Confusion between mutex and semaphore naming
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "hash.h"
39
40unsigned long page_mask;
41unsigned long page_size;
42#define ALIGN(buf) \
43 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
44
45int groupid = 0;
46int thread_number = 0;
47int nr_process = 0;
48int nr_thread = 0;
49int shm_id = 0;
50int temp_stall_ts;
51
52static struct fio_mutex *startup_mutex;
53static volatile int fio_abort;
54static int exit_value;
55
56struct io_log *agg_io_log[2];
57
58#define TERMINATE_ALL (-1)
59#define JOB_START_TIMEOUT (5 * 1000)
60
61static inline void td_set_runstate(struct thread_data *td, int runstate)
62{
63 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", td->pid, td->runstate,
64 runstate);
65 td->runstate = runstate;
66}
67
68static void terminate_threads(int group_id)
69{
70 struct thread_data *td;
71 int i;
72
73 for_each_td(td, i) {
74 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
75 dprint(FD_PROCESS, "setting terminate on %d\n",td->pid);
76
77 td->terminate = 1;
78 td->o.start_delay = 0;
79
80 /*
81 * if the thread is running, just let it exit
82 */
83 if (td->runstate < TD_RUNNING)
84 kill(td->pid, SIGQUIT);
85 else if (td->io_ops->flags & FIO_SIGQUIT)
86 kill(td->pid, SIGQUIT);
87 }
88 }
89}
90
91static void sig_handler(int sig)
92{
93 switch (sig) {
94 case SIGALRM:
95 update_io_ticks();
96 disk_util_timer_arm();
97 print_thread_status();
98 break;
99 default:
100 printf("\nfio: terminating on signal %d\n", sig);
101 fflush(stdout);
102 terminate_threads(TERMINATE_ALL);
103 break;
104 }
105}
106
107/*
108 * Check if we are above the minimum rate given.
109 */
110static int check_min_rate(struct thread_data *td, struct timeval *now)
111{
112 unsigned long long bytes = 0;
113 unsigned long iops = 0;
114 unsigned long spent;
115 unsigned long rate;
116
117 /*
118 * No minimum rate set, always ok
119 */
120 if (!td->o.ratemin && !td->o.rate_iops_min)
121 return 0;
122
123 /*
124 * allow a 2 second settle period in the beginning
125 */
126 if (mtime_since(&td->start, now) < 2000)
127 return 0;
128
129 if (td_read(td)) {
130 iops += td->io_blocks[DDIR_READ];
131 bytes += td->this_io_bytes[DDIR_READ];
132 }
133 if (td_write(td)) {
134 iops += td->io_blocks[DDIR_WRITE];
135 bytes += td->this_io_bytes[DDIR_WRITE];
136 }
137
138 /*
139 * if rate blocks is set, sample is running
140 */
141 if (td->rate_bytes || td->rate_blocks) {
142 spent = mtime_since(&td->lastrate, now);
143 if (spent < td->o.ratecycle)
144 return 0;
145
146 if (td->o.rate) {
147 /*
148 * check bandwidth specified rate
149 */
150 if (bytes < td->rate_bytes) {
151 log_err("%s: min rate %u not met\n", td->o.name, td->o.ratemin);
152 return 1;
153 } else {
154 rate = (bytes - td->rate_bytes) / spent;
155 if (rate < td->o.ratemin || bytes < td->rate_bytes) {
156 log_err("%s: min rate %u not met, got %luKiB/sec\n", td->o.name, td->o.ratemin, rate);
157 return 1;
158 }
159 }
160 } else {
161 /*
162 * checks iops specified rate
163 */
164 if (iops < td->o.rate_iops) {
165 log_err("%s: min iops rate %u not met\n", td->o.name, td->o.rate_iops);
166 return 1;
167 } else {
168 rate = (iops - td->rate_blocks) / spent;
169 if (rate < td->o.rate_iops_min || iops < td->rate_blocks) {
170 log_err("%s: min iops rate %u not met, got %lu\n", td->o.name, td->o.rate_iops_min, rate);
171 }
172 }
173 }
174 }
175
176 td->rate_bytes = bytes;
177 td->rate_blocks = iops;
178 memcpy(&td->lastrate, now, sizeof(*now));
179 return 0;
180}
181
182static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
183{
184 if (!td->o.timeout)
185 return 0;
186 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
187 return 1;
188
189 return 0;
190}
191
192/*
193 * When job exits, we can cancel the in-flight IO if we are using async
194 * io. Attempt to do so.
