Fix printf() being used instead of log_info()
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <sys/stat.h>
34#include <sys/wait.h>
35#include <sys/ipc.h>
36#include <sys/shm.h>
37#include <sys/mman.h>
38
39#include "fio.h"
40#include "hash.h"
41#include "smalloc.h"
42#include "verify.h"
43#include "trim.h"
44#include "diskutil.h"
45#include "cgroup.h"
46#include "profile.h"
47#include "lib/rand.h"
48#include "memalign.h"
49#include "server.h"
50
51unsigned long page_mask;
52unsigned long page_size;
53
54#define PAGE_ALIGN(buf) \
55 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
56
57int groupid = 0;
58unsigned int thread_number = 0;
59unsigned int nr_process = 0;
60unsigned int nr_thread = 0;
61int shm_id = 0;
62int temp_stall_ts;
63unsigned long done_secs = 0;
64
65/*
66 * Just expose an empty list, if the OS does not support disk util stats
67 */
68#ifndef FIO_HAVE_DISK_UTIL
69FLIST_HEAD(disk_list);
70#endif
71
72static struct fio_mutex *startup_mutex;
73static struct fio_mutex *writeout_mutex;
74static volatile int fio_abort;
75static int exit_value;
76static pthread_t gtod_thread;
77static pthread_t disk_util_thread;
78static struct flist_head *cgroup_list;
79static char *cgroup_mnt;
80
81unsigned long arch_flags = 0;
82
83struct io_log *agg_io_log[2];
84
85#define JOB_START_TIMEOUT (5 * 1000)
86
87static const char *fio_os_strings[os_nr] = {
88 "Invalid",
89 "Linux",
90 "AIX",
91 "FreeBSD",
92 "HP-UX",
93 "OSX",
94 "NetBSD",
95 "Solaris",
96 "Windows"
97};
98
99static const char *fio_arch_strings[arch_nr] = {
100 "Invalid",
101 "x86-64",
102 "x86",
103 "ppc",
104 "ia64",
105 "s390",
106 "alpha",
107 "sparc",
108 "sparc64",
109 "arm",
110 "sh",
111 "hppa",
112 "generic"
113};
114
115const char *fio_get_os_string(int nr)
116{
117 if (nr < os_nr)
118 return fio_os_strings[nr];
119
120 return NULL;
121}
122
123const char *fio_get_arch_string(int nr)
124{
125 if (nr < arch_nr)
126 return fio_arch_strings[nr];
127
128 return NULL;
129}
130
131void td_set_runstate(struct thread_data *td, int runstate)
132{
133 if (td->runstate == runstate)
134 return;
135
136 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
137 td->runstate, runstate);
138 td->runstate = runstate;
139}
140
141void fio_terminate_threads(int group_id)
142{
143 struct thread_data *td;
144 int i;
145
146 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
147
148 for_each_td(td, i) {
149 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
150 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
151 td->o.name, (int) td->pid);
152 td->terminate = 1;
153 td->o.start_delay = 0;
154
155 /*
156 * if the thread is running, just let it exit
157 */
158 if (!td->pid)
159 continue;
160 else if (td->runstate < TD_RAMP)
161 kill(td->pid, SIGTERM);
162 else {
163 struct ioengine_ops *ops = td->io_ops;
164
165 if (ops && (ops->flags & FIO_SIGTERM))
166 kill(td->pid, SIGTERM);
167 }
168 }
169 }
170}
171
172static void sig_int(int sig)
173{
174 if (threads) {
175 if (is_backend)
176 fio_server_got_signal(sig);
177 else {
178 log_info("\nfio: terminating on signal %d\n", sig);
179 fflush(stdout);
180 exit_value = 128;
181 }
182
183 fio_terminate_threads(TERMINATE_ALL);
184 }
185}
186
187static void *disk_thread_main(void *data)
188{
189 fio_mutex_up(startup_mutex);
190
191 while (threads) {
192 usleep(DISK_UTIL_MSEC * 1000);
193 if (!threads)
194 break;
195 update_io_ticks();
196
197 if (!is_backend)
198 print_thread_status();
199 }
200
201 return NULL;
202}
203
204static int create_disk_util_thread(void)
205{
206 int ret;
207
208 ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
