Move completion handler into the io_u
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "os.h"
39
40static unsigned long page_mask;
41#define ALIGN(buf) \
42 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
43
44int groupid = 0;
45int thread_number = 0;
46int shm_id = 0;
47int temp_stall_ts;
48
49static volatile int startup_sem;
50static volatile int fio_abort;
51static int exit_value;
52
53struct io_log *agg_io_log[2];
54
55#define TERMINATE_ALL (-1)
56#define JOB_START_TIMEOUT (5 * 1000)
57
58static inline void td_set_runstate(struct thread_data *td, int runstate)
59{
60 td->runstate = runstate;
61}
62
63static void terminate_threads(int group_id, int forced_kill)
64{
65 struct thread_data *td;
66 int i;
67
68 for_each_td(td, i) {
69 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
70 td->terminate = 1;
71 td->start_delay = 0;
72 if (forced_kill)
73 td_set_runstate(td, TD_EXITED);
74 }
75 }
76}
77
78static void sig_handler(int sig)
79{
80 switch (sig) {
81 case SIGALRM:
82 update_io_ticks();
83 disk_util_timer_arm();
84 print_thread_status();
85 break;
86 default:
87 printf("\nfio: terminating on signal %d\n", sig);
88 fflush(stdout);
89 terminate_threads(TERMINATE_ALL, 0);
90 break;
91 }
92}
93
94/*
95 * Check if we are above the minimum rate given.
96 */
97static int check_min_rate(struct thread_data *td, struct timeval *now)
98{
99 unsigned long long bytes = 0;
100 unsigned long spent;
101 unsigned long rate;
102
103 /*
104 * allow a 2 second settle period in the beginning
105 */
106 if (mtime_since(&td->start, now) < 2000)
107 return 0;
108
109 if (td_read(td))
110 bytes += td->this_io_bytes[DDIR_READ];
111 if (td_write(td))
112 bytes += td->this_io_bytes[DDIR_WRITE];
113
114 /*
115 * if rate blocks is set, sample is running
116 */
117 if (td->rate_bytes) {
118 spent = mtime_since(&td->lastrate, now);
119 if (spent < td->ratecycle)
120 return 0;
121
122 if (bytes < td->rate_bytes) {
123 fprintf(f_out, "%s: min rate %u not met\n", td->name, td->ratemin);
124 return 1;
125 } else {
126 rate = (bytes - td->rate_bytes) / spent;
127 if (rate < td->ratemin || bytes < td->rate_bytes) {
128 fprintf(f_out, "%s: min rate %u not met, got %luKiB/sec\n", td->name, td->ratemin, rate);
129 return 1;
130 }
131 }
132 }
133
134 td->rate_bytes = bytes;
135 memcpy(&td->lastrate, now, sizeof(*now));
136 return 0;
137}
138
139static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
140{
141 if (!td->timeout)
142 return 0;
143 if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
144 return 1;
145
146 return 0;
147}
148
149/*
150 * When job exits, we can cancel the in-flight IO if we are using async
151 * io. Attempt to do so.
152 */
153static void cleanup_pending_aio(struct thread_data *td)
154{
155 struct list_head *entry, *n;
156 struct io_u *io_u;
157 int r;
158
159 /*
160 * get immediately available events, if any
161 */
162 r = io_u_queued_complete(td, 0);
163 if (r < 0)
164 return;
165
166 /*
167 * now cancel remaining active events
168 */
169 if (td->io_ops->cancel) {
170 list_for_each_safe(entry, n, &td->io_u_busylist) {
171 io_u = list_entry(entry, struct io_u, list);
172
173 /*
174 * if the io_u isn't in flight, then that generally
175 * means someone leaked an io_u. complain but fix
176 * it up, so we don't stall here.
177 */
178 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
179 log_err("fio: non-busy IO on busy list\n");
180 put_io_u(td, io_u);
181 } else {
182 r = td->io_ops->cancel(td, io_u);
183 if (!r)
184 put_io_u(td, io_u);
185 }
186 }
187 }
188
189 if (td->cur_depth)
190 r = io_u_queued_complete(td, td->cur_depth);
191}
192
193/*
194 * Helper to handle the final sync of a file. Works just like the normal
195 * io path, just does everything sync.