195 */
196static void cleanup_pending_aio(struct thread_data *td)
197{
198 struct list_head *entry, *n;
199 struct io_u *io_u;
200 int r;
201
202 /*
203 * get immediately available events, if any
204 */
205 r = io_u_queued_complete(td, 0);
206 if (r < 0)
207 return;
208
209 /*
210 * now cancel remaining active events
211 */
212 if (td->io_ops->cancel) {
213 list_for_each_safe(entry, n, &td->io_u_busylist) {
214 io_u = list_entry(entry, struct io_u, list);
215
216 /*
217 * if the io_u isn't in flight, then that generally
218 * means someone leaked an io_u. complain but fix
219 * it up, so we don't stall here.
220 */
221 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
222 log_err("fio: non-busy IO on busy list\n");
223 put_io_u(td, io_u);
224 } else {
225 r = td->io_ops->cancel(td, io_u);
226 if (!r)
227 put_io_u(td, io_u);
228 }
229 }
230 }
231
232 if (td->cur_depth)
233 r = io_u_queued_complete(td, td->cur_depth);
234}
235
236/*
237 * Helper to handle the final sync of a file. Works just like the normal
238 * io path, just does everything sync.
239 */
240static int fio_io_sync(struct thread_data *td, struct fio_file *f)
241{
242 struct io_u *io_u = __get_io_u(td);
243 int ret;
244
245 if (!io_u)
246 return 1;
247
248 io_u->ddir = DDIR_SYNC;
249 io_u->file = f;
250
251 if (td_io_prep(td, io_u)) {
252 put_io_u(td, io_u);
253 return 1;
254 }
255
256requeue:
257 ret = td_io_queue(td, io_u);
258 if (ret < 0) {
259 td_verror(td, io_u->error, "td_io_queue");
260 put_io_u(td, io_u);
261 return 1;
262 } else if (ret == FIO_Q_QUEUED) {
263 if (io_u_queued_complete(td, 1) < 0)
264 return 1;
265 } else if (ret == FIO_Q_COMPLETED) {
266 if (io_u->error) {
267 td_verror(td, io_u->error, "td_io_queue");
268 return 1;
269 }
270
271 if (io_u_sync_complete(td, io_u) < 0)
272 return 1;
273 } else if (ret == FIO_Q_BUSY) {
274 if (td_io_commit(td))
275 return 1;
276 goto requeue;
277 }
278
279 return 0;
280}
281
282/*
283 * The main verify engine. Runs over the writes we previously submitted,
284 * reads the blocks back in, and checks the crc/md5 of the data.
285 */
286static void do_verify(struct thread_data *td)
287{
288 struct fio_file *f;
289 struct io_u *io_u;
290 int ret, min_events;
291 unsigned int i;
292
293 /*
294 * sync io first and invalidate cache, to make sure we really
295 * read from disk.
296 */
297 for_each_file(td, f, i) {
298 if (!(f->flags & FIO_FILE_OPEN))
299 continue;
300 if (fio_io_sync(td, f))
301 break;
302 if (file_invalidate_cache(td, f))
303 break;
304 }
305
306 if (td->error)
307 return;
308
309 td_set_runstate(td, TD_VERIFYING);
310
311 io_u = NULL;
312 while (!td->terminate) {
313 int ret2;
314
315 io_u = __get_io_u(td);
316 if (!io_u)
317 break;
318
319 if (runtime_exceeded(td, &io_u->start_time)) {
320 put_io_u(td, io_u);
321 td->terminate = 1;
322 break;
323 }
324
325 if (get_next_verify(td, io_u)) {
326 put_io_u(td, io_u);
327 break;
328 }
329
330 if (td_io_prep(td, io_u)) {
331 put_io_u(td, io_u);
332 break;
333 }
334
335 io_u->end_io = verify_io_u;
336
337 ret = td_io_queue(td, io_u);
338 switch (ret) {
339 case FIO_Q_COMPLETED:
340 if (io_u->error)
341 ret = -io_u->error;
342 else if (io_u->resid) {
343 int bytes = io_u->xfer_buflen - io_u->resid;
344 struct fio_file *f = io_u->file;
345
346 /*
347 * zero read, fail
348 */
349 if (!bytes) {
350 td_verror(td, ENODATA, "full resid");
351 put_io_u(td, io_u);
352 break;
353 }
354
355 io_u->xfer_buflen = io_u->resid;
356 io_u->xfer_buf += bytes;
357 io_u->offset += bytes;
358 f->last_completed_pos = io_u->offset;
359
360 td->ts.short_io_u[io_u->ddir]++;
361
362 if (io_u->offset == f->real_file_size)
363 goto sync_done;
364
365 requeue_io_u(td, &io_u);
366 } else {
367sync_done:
368 ret = io_u_sync_complete(td, io_u);
369 if (ret < 0)
370 break;
371 }
372 continue;
373 case FIO_Q_QUEUED:
374 break;
375 case FIO_Q_BUSY:
376 requeue_io_u(td, &io_u);
377 ret2 = td_io_commit(td);
378 if (ret2 < 0)
379 ret = ret2;
380 break;
381 default:
382 assert(ret < 0);
383 td_verror(td, -ret, "td_io_queue");
384 break;
385 }
386
387 if (ret < 0 || td->error)
388 break;
389
390 /*
391 * if we can queue more, do so. but check if there are
392 * completed io_u's first.