209 if (ret) {
210 log_err("Can't create disk util thread: %s\n", strerror(ret));
211 return 1;
212 }
213
214 ret = pthread_detach(disk_util_thread);
215 if (ret) {
216 log_err("Can't detatch disk util thread: %s\n", strerror(ret));
217 return 1;
218 }
219
220 dprint(FD_MUTEX, "wait on startup_mutex\n");
221 fio_mutex_down(startup_mutex);
222 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
223 return 0;
224}
225
226static void set_sig_handlers(void)
227{
228 struct sigaction act;
229
230 memset(&act, 0, sizeof(act));
231 act.sa_handler = sig_int;
232 act.sa_flags = SA_RESTART;
233 sigaction(SIGINT, &act, NULL);
234
235 memset(&act, 0, sizeof(act));
236 act.sa_handler = sig_int;
237 act.sa_flags = SA_RESTART;
238 sigaction(SIGTERM, &act, NULL);
239
240 if (is_backend) {
241 memset(&act, 0, sizeof(act));
242 act.sa_handler = sig_int;
243 act.sa_flags = SA_RESTART;
244 sigaction(SIGPIPE, &act, NULL);
245 }
246}
247
248/*
249 * Check if we are above the minimum rate given.
250 */
251static int __check_min_rate(struct thread_data *td, struct timeval *now,
252 enum fio_ddir ddir)
253{
254 unsigned long long bytes = 0;
255 unsigned long iops = 0;
256 unsigned long spent;
257 unsigned long rate;
258 unsigned int ratemin = 0;
259 unsigned int rate_iops = 0;
260 unsigned int rate_iops_min = 0;
261
262 assert(ddir_rw(ddir));
263
264 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
265 return 0;
266
267 /*
268 * allow a 2 second settle period in the beginning
269 */
270 if (mtime_since(&td->start, now) < 2000)
271 return 0;
272
273 iops += td->this_io_blocks[ddir];
274 bytes += td->this_io_bytes[ddir];
275 ratemin += td->o.ratemin[ddir];
276 rate_iops += td->o.rate_iops[ddir];
277 rate_iops_min += td->o.rate_iops_min[ddir];
278
279 /*
280 * if rate blocks is set, sample is running
281 */
282 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
283 spent = mtime_since(&td->lastrate[ddir], now);
284 if (spent < td->o.ratecycle)
285 return 0;
286
287 if (td->o.rate[ddir]) {
288 /*
289 * check bandwidth specified rate
290 */
291 if (bytes < td->rate_bytes[ddir]) {
292 log_err("%s: min rate %u not met\n", td->o.name,
293 ratemin);
294 return 1;
295 } else {
296 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
297 if (rate < ratemin ||
298 bytes < td->rate_bytes[ddir]) {
299 log_err("%s: min rate %u not met, got"
300 " %luKB/sec\n", td->o.name,
301 ratemin, rate);
302 return 1;
303 }
304 }
305 } else {
306 /*
307 * checks iops specified rate
308 */
309 if (iops < rate_iops) {
310 log_err("%s: min iops rate %u not met\n",
311 td->o.name, rate_iops);
312 return 1;
313 } else {
314 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
315 if (rate < rate_iops_min ||
316 iops < td->rate_blocks[ddir]) {
317 log_err("%s: min iops rate %u not met,"
318 " got %lu\n", td->o.name,
319 rate_iops_min, rate);
320 }
321 }
322 }
323 }
324
325 td->rate_bytes[ddir] = bytes;
326 td->rate_blocks[ddir] = iops;
327 memcpy(&td->lastrate[ddir], now, sizeof(*now));
328 return 0;
329}
330
331static int check_min_rate(struct thread_data *td, struct timeval *now,
332 unsigned long *bytes_done)
333{
334 int ret = 0;
335
336 if (bytes_done[0])
337 ret |= __check_min_rate(td, now, 0);
338 if (bytes_done[1])
339 ret |= __check_min_rate(td, now, 1);
340
341 return ret;
342}
343
344static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
345{
346 if (!td->o.timeout)
347 return 0;
348 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
349 return 1;
350
351 return 0;
352}
353
354/*
355 * When job exits, we can cancel the in-flight IO if we are using async
356 * io. Attempt to do so.