196 */
197static int fio_io_sync(struct thread_data *td, struct fio_file *f)
198{
199 struct io_u *io_u = __get_io_u(td);
200 int ret;
201
202 if (!io_u)
203 return 1;
204
205 io_u->ddir = DDIR_SYNC;
206 io_u->file = f;
207
208 if (td_io_prep(td, io_u)) {
209 put_io_u(td, io_u);
210 return 1;
211 }
212
213requeue:
214 ret = td_io_queue(td, io_u);
215 if (ret < 0) {
216 td_verror(td, io_u->error, "td_io_queue");
217 put_io_u(td, io_u);
218 return 1;
219 } else if (ret == FIO_Q_QUEUED) {
220 if (io_u_queued_complete(td, 1) < 0)
221 return 1;
222 } else if (ret == FIO_Q_COMPLETED) {
223 if (io_u->error) {
224 td_verror(td, io_u->error, "td_io_queue");
225 return 1;
226 }
227
228 if (io_u_sync_complete(td, io_u) < 0)
229 return 1;
230 } else if (ret == FIO_Q_BUSY) {
231 if (td_io_commit(td))
232 return 1;
233 goto requeue;
234 }
235
236 return 0;
237}
238
239/*
240 * The main verify engine. Runs over the writes we previusly submitted,
241 * reads the blocks back in, and checks the crc/md5 of the data.
242 */
243static void do_verify(struct thread_data *td)
244{
245 struct fio_file *f;
246 struct io_u *io_u;
247 int ret, i, min_events;
248
249 /*
250 * sync io first and invalidate cache, to make sure we really
251 * read from disk.
252 */
253 for_each_file(td, f, i) {
254 if (fio_io_sync(td, f))
255 break;
256 if (file_invalidate_cache(td, f))
257 break;
258 }
259
260 if (td->error)
261 return;
262
263 td_set_runstate(td, TD_VERIFYING);
264
265 io_u = NULL;
266 while (!td->terminate) {
267 io_u = __get_io_u(td);
268 if (!io_u)
269 break;
270
271 if (runtime_exceeded(td, &io_u->start_time)) {
272 put_io_u(td, io_u);
273 break;
274 }
275
276 if (get_next_verify(td, io_u)) {
277 put_io_u(td, io_u);
278 break;
279 }
280
281 if (td_io_prep(td, io_u)) {
282 put_io_u(td, io_u);
283 break;
284 }
285
286 io_u->end_io = verify_io_u;
287requeue:
288 ret = td_io_queue(td, io_u);
289
290 switch (ret) {
291 case FIO_Q_COMPLETED:
292 if (io_u->error)
293 ret = -io_u->error;
294 if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
295 int bytes = io_u->xfer_buflen - io_u->resid;
296
297 io_u->xfer_buflen = io_u->resid;
298 io_u->xfer_buf += bytes;
299 goto requeue;
300 }
301 ret = io_u_sync_complete(td, io_u);
302 if (ret < 0)
303 break;
304 continue;
305 case FIO_Q_QUEUED:
306 break;
307 case FIO_Q_BUSY:
308 requeue_io_u(td, &io_u);
309 ret = td_io_commit(td);
310 break;
311 default:
312 assert(ret < 0);
313 td_verror(td, -ret, "td_io_queue");
314 break;
315 }
316
317 if (ret < 0 || td->error)
318 break;
319
320 /*
321 * if we can queue more, do so. but check if there are
322 * completed io_u's first.
323 */
324 min_events = 0;
325 if (queue_full(td) || ret == FIO_Q_BUSY) {
326 min_events = 1;
327
328 if (td->cur_depth > td->iodepth_low)
329 min_events = td->cur_depth - td->iodepth_low;
330 }
331
332 /*
333 * Reap required number of io units, if any, and do the
334 * verification on them through the callback handler
335 */
336 if (io_u_queued_complete(td, min_events) < 0)
337 break;
338 }
339
340 if (td->cur_depth)
341 cleanup_pending_aio(td);
342
343 td_set_runstate(td, TD_RUNNING);
344}
345
346/*
347 * Not really an io thread, all it does is burn CPU cycles in the specified
348 * manner.