393 */
394 min_events = 0;
395 if (queue_full(td) || ret == FIO_Q_BUSY) {
396 min_events = 1;
397
398 if (td->cur_depth > td->o.iodepth_low)
399 min_events = td->cur_depth - td->o.iodepth_low;
400 }
401
402 /*
403 * Reap required number of io units, if any, and do the
404 * verification on them through the callback handler
405 */
406 if (io_u_queued_complete(td, min_events) < 0)
407 break;
408 }
409
410 if (!td->error) {
411 min_events = td->cur_depth;
412
413 if (min_events)
414 ret = io_u_queued_complete(td, min_events);
415 } else
416 cleanup_pending_aio(td);
417
418 td_set_runstate(td, TD_RUNNING);
419}
420
421/*
422 * Main IO worker function. It retrieves io_u's to process and queues
423 * and reaps them, checking for rate and errors along the way.
424 */
425static void do_io(struct thread_data *td)
426{
427 struct timeval s;
428 unsigned long usec;
429 unsigned int i;
430 int ret = 0;
431
432 td_set_runstate(td, TD_RUNNING);
433
434 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) {
435 struct timeval comp_time;
436 long bytes_done = 0;
437 int min_evts = 0;
438 struct io_u *io_u;
439 int ret2;
440
441 if (td->terminate)
442 break;
443
444 io_u = get_io_u(td);
445 if (!io_u)
446 break;
447
448 memcpy(&s, &io_u->start_time, sizeof(s));
449
450 if (runtime_exceeded(td, &s)) {
451 put_io_u(td, io_u);
452 td->terminate = 1;
453 break;
454 }
455
456 /*
457 * Add verification end_io handler, if asked to verify
458 * a previously written file.
459 */
460 if (td->o.verify != VERIFY_NONE)
461 io_u->end_io = verify_io_u;
462
463 ret = td_io_queue(td, io_u);
464 switch (ret) {
465 case FIO_Q_COMPLETED:
466 if (io_u->error)
467 ret = -io_u->error;
468 else if (io_u->resid) {
469 int bytes = io_u->xfer_buflen - io_u->resid;
470 struct fio_file *f = io_u->file;
471
472 /*
473 * zero read, fail
474 */
475 if (!bytes) {
476 td_verror(td, ENODATA, "full resid");
477 put_io_u(td, io_u);
478 break;
479 }
480
481 io_u->xfer_buflen = io_u->resid;
482 io_u->xfer_buf += bytes;
483 io_u->offset += bytes;
484 f->last_completed_pos = io_u->offset;
485
486 td->ts.short_io_u[io_u->ddir]++;
487
488 if (io_u->offset == f->real_file_size)
489 goto sync_done;
490
491 requeue_io_u(td, &io_u);
492 } else {
493sync_done:
494 fio_gettime(&comp_time, NULL);
495 bytes_done = io_u_sync_complete(td, io_u);
496 if (bytes_done < 0)
497 ret = bytes_done;
498 }
499 break;
500 case FIO_Q_QUEUED:
501 /*
502 * if the engine doesn't have a commit hook,
503 * the io_u is really queued. if it does have such
504 * a hook, it has to call io_u_queued() itself.