357 */
358static void cleanup_pending_aio(struct thread_data *td)
359{
360 struct flist_head *entry, *n;
361 struct io_u *io_u;
362 int r;
363
364 /*
365 * get immediately available events, if any
366 */
367 r = io_u_queued_complete(td, 0, NULL);
368 if (r < 0)
369 return;
370
371 /*
372 * now cancel remaining active events
373 */
374 if (td->io_ops->cancel) {
375 flist_for_each_safe(entry, n, &td->io_u_busylist) {
376 io_u = flist_entry(entry, struct io_u, list);
377
378 /*
379 * if the io_u isn't in flight, then that generally
380 * means someone leaked an io_u. complain but fix
381 * it up, so we don't stall here.
382 */
383 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
384 log_err("fio: non-busy IO on busy list\n");
385 put_io_u(td, io_u);
386 } else {
387 r = td->io_ops->cancel(td, io_u);
388 if (!r)
389 put_io_u(td, io_u);
390 }
391 }
392 }
393
394 if (td->cur_depth)
395 r = io_u_queued_complete(td, td->cur_depth, NULL);
396}
397
398/*
399 * Helper to handle the final sync of a file. Works just like the normal
400 * io path, just does everything sync.
401 */
402static int fio_io_sync(struct thread_data *td, struct fio_file *f)
403{
404 struct io_u *io_u = __get_io_u(td);
405 int ret;
406
407 if (!io_u)
408 return 1;
409
410 io_u->ddir = DDIR_SYNC;
411 io_u->file = f;
412
413 if (td_io_prep(td, io_u)) {
414 put_io_u(td, io_u);
415 return 1;
416 }
417
418requeue:
419 ret = td_io_queue(td, io_u);
420 if (ret < 0) {
421 td_verror(td, io_u->error, "td_io_queue");
422 put_io_u(td, io_u);
423 return 1;
424 } else if (ret == FIO_Q_QUEUED) {
425 if (io_u_queued_complete(td, 1, NULL) < 0)
426 return 1;
427 } else if (ret == FIO_Q_COMPLETED) {
428 if (io_u->error) {
429 td_verror(td, io_u->error, "td_io_queue");
430 return 1;
431 }
432
433 if (io_u_sync_complete(td, io_u, NULL) < 0)
434 return 1;
435 } else if (ret == FIO_Q_BUSY) {
436 if (td_io_commit(td))
437 return 1;
438 goto requeue;
439 }
440
441 return 0;
442}
443
444static inline void __update_tv_cache(struct thread_data *td)
445{
446 fio_gettime(&td->tv_cache, NULL);
447}
448
449static inline void update_tv_cache(struct thread_data *td)
450{
451 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
452 __update_tv_cache(td);
453}
454
455static int break_on_this_error(struct thread_data *td, int *retptr)
456{
457 int ret = *retptr;
458
459 if (ret < 0 || td->error) {
460 int err;
461
462 if (!td->o.continue_on_error)
463 return 1;
464
465 if (ret < 0)
466 err = -ret;
467 else
468 err = td->error;
469
470 if (td_non_fatal_error(err)) {
471 /*
472 * Continue with the I/Os in case of
473 * a non fatal error.
