);
1643 }
1644 break;
1645 }
1646
1647 /*
1648 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1649 */
1650 for_each_td(td, i) {
1651 if (td->runstate != TD_INITIALIZED)
1652 continue;
1653
1654 if (in_ramp_time(td))
1655 td_set_runstate(td, TD_RAMP);
1656 else
1657 td_set_runstate(td, TD_RUNNING);
1658 nr_running++;
1659 nr_started--;
1660 m_rate += td->o.ratemin[0] + td->o.ratemin[1];
1661 t_rate += td->o.rate[0] + td->o.rate[1];
1662 todo--;
1663 fio_mutex_up(td->mutex);
1664 }
1665
1666 reap_threads(&nr_running, &t_rate, &m_rate);
1667
1668 if (todo)
1669 usleep(100000);
1670 }
1671
1672 while (nr_running) {
1673 reap_threads(&nr_running, &t_rate, &m_rate);
1674 usleep(10000);
1675 }
1676
1677 update_io_ticks();
1678 fio_unpin_memory();
1679}
1680
1681int main(int argc, char *argv[])
1682{
1683 long ps;
1684
1685 sinit();
1686 init_rand(&__fio_rand_state);
1687
1688 /*
1689 * We need locale for number printing, if it isn't set then just
1690 * go with the US format.
1691 */
1692 if (!getenv("LC_NUMERIC"))
1693 setlocale(LC_NUMERIC, "en_US");
1694
1695 ps = sysconf(_SC_PAGESIZE);
1696 if (ps < 0) {
1697 log_err("Failed to get page size\n");
1698 return 1;
1699 }
1700
1701 page_size = ps;
1702 page_mask = ps - 1;
1703
1704 fio_keywords_init();
1705
1706 if (parse_options(argc, argv))
1707 return 1;
1708
1709 if (exec_profile && load_profile(exec_profile))
1710 return 1;
1711
1712 if (!thread_number)
1713 return 0;
1714
1715 if (write_bw_log) {
1716 setup_log(&agg_io_log[DDIR_READ]);
1717 setup_log(&agg_io_log[DDIR_WRITE]);
1718 }
1719
1720 startup_mutex = fio_mutex_init(0);
1721 if (startup_mutex == NULL)
1722 return 1;
1723 writeout_mutex = fio_mutex_init(1);
1724 if (writeout_mutex == NULL)
1725 return 1;
1726
1727 set_genesis_time();
1728 create_disk_util_thread();
1729
1730 cgroup_list = smalloc(sizeof(*cgroup_list));
1731 INIT_FLIST_HEAD(cgroup_list);
1732
1733 run_threads();
1734
1735 if (!fio_abort) {
1736 show_run_stats();
1737 if (write_bw_log) {
1738 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1739 __finish_log(agg_io_log[DDIR_WRITE],
1740 "agg-write_bw.log");
1741 }
1742 }
1743
1744 cgroup_kill(cgroup_list);
1745 sfree(cgroup_list);
1746 sfree(cgroup_mnt);
1747
1748 fio_mutex_remove(startup_mutex);
1749 fio_mutex_remove(writeout_mutex);
1750 return exit_value;
1751}