505 */
506 if (td->io_ops->commit == NULL)
507 io_u_queued(td, io_u);
508 break;
509 case FIO_Q_BUSY:
510 requeue_io_u(td, &io_u);
511 ret2 = td_io_commit(td);
512 if (ret2 < 0)
513 ret = ret2;
514 break;
515 default:
516 assert(ret < 0);
517 put_io_u(td, io_u);
518 break;
519 }
520
521 if (ret < 0 || td->error)
522 break;
523
524 /*
525 * See if we need to complete some commands
526 */
527 if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) {
528 min_evts = 0;
529 if (queue_full(td) || ret == FIO_Q_BUSY) {
530 min_evts = 1;
531
532 if (td->cur_depth > td->o.iodepth_low)
533 min_evts = td->cur_depth - td->o.iodepth_low;
534 }
535
536 fio_gettime(&comp_time, NULL);
537 bytes_done = io_u_queued_complete(td, min_evts);
538 if (bytes_done < 0)
539 break;
540 }
541
542 if (!bytes_done)
543 continue;
544
545 /*
546 * the rate is batched for now, it should work for batches
547 * of completions except the very first one which may look
548 * a little bursty
549 */
550 usec = utime_since(&s, &comp_time);
551
552 rate_throttle(td, usec, bytes_done);
553
554 if (check_min_rate(td, &comp_time)) {
555 if (exitall_on_terminate)
556 terminate_threads(td->groupid);
557 td_verror(td, ENODATA, "check_min_rate");
558 break;
559 }
560
561 if (td->o.thinktime) {
562 unsigned long long b;
563
564 b = td->io_blocks[0] + td->io_blocks[1];
565 if (!(b % td->o.thinktime_blocks)) {
566 int left;
567
568 if (td->o.thinktime_spin)
569 __usec_sleep(td->o.thinktime_spin);
570
571 left = td->o.thinktime - td->o.thinktime_spin;
572 if (left)
573 usec_sleep(td, left);
574 }
575 }
576 }
577
578 if (td->o.fill_device && td->error == ENOSPC) {
579 td->error = 0;
580 td->terminate = 1;
581 }
582 if (!td->error) {
583 struct fio_file *f;
584
585 i = td->cur_depth;
586 if (i)
587 ret = io_u_queued_complete(td, i);
588
589 if (should_fsync(td) && td->o.end_fsync) {
590 td_set_runstate(td, TD_FSYNCING);
591
592 for_each_file(td, f, i) {
593 if (!(f->flags & FIO_FILE_OPEN))
594 continue;
595 fio_io_sync(td, f);
596 }
597 }
598 } else
599 cleanup_pending_aio(td);
600
601 /*
602 * stop job if we failed doing any IO
603 */
604 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
605 td->done = 1;
606}
607
608static void cleanup_io_u(struct thread_data *td)
609{
610 struct list_head *entry, *n;
611 struct io_u *io_u;
612
613 list_for_each_safe(entry, n, &td->io_u_freelist) {
614 io_u = list_entry(entry, struct io_u, list);
615
616 list_del(&io_u->list);
617 free(io_u);
618 }
619
620 free_io_mem(td);
621}
622
623/*
624 * "randomly" fill the buffer contents
625 */
626static void fill_io_buf(struct thread_data *td, struct io_u *io_u, int max_bs)
627{
628 long *ptr = io_u->buf;
629
630 if (!td->o.zero_buffers) {
631 while ((void *) ptr - io_u->buf < max_bs) {
632 *ptr = rand() * GOLDEN_RATIO_PRIME;
633 ptr++;
634 }
635 } else
636 memset(ptr, 0, max_bs);
637}
638
639static int init_io_u(struct thread_data *td)
640{
641 struct io_u *io_u;
642 unsigned int max_bs;
643 int i, max_units;
644 char *p;
645
646 max_units = td->o.iodepth;
647 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
648 td->orig_buffer_size = (unsigned long long) max_bs * (unsigned long long) max_units;
649
650 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE)
651 td->orig_buffer_size = (td->orig_buffer_size + td->o.hugepage_size - 1) & ~(td->o.hugepage_size - 1);
652
653 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
654 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
655 return 1;
656 }
657
658 if (allocate_io_mem(td))
659 return 1;
660
661 if (td->o.odirect)
662 p = ALIGN(td->orig_buffer);
663 else
664 p = td->orig_buffer;
665
666 for (i = 0; i < max_units; i++) {
667 if (td->terminate)
668 return 1;
669 io_u = malloc(sizeof(*io_u));
670 memset(io_u, 0, sizeof(*io_u));
671 INIT_LIST_HEAD(&io_u->list);
672
673 if (!(td->io_ops->flags & FIO_NOIO)) {
674 io_u->buf = p + max_bs * i;
675
676 if (td_write(td))
677 fill_io_buf(td, io_u, max_bs);
678 }
679
680 io_u->index = i;
681 io_u->flags = IO_U_F_FREE;
682 list_add(&io_u->list, &td->io_u_freelist);
683 }
684
685 io_u_init_timeout();
686
687 return 0;
688}
689
690static int switch_ioscheduler(struct thread_data *td)
691{
692 char tmp[256], tmp2[128];
693 FILE *f;
694 int ret;
695
696 if (td->io_ops->flags & FIO_DISKLESSIO)
697 return 0;
698
699 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
700
701 f = fopen(tmp, "r+");
702 if (!f) {
703 if (errno == ENOENT) {
704 log_err("fio: os or kernel doesn't support IO scheduler switching\n");
705 return 0;
706 }
707 td_verror(td, errno, "fopen iosched");
708 return 1;
709 }
710
711 /*
712 * Set io scheduler.