474 */
475 update_error_count(td, err);
476 td_clear_error(td);
477 *retptr = 0;
478 return 0;
479 } else if (td->o.fill_device && err == ENOSPC) {
480 /*
481 * We expect to hit this error if
482 * fill_device option is set.
483 */
484 td_clear_error(td);
485 td->terminate = 1;
486 return 1;
487 } else {
488 /*
489 * Stop the I/O in case of a fatal
490 * error.
491 */
492 update_error_count(td, err);
493 return 1;
494 }
495 }
496
497 return 0;
498}
499
500/*
501 * The main verify engine. Runs over the writes we previously submitted,
502 * reads the blocks back in, and checks the crc/md5 of the data.
503 */
504static void do_verify(struct thread_data *td)
505{
506 struct fio_file *f;
507 struct io_u *io_u;
508 int ret, min_events;
509 unsigned int i;
510
511 dprint(FD_VERIFY, "starting loop\n");
512
513 /*
514 * sync io first and invalidate cache, to make sure we really
515 * read from disk.
516 */
517 for_each_file(td, f, i) {
518 if (!fio_file_open(f))
519 continue;
520 if (fio_io_sync(td, f))
521 break;
522 if (file_invalidate_cache(td, f))
523 break;
524 }
525
526 if (td->error)
527 return;
528
529 td_set_runstate(td, TD_VERIFYING);
530
531 io_u = NULL;
532 while (!td->terminate) {
533 int ret2, full;
534
535 update_tv_cache(td);
536
537 if (runtime_exceeded(td, &td->tv_cache)) {
538 __update_tv_cache(td);
539 if (runtime_exceeded(td, &td->tv_cache)) {
540 td->terminate = 1;
541 break;
542 }
543 }
544
545 io_u = __get_io_u(td);
546 if (!io_u)
547 break;
548
549 if (get_next_verify(td, io_u)) {
550 put_io_u(td, io_u);
551 break;
552 }
553
554 if (td_io_prep(td, io_u)) {
555 put_io_u(td, io_u);
556 break;
557 }
558
559 if (td->o.verify_async)
560 io_u->end_io = verify_io_u_async;
561 else
562 io_u->end_io = verify_io_u;
563
564 ret = td_io_queue(td, io_u);
565 switch (ret) {
566 case FIO_Q_COMPLETED:
567 if (io_u->error) {
568 ret = -io_u->error;
569 clear_io_u(td, io_u);
570 } else if (io_u->resid) {
571 int bytes = io_u->xfer_buflen - io_u->resid;
572
573 /*
574 * zero read, fail
575 */
576 if (!bytes) {
577 td_verror(td, EIO, "full resid");
578 put_io_u(td, io_u);
579 break;
580 }
581
582 io_u->xfer_buflen = io_u->resid;
583 io_u->xfer_buf += bytes;
584 io_u->offset += bytes;
585
586 if (ddir_rw(io_u->ddir))
587 td->ts.short_io_u[io_u->ddir]++;
588
589 f = io_u->file;
590 if (io_u->offset == f->real_file_size)
591 goto sync_done;
592
593 requeue_io_u(td, &io_u);
594 } else {
595sync_done:
596 ret = io_u_sync_complete(td, io_u, NULL);
597 if (ret < 0)
598 break;
599 }
600 continue;
601 case FIO_Q_QUEUED:
602 break;
603 case FIO_Q_BUSY:
604 requeue_io_u(td, &io_u);
605 ret2 = td_io_commit(td);
606 if (ret2 < 0)
607 ret = ret2;
608 break;
609 default:
610 assert(ret < 0);
611 td_verror(td, -ret, "td_io_queue");
612 break;
613 }
614
615 if (break_on_this_error(td, &ret))
616 break;
617
618 /*
619 * if we can queue more, do so. but check if there are
620 * completed io_u's first. Note that we can get BUSY even
621 * without IO queued, if the system is resource starved.