349 */
350static void do_cpuio(struct thread_data *td)
351{
352 struct timeval e;
353 int split = 100 / td->cpuload;
354 int i = 0;
355
356 while (!td->terminate) {
357 fio_gettime(&e, NULL);
358
359 if (runtime_exceeded(td, &e))
360 break;
361
362 if (!(i % split))
363 __usec_sleep(10000);
364 else
365 usec_sleep(td, 10000);
366
367 i++;
368 }
369}
370
371/*
372 * Main IO worker function. It retrieves io_u's to process and queues
373 * and reaps them, checking for rate and errors along the way.
374 */
375static void do_io(struct thread_data *td)
376{
377 struct timeval s;
378 unsigned long usec;
379 int i, ret = 0;
380
381 td_set_runstate(td, TD_RUNNING);
382
383 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->io_size) {
384 struct timeval comp_time;
385 long bytes_done = 0;
386 int min_evts = 0;
387 struct io_u *io_u;
388
389 if (td->terminate)
390 break;
391
392 io_u = get_io_u(td);
393 if (!io_u)
394 break;
395
396 memcpy(&s, &io_u->start_time, sizeof(s));
397
398 if (runtime_exceeded(td, &s)) {
399 put_io_u(td, io_u);
400 break;
401 }
402requeue:
403 ret = td_io_queue(td, io_u);
404
405 switch (ret) {
406 case FIO_Q_COMPLETED:
407 if (io_u->error) {
408 ret = io_u->error;
409 break;
410 }
411 if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
412 int bytes = io_u->xfer_buflen - io_u->resid;
413
414 io_u->xfer_buflen = io_u->resid;
415 io_u->xfer_buf += bytes;
416 goto requeue;
417 }
418 fio_gettime(&comp_time, NULL);
419 bytes_done = io_u_sync_complete(td, io_u);
420 if (bytes_done < 0)
421 ret = bytes_done;
422 break;
423 case FIO_Q_QUEUED:
424 /*
425 * if the engine doesn't have a commit hook,
426 * the io_u is really queued. if it does have such
427 * a hook, it has to call io_u_queued() itself.
428 */
429 if (td->io_ops->commit == NULL)
430 io_u_queued(td, io_u);
431 break;
432 case FIO_Q_BUSY:
433 requeue_io_u(td, &io_u);
434 ret = td_io_commit(td);
435 break;
436 default:
437 assert(ret < 0);
438 put_io_u(td, io_u);
439 break;
440 }
441
442 if (ret < 0 || td->error)
443 break;
444
445 /*
446 * See if we need to complete some commands
447 */
448 if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) {
449 min_evts = 0;
450 if (queue_full(td) || ret == FIO_Q_BUSY) {
451 min_evts = 1;
452
453 if (td->cur_depth > td->iodepth_low)
454 min_evts = td->cur_depth - td->iodepth_low;
455 }
456
457 fio_gettime(&comp_time, NULL);
458 bytes_done = io_u_queued_complete(td, min_evts);
459 if (bytes_done < 0)
460 break;
461 }
462
463 if (!bytes_done)
464 continue;
465
466 /*
467 * the rate is batched for now, it should work for batches
468 * of completions except the very first one which may look
469 * a little bursty
470 */
471 usec = utime_since(&s, &comp_time);
472
473 rate_throttle(td, usec, bytes_done);
474
475 if (check_min_rate(td, &comp_time)) {
476 if (exitall_on_terminate)
477 terminate_threads(td->groupid, 0);
478 td_verror(td, ENODATA, "check_min_rate");
479 break;
480 }
481
482 if (td->thinktime) {
483 unsigned long long b;
484
485 b = td->io_blocks[0] + td->io_blocks[1];
486 if (!(b % td->thinktime_blocks)) {
487 int left;
488
489 if (td->thinktime_spin)
490 __usec_sleep(td->thinktime_spin);
491
492 left = td->thinktime - td->thinktime_spin;
493 if (left)
494 usec_sleep(td, left);
495 }
496 }
497 }
498
499 if (!td->error) {
500 struct fio_file *f;
501
502 if (td->cur_depth)
503 cleanup_pending_aio(td);
504
505 if (should_fsync(td) && td->end_fsync) {
506 td_set_runstate(td, TD_FSYNCING);