713 */
714 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
715 if (ferror(f) || ret != 1) {
716 td_verror(td, errno, "fwrite");
717 fclose(f);
718 return 1;
719 }
720
721 rewind(f);
722
723 /*
724 * Read back and check that the selected scheduler is now the default.
725 */
726 ret = fread(tmp, 1, sizeof(tmp), f);
727 if (ferror(f) || ret < 0) {
728 td_verror(td, errno, "fread");
729 fclose(f);
730 return 1;
731 }
732
733 sprintf(tmp2, "[%s]", td->o.ioscheduler);
734 if (!strstr(tmp, tmp2)) {
735 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
736 td_verror(td, EINVAL, "iosched_switch");
737 fclose(f);
738 return 1;
739 }
740
741 fclose(f);
742 return 0;
743}
744
745static int keep_running(struct thread_data *td)
746{
747 unsigned long long io_done;
748
749 if (td->done)
750 return 0;
751 if (td->o.time_based)
752 return 1;
753 if (td->o.loops) {
754 td->o.loops--;
755 return 1;
756 }
757
758 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE] + td->io_skip_bytes;
759 if (io_done < td->o.size)
760 return 1;
761
762 return 0;
763}
764
765static int clear_io_state(struct thread_data *td)
766{
767 struct fio_file *f;
768 unsigned int i;
769 int ret;
770
771 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
772 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
773 td->zone_bytes = 0;
774 td->rate_bytes = 0;
775 td->rate_blocks = 0;
776 td->rw_end_set[0] = td->rw_end_set[1] = 0;
777
778 td->last_was_sync = 0;
779
780 /*
781 * reset file done count if we are to start over
782 */
783 if (td->o.time_based || td->o.loops)
784 td->nr_done_files = 0;
785
786 for_each_file(td, f, i)
787 td_io_close_file(td, f);
788
789 ret = 0;
790 for_each_file(td, f, i) {
791 f->flags &= ~FIO_FILE_DONE;
792 ret = td_io_open_file(td, f);
793 if (ret)
794 break;
795 }
796
797 return ret;
798}
799
800/*
801 * Entry point for the thread based jobs. The process based jobs end up
802 * here as well, after a little setup.
803 */
804static void *thread_main(void *data)
805{
806 unsigned long long runtime[2], elapsed;
807 struct thread_data *td = data;
808 int clear_state;
809
810 if (!td->o.use_thread)
811 setsid();
812
813 td->pid = getpid();
814
815 dprint(FD_PROCESS, "jobs pid=%d started\n", td->pid);
816
817 INIT_LIST_HEAD(&td->io_u_freelist);
818 INIT_LIST_HEAD(&td->io_u_busylist);
819 INIT_LIST_HEAD(&td->io_u_requeues);
820 INIT_LIST_HEAD(&td->io_log_list);
821 INIT_LIST_HEAD(&td->io_hist_list);
822 td->io_hist_tree = RB_ROOT;
823
824 td_set_runstate(td, TD_INITIALIZED);
825 fio_mutex_up(startup_mutex);
826 fio_mutex_down(td->mutex);
827
828 /*
829 * the ->mutex mutex is now no longer used, close it to avoid
830 * eating a file descriptor
831 */
832 fio_mutex_remove(td->mutex);
833
834 /*
835 * May alter parameters that init_io_u() will use, so we need to
836 * do this first.