622 */
623 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
624 if (full || !td->o.iodepth_batch_complete) {
625 min_events = min(td->o.iodepth_batch_complete,
626 td->cur_depth);
627 if (full && !min_events && td->o.iodepth_batch_complete != 0)
628 min_events = 1;
629
630 do {
631 /*
632 * Reap required number of io units, if any,
633 * and do the verification on them through
634 * the callback handler
635 */
636 if (io_u_queued_complete(td, min_events, NULL) < 0) {
637 ret = -1;
638 break;
639 }
640 } while (full && (td->cur_depth > td->o.iodepth_low));
641 }
642 if (ret < 0)
643 break;
644 }
645
646 if (!td->error) {
647 min_events = td->cur_depth;
648
649 if (min_events)
650 ret = io_u_queued_complete(td, min_events, NULL);
651 } else
652 cleanup_pending_aio(td);
653
654 td_set_runstate(td, TD_RUNNING);
655
656 dprint(FD_VERIFY, "exiting loop\n");
657}
658
659/*
660 * Main IO worker function. It retrieves io_u's to process and queues
661 * and reaps them, checking for rate and errors along the way.
662 */
663static void do_io(struct thread_data *td)
664{
665 unsigned int i;
666 int ret = 0;
667
668 if (in_ramp_time(td))
669 td_set_runstate(td, TD_RAMP);
670 else
671 td_set_runstate(td, TD_RUNNING);
672
673 while ( (td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
674 (!flist_empty(&td->trim_list)) ||
675 ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) ) {
676 struct timeval comp_time;
677 unsigned long bytes_done[2] = { 0, 0 };
678 int min_evts = 0;
679 struct io_u *io_u;
680 int ret2, full;
681
682 if (td->terminate)
683 break;
684
685 update_tv_cache(td);
686
687 if (runtime_exceeded(td, &td->tv_cache)) {
688 __update_tv_cache(td);
689 if (runtime_exceeded(td, &td->tv_cache)) {
690 td->terminate = 1;
691 break;
692 }
693 }
694
695 io_u = get_io_u(td);
696 if (!io_u)
697 break;
698
699 /*
700 * Add verification end_io handler, if asked to verify
701 * a previously written file.
702 */
703 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
704 !td_rw(td)) {
705 if (td->o.verify_async)
706 io_u->end_io = verify_io_u_async;
707 else
708 io_u->end_io = verify_io_u;
709 td_set_runstate(td, TD_VERIFYING);
710 } else if (in_ramp_time(td))
711 td_set_runstate(td, TD_RAMP);
712 else
713 td_set_runstate(td, TD_RUNNING);
714
715 ret = td_io_queue(td, io_u);
716 switch (ret) {
717 case FIO_Q_COMPLETED:
718 if (io_u->error) {
719 ret = -io_u->error;
720 clear_io_u(td, io_u);
721 } else if (io_u->resid) {
722 int bytes = io_u->xfer_buflen - io_u->resid;
723 struct fio_file *f = io_u->file;
724
725 /*
726 * zero read, fail
727 */
728 if (!bytes) {
729 td_verror(td, EIO, "full resid");
730 put_io_u(td, io_u);
731 break;
732 }
733
734 io_u->xfer_buflen = io_u->resid;
735 io_u->xfer_buf += bytes;
736 io_u->offset += bytes;
737
738 if (ddir_rw(io_u->ddir))
739 td->ts.short_io_u[io_u->ddir]++;
740
741 if (io_u->offset == f->real_file_size)
742 goto sync_done;
743
744 requeue_io_u(td, &io_u);
745 } else {
746sync_done:
747 if (__should_check_rate(td, 0) ||
748 __should_check_rate(td, 1))
749 fio_gettime(&comp_time, NULL);
750
751 ret = io_u_sync_complete(td, io_u, bytes_done);
752 if (ret < 0)
753 break;
754 }
755 break;
756 case FIO_Q_QUEUED:
757 /*
758 * if the engine doesn't have a commit hook,
759 * the io_u is really queued. if it does have such
760 * a hook, it has to call io_u_queued() itself.