507 for_each_file(td, f, i)
508 fio_io_sync(td, f);
509 }
510 }
511}
512
513static void cleanup_io_u(struct thread_data *td)
514{
515 struct list_head *entry, *n;
516 struct io_u *io_u;
517
518 list_for_each_safe(entry, n, &td->io_u_freelist) {
519 io_u = list_entry(entry, struct io_u, list);
520
521 list_del(&io_u->list);
522 free(io_u);
523 }
524
525 free_io_mem(td);
526}
527
528/*
529 * "randomly" fill the buffer contents
530 */
531static void fill_rand_buf(struct io_u *io_u, int max_bs)
532{
533 int *ptr = io_u->buf;
534
535 while ((void *) ptr - io_u->buf < max_bs) {
536 *ptr = rand() * 0x9e370001;
537 ptr++;
538 }
539}
540
541static int init_io_u(struct thread_data *td)
542{
543 struct io_u *io_u;
544 unsigned int max_bs;
545 int i, max_units;
546 char *p;
547
548 if (td->io_ops->flags & FIO_CPUIO)
549 return 0;
550
551 if (td->io_ops->flags & FIO_SYNCIO)
552 max_units = 1;
553 else
554 max_units = td->iodepth;
555
556 max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
557 td->orig_buffer_size = max_bs * max_units;
558
559 if (td->mem_type == MEM_SHMHUGE || td->mem_type == MEM_MMAPHUGE)
560 td->orig_buffer_size = (td->orig_buffer_size + td->hugepage_size - 1) & ~(td->hugepage_size - 1);
561 else
562 td->orig_buffer_size += page_mask;
563
564 if (allocate_io_mem(td))
565 return 1;
566
567 p = ALIGN(td->orig_buffer);
568 for (i = 0; i < max_units; i++) {
569 io_u = malloc(sizeof(*io_u));
570 memset(io_u, 0, sizeof(*io_u));
571 INIT_LIST_HEAD(&io_u->list);
572
573 io_u->buf = p + max_bs * i;
574 if (td_write(td) || td_rw(td))
575 fill_rand_buf(io_u, max_bs);
576
577 io_u->index = i;
578 io_u->flags = IO_U_F_FREE;
579 list_add(&io_u->list, &td->io_u_freelist);
580 }
581
582 io_u_init_timeout();
583
584 return 0;
585}
586
587static int switch_ioscheduler(struct thread_data *td)
588{
589 char tmp[256], tmp2[128];
590 FILE *f;
591 int ret;
592
593 if (td->io_ops->flags & FIO_CPUIO)
594 return 0;
595
596 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
597
598 f = fopen(tmp, "r+");
599 if (!f) {
600 td_verror(td, errno, "fopen");
601 return 1;
602 }
603
604 /*
605 * Set io scheduler.
606 */
607 ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
608 if (ferror(f) || ret != 1) {
609 td_verror(td, errno, "fwrite");
610 fclose(f);
611 return 1;
612 }
613
614 rewind(f);
615
616 /*
617 * Read back and check that the selected scheduler is now the default.
618 */
619 ret = fread(tmp, 1, sizeof(tmp), f);
620 if (ferror(f) || ret < 0) {
621 td_verror(td, errno, "fread");
622 fclose(f);
623 return 1;
624 }
625
626 sprintf(tmp2, "[%s]", td->ioscheduler);
627 if (!strstr(tmp, tmp2)) {
628 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
629 td_verror(td, EINVAL, "iosched_switch");
630 fclose(f);
631 return 1;
632 }
633
634 fclose(f);
635 return 0;
636}
637
638static void clear_io_state(struct thread_data *td)
639{
640 struct fio_file *f;
641 int i;
642
643 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
644 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
645 td->zone_bytes = 0;
646
647 td->last_was_sync = 0;
648
649 for_each_file(td, f, i) {
650 f->last_completed_pos = 0;
651
652 f->last_pos = 0;
653 if (td->io_ops->flags & FIO_SYNCIO)
654 lseek(f->fd, SEEK_SET, 0);
655
656 if (f->file_map)
657 memset(f->file_map, 0, f->num_maps * sizeof(long));
658 }
659}
660
661/*
662 * Entry point for the thread based jobs. The process based jobs end up
663 * here as well, after a little setup.