837 */
838 if (init_iolog(td))
839 goto err;
840
841 if (init_io_u(td))
842 goto err;
843
844 if (td->o.cpumask_set && fio_setaffinity(td) == -1) {
845 td_verror(td, errno, "cpu_set_affinity");
846 goto err;
847 }
848
849 if (td->ioprio_set) {
850 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
851 td_verror(td, errno, "ioprio_set");
852 goto err;
853 }
854 }
855
856 if (nice(td->o.nice) == -1) {
857 td_verror(td, errno, "nice");
858 goto err;
859 }
860
861 if (td->o.ioscheduler && switch_ioscheduler(td))
862 goto err;
863
864 if (!td->o.create_serialize && setup_files(td))
865 goto err;
866
867 if (td_io_init(td))
868 goto err;
869
870 if (open_files(td))
871 goto err;
872
873 if (init_random_map(td))
874 goto err;
875
876 if (td->o.exec_prerun) {
877 if (system(td->o.exec_prerun) < 0)
878 goto err;
879 }
880
881 fio_gettime(&td->epoch, NULL);
882 memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch));
883 getrusage(RUSAGE_SELF, &td->ts.ru_start);
884
885 runtime[0] = runtime[1] = 0;
886 clear_state = 0;
887 while (keep_running(td)) {
888 fio_gettime(&td->start, NULL);
889 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
890
891 if (td->o.ratemin)
892 memcpy(&td->lastrate, &td->ts.stat_sample_time, sizeof(td->lastrate));
893
894 if (clear_state && clear_io_state(td))
895 break;
896
897 prune_io_piece_log(td);
898
899 do_io(td);
900
901 clear_state = 1;
902
903 if (td_read(td) && td->io_bytes[DDIR_READ]) {
904 if (td->rw_end_set[DDIR_READ])
905 elapsed = utime_since(&td->start, &td->rw_end[DDIR_READ]);
906 else
907 elapsed = utime_since_now(&td->start);
908
909 runtime[DDIR_READ] += elapsed;
910 }
911 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
912 if (td->rw_end_set[DDIR_WRITE])
913 elapsed = utime_since(&td->start, &td->rw_end[DDIR_WRITE]);
914 else
915 elapsed = utime_since_now(&td->start);
916
917 runtime[DDIR_WRITE] += elapsed;
918 }
919
920 if (td->error || td->terminate)
921 break;
922
923 if (!td->o.do_verify ||
924 td->o.verify == VERIFY_NONE ||
925 (td->io_ops->flags & FIO_UNIDIR))
926 continue;
927
928 if (clear_io_state(td))
929 break;
930
931 fio_gettime(&td->start, NULL);
932
933 do_verify(td);
934
935 runtime[DDIR_READ] += utime_since_now(&td->start);
936
937 if (td->error || td->terminate)
938 break;
939 }
940
941 update_rusage_stat(td);
942 td->ts.runtime[0] = (runtime[0] + 999) / 1000;
943 td->ts.runtime[1] = (runtime[1] + 999) / 1000;
944 td->ts.total_run_time = mtime_since_now(&td->epoch);
945 td->ts.io_bytes[0] = td->io_bytes[0];
946 td->ts.io_bytes[1] = td->io_bytes[1];
947
948 if (td->ts.bw_log)
949 finish_log(td, td->ts.bw_log, "bw");
950 if (td->ts.slat_log)
951 finish_log(td, td->ts.slat_log, "slat");
952 if (td->ts.clat_log)
953 finish_log(td, td->ts.clat_log, "clat");
954 if (td->o.exec_postrun) {
955 if (system(td->o.exec_postrun) < 0)
956 log_err("fio: postrun %s failed\n", td->o.exec_postrun);
957 }
958
959 if (exitall_on_terminate)
960 terminate_threads(td->groupid);
961
962err:
963 if (td->error)
964 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
965 close_files(td);
966 close_ioengine(td);
967 cleanup_io_u(td);
968
969 /*
970 * do this very late, it will log file closing as well
971 */
972 if (td->o.write_iolog_file)
973 write_iolog_close(td);
974
975 options_mem_free(td);
976 td_set_runstate(td, TD_EXITED);
977 return (void *) (unsigned long) td->error;
978}
979
980/*
981 * We cannot pass the td data into a forked process, so attach the td and
982 * pass it to the thread worker.
983 */
984static int fork_main(int shmid, int offset)
985{
986 struct thread_data *td;
987 void *data, *ret;
988
989 data = shmat(shmid, NULL, 0);
990 if (data == (void *) -1) {
991 int __err = errno;
992
993 perror("shmat");
994 return __err;
995 }
996
997 td = data + offset * sizeof(struct thread_data);
998 ret = thread_main(td);
999 shmdt(data);
1000 return (int) (unsigned long) ret;
1001}
1002
1003/*
1004 * Run over the job map and reap the threads that have exited, if any.