761 */
762 if (td->io_ops->commit == NULL)
763 io_u_queued(td, io_u);
764 break;
765 case FIO_Q_BUSY:
766 requeue_io_u(td, &io_u);
767 ret2 = td_io_commit(td);
768 if (ret2 < 0)
769 ret = ret2;
770 break;
771 default:
772 assert(ret < 0);
773 put_io_u(td, io_u);
774 break;
775 }
776
777 if (break_on_this_error(td, &ret))
778 break;
779
780 /*
781 * See if we need to complete some commands. Note that we
782 * can get BUSY even without IO queued, if the system is
783 * resource starved.
784 */
785 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
786 if (full || !td->o.iodepth_batch_complete) {
787 min_evts = min(td->o.iodepth_batch_complete,
788 td->cur_depth);
789 if (full && !min_evts && td->o.iodepth_batch_complete != 0)
790 min_evts = 1;
791
792 if (__should_check_rate(td, 0) ||
793 __should_check_rate(td, 1))
794 fio_gettime(&comp_time, NULL);
795
796 do {
797 ret = io_u_queued_complete(td, min_evts, bytes_done);
798 if (ret < 0)
799 break;
800
801 } while (full && (td->cur_depth > td->o.iodepth_low));
802 }
803
804 if (ret < 0)
805 break;
806 if (!(bytes_done[0] + bytes_done[1]))
807 continue;
808
809 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
810 if (check_min_rate(td, &comp_time, bytes_done)) {
811 if (exitall_on_terminate)
812 fio_terminate_threads(td->groupid);
813 td_verror(td, EIO, "check_min_rate");
814 break;
815 }
816 }
817
818 if (td->o.thinktime) {
819 unsigned long long b;
820
821 b = td->io_blocks[0] + td->io_blocks[1];
822 if (!(b % td->o.thinktime_blocks)) {
823 int left;
824
825 if (td->o.thinktime_spin)
826 usec_spin(td->o.thinktime_spin);
827
828 left = td->o.thinktime - td->o.thinktime_spin;
829 if (left)
830 usec_sleep(td, left);
831 }
832 }
833 }
834
835 if (td->trim_entries)
836 printf("trim entries %ld\n", td->trim_entries);
837
838 if (td->o.fill_device && td->error == ENOSPC) {
839 td->error = 0;
840 td->terminate = 1;
841 }
842 if (!td->error) {
843 struct fio_file *f;
844
845 i = td->cur_depth;
846 if (i) {
847 ret = io_u_queued_complete(td, i, NULL);
848 if (td->o.fill_device && td->error == ENOSPC)
849 td->error = 0;
850 }
851
852 if (should_fsync(td) && td->o.end_fsync) {
853 td_set_runstate(td, TD_FSYNCING);
854
855 for_each_file(td, f, i) {
856 if (!fio_file_open(f))
857 continue;
858 fio_io_sync(td, f);
859 }
860 }
861 } else
862 cleanup_pending_aio(td);
863
864 /*
865 * stop job if we failed doing any IO
866 */
867 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
868 td->done = 1;
869}
870
871static void cleanup_io_u(struct thread_data *td)
872{
873 struct flist_head *entry, *n;
874 struct io_u *io_u;
875
876 flist_for_each_safe(entry, n, &td->io_u_freelist) {
877 io_u = flist_entry(entry, struct io_u, list);
878
879 flist_del(&io_u->list);
880 fio_memfree(io_u, sizeof(*io_u));
881 }
882
883 free_io_mem(td);
884}
885
886static int init_io_u(struct thread_data *td)
887{
888 struct io_u *io_u;
889 unsigned int max_bs;
890 int cl_align, i, max_units;
891 char *p;
892
893 max_units = td->o.iodepth;
894 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
895 td->orig_buffer_size = (unsigned long long) max_bs
896 * (unsigned long long) max_units;