664 */
665static void *thread_main(void *data)
666{
667 unsigned long long runtime[2];
668 struct thread_data *td = data;
669
670 if (!td->use_thread)
671 setsid();
672
673 td->pid = getpid();
674
675 INIT_LIST_HEAD(&td->io_u_freelist);
676 INIT_LIST_HEAD(&td->io_u_busylist);
677 INIT_LIST_HEAD(&td->io_u_requeues);
678 INIT_LIST_HEAD(&td->io_hist_list);
679 INIT_LIST_HEAD(&td->io_log_list);
680
681 if (init_io_u(td))
682 goto err;
683
684 if (fio_setaffinity(td) == -1) {
685 td_verror(td, errno, "cpu_set_affinity");
686 goto err;
687 }
688
689 if (init_iolog(td))
690 goto err;
691
692 if (td->ioprio) {
693 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
694 td_verror(td, errno, "ioprio_set");
695 goto err;
696 }
697 }
698
699 if (nice(td->nice) == -1) {
700 td_verror(td, errno, "nice");
701 goto err;
702 }
703
704 if (init_random_state(td))
705 goto err;
706
707 if (td->ioscheduler && switch_ioscheduler(td))
708 goto err;
709
710 td_set_runstate(td, TD_INITIALIZED);
711 fio_sem_up(&startup_sem);
712 fio_sem_down(&td->mutex);
713
714 if (!td->create_serialize && setup_files(td))
715 goto err;
716 if (open_files(td))
717 goto err;
718
719 /*
720 * Do this late, as some IO engines would like to have the
721 * files setup prior to initializing structures.
722 */
723 if (td_io_init(td))
724 goto err;
725
726 if (td->exec_prerun) {
727 if (system(td->exec_prerun) < 0)
728 goto err;
729 }
730
731 fio_gettime(&td->epoch, NULL);
732 memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch));
733 getrusage(RUSAGE_SELF, &td->ts.ru_start);
734
735 runtime[0] = runtime[1] = 0;
736 while (td->loops--) {
737 fio_gettime(&td->start, NULL);
738 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
739
740 if (td->ratemin)
741 memcpy(&td->lastrate, &td->ts.stat_sample_time, sizeof(td->lastrate));
742
743 clear_io_state(td);
744 prune_io_piece_log(td);
745
746 if (td->io_ops->flags & FIO_CPUIO)
747 do_cpuio(td);
748 else
749 do_io(td);
750
751 if (td_read(td) && td->io_bytes[DDIR_READ])
752 runtime[DDIR_READ] += utime_since_now(&td->start);
753 if (td_write(td) && td->io_bytes[DDIR_WRITE])
754 runtime[DDIR_WRITE] += utime_since_now(&td->start);
755
756 if (td->error || td->terminate)
757 break;
758
759 if (td->verify == VERIFY_NONE)
760 continue;
761
762 clear_io_state(td);
763 fio_gettime(&td->start, NULL);
764
765 do_verify(td);
766
767 runtime[DDIR_READ] += utime_since_now(&td->start);
768
769 if (td->error || td->terminate)
770 break;
771 }
772
773 update_rusage_stat(td);
774 fio_gettime(&td->end_time, NULL);
775 td->runtime[0] = runtime[0] / 1000;
776 td->runtime[1] = runtime[1] / 1000;
777
778 if (td->ts.bw_log)
779 finish_log(td, td->ts.bw_log, "bw");
780 if (td->ts.slat_log)
781 finish_log(td, td->ts.slat_log, "slat");
782 if (td->ts.clat_log)
783 finish_log(td, td->ts.clat_log, "clat");
784 if (td->write_iolog_file)
785 write_iolog_close(td);
786 if (td->exec_postrun) {
787 if (system(td->exec_postrun) < 0)
788 log_err("fio: postrun %s failed\n", td->exec_postrun);
789 }
790
791 if (exitall_on_terminate)
792 terminate_threads(td->groupid, 0);
793
794err:
795 if (td->error)
796 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
797 close_files(td);
798 close_ioengine(td);
799 cleanup_io_u(td);
800 td_set_runstate(td, TD_EXITED);
801 return (void *) (unsigned long) td->error;
802}
803
804/*
805 * We cannot pass the td data into a forked process, so attach the td and
806 * pass it to the thread worker.