1005 */
1006static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1007{
1008 struct thread_data *td;
1009 int i, cputhreads, realthreads, pending, status, ret;
1010
1011 /*
1012 * reap exited threads (TD_EXITED -> TD_REAPED)
1013 */
1014 realthreads = pending = cputhreads = 0;
1015 for_each_td(td, i) {
1016 int flags = 0;
1017
1018 /*
1019 * ->io_ops is NULL for a thread that has closed its
1020 * io engine
1021 */
1022 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1023 cputhreads++;
1024 else
1025 realthreads++;
1026
1027 if (!td->pid) {
1028 pending++;
1029 continue;
1030 }
1031 if (td->runstate == TD_REAPED)
1032 continue;
1033 if (td->o.use_thread) {
1034 if (td->runstate == TD_EXITED) {
1035 td_set_runstate(td, TD_REAPED);
1036 goto reaped;
1037 }
1038 continue;
1039 }
1040
1041 flags = WNOHANG;
1042 if (td->runstate == TD_EXITED)
1043 flags = 0;
1044
1045 /*
1046 * check if someone quit or got killed in an unusual way
1047 */
1048 ret = waitpid(td->pid, &status, flags);
1049 if (ret < 0) {
1050 if (errno == ECHILD) {
1051 log_err("fio: pid=%d disappeared %d\n", td->pid, td->runstate);
1052 td_set_runstate(td, TD_REAPED);
1053 goto reaped;
1054 }
1055 perror("waitpid");
1056 } else if (ret == td->pid) {
1057 if (WIFSIGNALED(status)) {
1058 int sig = WTERMSIG(status);
1059
1060 if (sig != SIGQUIT)
1061 log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
1062 td_set_runstate(td, TD_REAPED);
1063 goto reaped;
1064 }
1065 if (WIFEXITED(status)) {
1066 if (WEXITSTATUS(status) && !td->error)
1067 td->error = WEXITSTATUS(status);
1068
1069 td_set_runstate(td, TD_REAPED);
1070 goto reaped;
1071 }
1072 }
1073
1074 /*
1075 * thread is not dead, continue
1076 */
1077 pending++;
1078 continue;
1079reaped:
1080 if (td->o.use_thread) {
1081 long ret;
1082
1083 dprint(FD_PROCESS, "joining tread %d\n", td->pid);
1084 if (pthread_join(td->thread, (void *) &ret)) {
1085 dprint(FD_PROCESS, "join failed %ld\n", ret);
1086 perror("pthread_join");
1087 }
1088 }
1089
1090 (*nr_running)--;
1091 (*m_rate) -= td->o.ratemin;
1092 (*t_rate) -= td->o.rate;
1093 pending--;
1094
1095 if (td->error)
1096 exit_value++;
1097 }
1098
1099 if (*nr_running == cputhreads && !pending && realthreads)
1100 terminate_threads(TERMINATE_ALL);
1101}
1102
1103/*
1104 * Main function for kicking off and reaping jobs, as needed.
1105 */
1106static void run_threads(void)
1107{
1108 struct thread_data *td;
1109 unsigned long spent;
1110 int i, todo, nr_running, m_rate, t_rate, nr_started;
1111
1112 if (fio_pin_memory())
1113 return;
1114
1115 if (!terse_output) {
1116 printf("Starting ");
1117 if (nr_thread)
1118 printf("%d thread%s", nr_thread, nr_thread > 1 ? "s" : "");
1119 if (nr_process) {
1120 if (nr_thread)
1121 printf(" and ");
1122 printf("%d process%s", nr_process, nr_process > 1 ? "es" : "");
1123 }
1124 printf("\n");
1125 fflush(stdout);
1126 }
1127
1128 signal(SIGINT, sig_handler);
1129 signal(SIGALRM, sig_handler);
1130
1131 todo = thread_number;
1132 nr_running = 0;
1133 nr_started = 0;
1134 m_rate = t_rate = 0;
1135
1136 for_each_td(td, i) {
1137 print_status_init(td->thread_number - 1);
1138
1139 if (!td->o.create_serialize) {
1140 init_disk_util(td);
1141 continue;
1142 }
1143
1144 /*
1145 * do file setup here so it happens sequentially,
1146 * we don't want X number of threads getting their
1147 * client data interspersed on disk
1148 */
1149 if (setup_files(td)) {
1150 exit_value++;
1151 if (td->error)
1152 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
1153 td_set_runstate(td, TD_REAPED);
1154 todo--;
1155 }
1156
1157 init_disk_util(td);
1158 }
1159
1160 set_genesis_time();
1161
1162 while (todo) {
1163 struct thread_data *map[MAX_JOBS];
1164 struct timeval this_start;
1165 int this_jobs = 0, left;
1166
1167 /*
1168 * create threads (TD_NOT_CREATED -> TD_CREATED)
1169 */
1170 for_each_td(td, i) {
1171 if (td->runstate != TD_NOT_CREATED)
1172 continue;
1173
1174 /*
1175 * never got a chance to start, killed by other
1176 * thread for some reason
1177 */
1178 if (td->terminate) {
1179 todo--;
1180 continue;
1181 }
1182
1183 if (td->o.start_delay) {
1184 spent = mtime_since_genesis();
1185
1186 if (td->o.start_delay * 1000 > spent)
1187 continue;
1188 }
1189
1190 if (td->o.stonewall && (nr_started || nr_running))
1191 break;
1192
1193 /*
1194 * Set state to created. Thread will transition
1195 * to TD_INITIALIZED when it's done setting up.