897
898 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
899 unsigned long bs;
900
901 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
902 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
903 }
904
905 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
906 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
907 return 1;
908 }
909
910 if (allocate_io_mem(td))
911 return 1;
912
913 if (td->o.odirect || td->o.mem_align ||
914 (td->io_ops->flags & FIO_RAWIO))
915 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
916 else
917 p = td->orig_buffer;
918
919 cl_align = os_cache_line_size();
920
921 for (i = 0; i < max_units; i++) {
922 void *ptr;
923
924 if (td->terminate)
925 return 1;
926
927 ptr = fio_memalign(cl_align, sizeof(*io_u));
928 if (!ptr) {
929 log_err("fio: unable to allocate aligned memory\n");
930 break;
931 }
932
933 io_u = ptr;
934 memset(io_u, 0, sizeof(*io_u));
935 INIT_FLIST_HEAD(&io_u->list);
936 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
937
938 if (!(td->io_ops->flags & FIO_NOIO)) {
939 io_u->buf = p + max_bs * i;
940 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
941
942 if (td_write(td))
943 io_u_fill_buffer(td, io_u, max_bs);
944 if (td_write(td) && td->o.verify_pattern_bytes) {
945 /*
946 * Fill the buffer with the pattern if we are
947 * going to be doing writes.
948 */
949 fill_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
950 }
951 }
952
953 io_u->index = i;
954 io_u->flags = IO_U_F_FREE;
955 flist_add(&io_u->list, &td->io_u_freelist);
956 }
957
958 return 0;
959}
960
961static int switch_ioscheduler(struct thread_data *td)
962{
963 char tmp[256], tmp2[128];
964 FILE *f;
965 int ret;
966
967 if (td->io_ops->flags & FIO_DISKLESSIO)
968 return 0;
969
970 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
971
972 f = fopen(tmp, "r+");
973 if (!f) {
974 if (errno == ENOENT) {
975 log_err("fio: os or kernel doesn't support IO scheduler"
976 " switching\n");
977 return 0;
978 }
979 td_verror(td, errno, "fopen iosched");
980 return 1;
981 }
982
983 /*
984 * Set io scheduler.
985 */
986 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
987 if (ferror(f) || ret != 1) {
988 td_verror(td, errno, "fwrite");
989 fclose(f);
990 return 1;
991 }
992
993 rewind(f);
994
995 /*
996 * Read back and check that the selected scheduler is now the default.
997 */
998 ret = fread(tmp, 1, sizeof(tmp), f);
999 if (ferror(f) || ret < 0) {
1000 td_verror(td, errno, "fread");
1001 fclose(f);
1002 return 1;
1003 }
1004
1005 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1006 if (!strstr(tmp, tmp2)) {
1007 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1008 td_verror(td, EINVAL, "iosched_switch");
1009 fclose(f);
1010 return 1;
1011 }
1012
1013 fclose(f);
1014 return 0;
1015}
1016
1017static int keep_running(struct thread_data *td)
1018{
1019 unsigned long long io_done;
1020
1021 if (td->done)
1022 return 0;
1023 if (td->o.time_based)
1024 return 1;
1025 if (td->o.loops) {
1026 td->o.loops--;
1027 return 1;
1028 }
1029
1030 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
1031 + td->io_skip_bytes;
1032 if (io_done < td->o.size)