807 */
808static int fork_main(int shmid, int offset)
809{
810 struct thread_data *td;
811 void *data, *ret;
812
813 data = shmat(shmid, NULL, 0);
814 if (data == (void *) -1) {
815 int __err = errno;
816
817 perror("shmat");
818 return __err;
819 }
820
821 td = data + offset * sizeof(struct thread_data);
822 ret = thread_main(td);
823 shmdt(data);
824 return (int) (unsigned long) ret;
825}
826
827/*
828 * Run over the job map and reap the threads that have exited, if any.
829 */
830static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
831{
832 struct thread_data *td;
833 int i, cputhreads, pending, status, ret;
834
835 /*
836 * reap exited threads (TD_EXITED -> TD_REAPED)
837 */
838 pending = cputhreads = 0;
839 for_each_td(td, i) {
840 int flags = 0;
841
842 /*
843 * ->io_ops is NULL for a thread that has closed its
844 * io engine
845 */
846 if (td->io_ops && td->io_ops->flags & FIO_CPUIO)
847 cputhreads++;
848
849 if (!td->pid || td->runstate == TD_REAPED)
850 continue;
851 if (td->use_thread) {
852 if (td->runstate == TD_EXITED) {
853 td_set_runstate(td, TD_REAPED);
854 goto reaped;
855 }
856 continue;
857 }
858
859 flags = WNOHANG;
860 if (td->runstate == TD_EXITED)
861 flags = 0;
862
863 /*
864 * check if someone quit or got killed in an unusual way
865 */
866 ret = waitpid(td->pid, &status, flags);
867 if (ret < 0) {
868 if (errno == ECHILD) {
869 log_err("fio: pid=%d disappeared %d\n", td->pid, td->runstate);
870 td_set_runstate(td, TD_REAPED);
871 goto reaped;
872 }
873 perror("waitpid");
874 } else if (ret == td->pid) {
875 if (WIFSIGNALED(status)) {
876 int sig = WTERMSIG(status);
877
878 log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
879 td_set_runstate(td, TD_REAPED);
880 goto reaped;
881 }
882 if (WIFEXITED(status)) {
883 if (WEXITSTATUS(status) && !td->error)
884 td->error = WEXITSTATUS(status);
885
886 td_set_runstate(td, TD_REAPED);
887 goto reaped;
888 }
889 }
890
891 /*
892 * thread is not dead, continue
893 */
894 continue;
895reaped:
896 if (td->use_thread) {
897 long ret;
898
899 if (pthread_join(td->thread, (void *) &ret))
900 perror("pthread_join");
901 }
902
903 (*nr_running)--;
904 (*m_rate) -= td->ratemin;
905 (*t_rate) -= td->rate;
906
907 if (td->error)
908 exit_value++;
909 }
910
911 if (*nr_running == cputhreads && !pending)
912 terminate_threads(TERMINATE_ALL, 0);
913}
914
915/*
916 * Main function for kicking off and reaping jobs, as needed.
917 */
918static void run_threads(void)
919{
920 struct thread_data *td;
921 unsigned long spent;
922 int i, todo, nr_running, m_rate, t_rate, nr_started;
923
924 if (fio_pin_memory())
925 return;
926
927 if (!terse_output) {
928 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
929 fflush(stdout);
930 }
931
932 signal(SIGINT, sig_handler);
933 signal(SIGALRM, sig_handler);
934
935 todo = thread_number;
936 nr_running = 0;
937 nr_started = 0;
938 m_rate = t_rate = 0;
939
940 for_each_td(td, i) {
941 print_status_init(td->thread_number - 1);
942
943 if (!td->create_serialize) {
944 init_disk_util(td);
945 continue;
946 }
947
948 /*
949 * do file setup here so it happens sequentially,
950 * we don't want X number of threads getting their
951 * client data interspersed on disk
952 */
953 if (setup_files(td)) {
954 exit_value++;
955 if (td->error)
956 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
957 td_set_runstate(td, TD_REAPED);
958 todo--;
959 }
960
961 init_disk_util(td);
962 }
963
964 set_genesis_time();
965
966 while (todo) {
967 struct thread_data *map[MAX_JOBS];
968 struct timeval this_start;
969 int this_jobs = 0, left;
970
971 /*
972 * create threads (TD_NOT_CREATED -> TD_CREATED)
973 */
974 for_each_td(td, i) {
975 if (td->runstate != TD_NOT_CREATED)
976 continue;
977
978 /*
979 * never got a chance to start, killed by other
980 * thread for some reason
981 */
982 if (td->terminate) {
983 todo--;
984 continue;
985 }
986
987 if (td->start_delay) {
988 spent = mtime_since_genesis();
989
990 if (td->start_delay * 1000 > spent)
991 continue;
992 }
993
994 if (td->stonewall && (nr_started || nr_running))
995 break;
996
997 /*
998 * Set state to created. Thread will transition
999 * to TD_INITIALIZED when it's done setting up.