1196 */
1197 td_set_runstate(td, TD_CREATED);
1198 map[this_jobs++] = td;
1199 nr_started++;
1200
1201 if (td->o.use_thread) {
1202 dprint(FD_PROCESS, "will pthread_create\n");
1203 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1204 perror("thread_create");
1205 nr_started--;
1206 break;
1207 }
1208 } else {
1209 dprint(FD_PROCESS, "will fork\n");
1210 if (!fork()) {
1211 int ret = fork_main(shm_id, i);
1212
1213 exit(ret);
1214 }
1215 }
1216 fio_mutex_down(startup_mutex);
1217 }
1218
1219 /*
1220 * Wait for the started threads to transition to
1221 * TD_INITIALIZED.
1222 */
1223 fio_gettime(&this_start, NULL);
1224 left = this_jobs;
1225 while (left && !fio_abort) {
1226 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1227 break;
1228
1229 usleep(100000);
1230
1231 for (i = 0; i < this_jobs; i++) {
1232 td = map[i];
1233 if (!td)
1234 continue;
1235 if (td->runstate == TD_INITIALIZED) {
1236 map[i] = NULL;
1237 left--;
1238 } else if (td->runstate >= TD_EXITED) {
1239 map[i] = NULL;
1240 left--;
1241 todo--;
1242 nr_running++; /* work-around... */
1243 }
1244 }
1245 }
1246
1247 if (left) {
1248 log_err("fio: %d jobs failed to start\n", left);
1249 for (i = 0; i < this_jobs; i++) {
1250 td = map[i];
1251 if (!td)
1252 continue;
1253 kill(td->pid, SIGTERM);
1254 }
1255 break;
1256 }
1257
1258 /*
1259 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1260 */
1261 for_each_td(td, i) {
1262 if (td->runstate != TD_INITIALIZED)
1263 continue;
1264
1265 td_set_runstate(td, TD_RUNNING);
1266 nr_running++;
1267 nr_started--;
1268 m_rate += td->o.ratemin;
1269 t_rate += td->o.rate;
1270 todo--;
1271 fio_mutex_up(td->mutex);
1272 }
1273
1274 reap_threads(&nr_running, &t_rate, &m_rate);
1275
1276 if (todo)
1277 usleep(100000);
1278 }
1279
1280 while (nr_running) {
1281 reap_threads(&nr_running, &t_rate, &m_rate);
1282 usleep(10000);
1283 }
1284
1285 update_io_ticks();
1286 fio_unpin_memory();
1287}
1288
1289int main(int argc, char *argv[])
1290{
1291 long ps;
1292
1293 /*
1294 * We need locale for number printing, if it isn't set then just
1295 * go with the US format.
1296 */
1297 if (!getenv("LC_NUMERIC"))
1298 setlocale(LC_NUMERIC, "en_US");
1299
1300 if (parse_options(argc, argv))
1301 return 1;
1302
1303 if (!thread_number)
1304 return 0;
1305
1306 ps = sysconf(_SC_PAGESIZE);
1307 if (ps < 0) {
1308 log_err("Failed to get page size\n");
1309 return 1;
1310 }
1311
1312 page_size = ps;
1313 page_mask = ps - 1;
1314
1315 if (write_bw_log) {
1316 setup_log(&agg_io_log[DDIR_READ]);
1317 setup_log(&agg_io_log[DDIR_WRITE]);
1318 }
1319
1320 startup_mutex = fio_mutex_init(0);
1321
1322 set_genesis_time();
1323
1324 disk_util_timer_arm();
1325
1326 run_threads();
1327
1328 if (!fio_abort) {
1329 show_run_stats();
1330 if (write_bw_log) {
1331 __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1332 __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1333 }
1334 }
1335
1336 fio_mutex_remove(startup_mutex);
1337 return exit_value;
1338}