1000 */
1001 td_set_runstate(td, TD_CREATED);
1002 map[this_jobs++] = td;
1003 fio_sem_init(&startup_sem, 1);
1004 nr_started++;
1005
1006 if (td->use_thread) {
1007 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1008 perror("thread_create");
1009 nr_started--;
1010 }
1011 } else {
1012 if (fork())
1013 fio_sem_down(&startup_sem);
1014 else {
1015 int ret = fork_main(shm_id, i);
1016
1017 exit(ret);
1018 }
1019 }
1020 }
1021
1022 /*
1023 * Wait for the started threads to transition to
1024 * TD_INITIALIZED.
1025 */
1026 fio_gettime(&this_start, NULL);
1027 left = this_jobs;
1028 while (left && !fio_abort) {
1029 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1030 break;
1031
1032 usleep(100000);
1033
1034 for (i = 0; i < this_jobs; i++) {
1035 td = map[i];
1036 if (!td)
1037 continue;
1038 if (td->runstate == TD_INITIALIZED) {
1039 map[i] = NULL;
1040 left--;
1041 } else if (td->runstate >= TD_EXITED) {
1042 map[i] = NULL;
1043 left--;
1044 todo--;
1045 nr_running++; /* work-around... */
1046 }
1047 }
1048 }
1049
1050 if (left) {
1051 log_err("fio: %d jobs failed to start\n", left);
1052 for (i = 0; i < this_jobs; i++) {
1053 td = map[i];
1054 if (!td)
1055 continue;
1056 kill(td->pid, SIGTERM);
1057 }
1058 break;
1059 }
1060
1061 /*
1062 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1063 */
1064 for_each_td(td, i) {
1065 if (td->runstate != TD_INITIALIZED)
1066 continue;
1067
1068 td_set_runstate(td, TD_RUNNING);
1069 nr_running++;
1070 nr_started--;
1071 m_rate += td->ratemin;
1072 t_rate += td->rate;
1073 todo--;
1074 fio_sem_up(&td->mutex);
1075 }
1076
1077 reap_threads(&nr_running, &t_rate, &m_rate);
1078
1079 if (todo)
1080 usleep(100000);
1081 }
1082
1083 while (nr_running) {
1084 reap_threads(&nr_running, &t_rate, &m_rate);
1085 usleep(10000);
1086 }
1087
1088 update_io_ticks();
1089 fio_unpin_memory();
1090}
1091
1092int main(int argc, char *argv[])
1093{
1094 long ps;
1095
1096 /*
1097 * We need locale for number printing, if it isn't set then just
1098 * go with the US format.
1099 */
1100 if (!getenv("LC_NUMERIC"))
1101 setlocale(LC_NUMERIC, "en_US");
1102
1103 if (parse_options(argc, argv))
1104 return 1;
1105
1106 if (!thread_number) {
1107 log_err("Nothing to do\n");
1108 return 1;
1109 }
1110
1111 ps = sysconf(_SC_PAGESIZE);
1112 if (ps < 0) {
1113 log_err("Failed to get page size\n");
1114 return 1;
1115 }
1116
1117 page_mask = ps - 1;
1118
1119 if (write_bw_log) {
1120 setup_log(&agg_io_log[DDIR_READ]);
1121 setup_log(&agg_io_log[DDIR_WRITE]);
1122 }
1123
1124 set_genesis_time();
1125
1126 disk_util_timer_arm();
1127
1128 run_threads();
1129
1130 if (!fio_abort) {
1131 show_run_stats();
1132 if (write_bw_log) {
1133 __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1134 __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1135 }
1136 }
1137
1138 return exit_value;
1139}