1033 return 1;
1034
1035 return 0;
1036}
1037
1038static void reset_io_counters(struct thread_data *td)
1039{
1040 td->stat_io_bytes[0] = td->stat_io_bytes[1] = 0;
1041 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
1042 td->stat_io_blocks[0] = td->stat_io_blocks[1] = 0;
1043 td->this_io_blocks[0] = td->this_io_blocks[1] = 0;
1044 td->zone_bytes = 0;
1045 td->rate_bytes[0] = td->rate_bytes[1] = 0;
1046 td->rate_blocks[0] = td->rate_blocks[1] = 0;
1047
1048 td->last_was_sync = 0;
1049
1050 /*
1051 * reset file done count if we are to start over
1052 */
1053 if (td->o.time_based || td->o.loops)
1054 td->nr_done_files = 0;
1055}
1056
1057void reset_all_stats(struct thread_data *td)
1058{
1059 struct timeval tv;
1060 int i;
1061
1062 reset_io_counters(td);
1063
1064 for (i = 0; i < 2; i++) {
1065 td->io_bytes[i] = 0;
1066 td->io_blocks[i] = 0;
1067 td->io_issues[i] = 0;
1068 td->ts.total_io_u[i] = 0;
1069 }
1070
1071 fio_gettime(&tv, NULL);
1072 td->ts.runtime[0] = 0;
1073 td->ts.runtime[1] = 0;
1074 memcpy(&td->epoch, &tv, sizeof(tv));
1075 memcpy(&td->start, &tv, sizeof(tv));
1076}
1077
1078static void clear_io_state(struct thread_data *td)
1079{
1080 struct fio_file *f;
1081 unsigned int i;
1082
1083 reset_io_counters(td);
1084
1085 close_files(td);
1086 for_each_file(td, f, i)
1087 fio_file_clear_done(f);
1088
1089 /*
1090 * Set the same seed to get repeatable runs
1091 */
1092 td_fill_rand_seeds(td);
1093}
1094
1095static int exec_string(const char *string)
1096{
1097 int ret, newlen = strlen(string) + 1 + 8;
1098 char *str;
1099
1100 str = malloc(newlen);
1101 sprintf(str, "sh -c %s", string);
1102
1103 ret = system(str);
1104 if (ret == -1)
1105 log_err("fio: exec of cmd <%s> failed\n", str);
1106
1107 free(str);
1108 return ret;
1109}
1110
1111/*
1112 * Entry point for the thread based jobs. The process based jobs end up
1113 * here as well, after a little setup.
1114 */
1115static void *thread_main(void *data)
1116{
1117 unsigned long long elapsed;
1118 struct thread_data *td = data;
1119 pthread_condattr_t attr;
1120 int clear_state;
1121
1122 if (!td->o.use_thread) {
1123 setsid();
1124 td->pid = getpid();
1125 } else
1126 td->pid = gettid();
1127
1128 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1129
1130 INIT_FLIST_HEAD(&td->io_u_freelist);
1131 INIT_FLIST_HEAD(&td->io_u_busylist);
1132 INIT_FLIST_HEAD(&td->io_u_requeues);
1133 INIT_FLIST_HEAD(&td->io_log_list);
1134 INIT_FLIST_HEAD(&td->io_hist_list);
1135 INIT_FLIST_HEAD(&td->verify_list);
1136 INIT_FLIST_HEAD(&td->trim_list);
1137 pthread_mutex_init(&td->io_u_lock, NULL);
1138 td->io_hist_tree = RB_ROOT;
1139
1140 pthread_condattr_init(&attr);
1141 pthread_cond_init(&td->verify_cond, &attr);
1142 pthread_cond_init(&td->free_cond, &attr);
1143
1144 td_set_runstate(td, TD_INITIALIZED);
1145 dprint(FD_MUTEX, "up startup_mutex\n");
1146 fio_mutex_up(startup_mutex);
1147 dprint(FD_MUTEX, "wait on td->mutex\n");
1148 fio_mutex_down(td->mutex);
1149 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1150
1151 /*
1152 * the ->mutex mutex is now no longer used, close it to avoid
1153 * eating a file descriptor
1154 */
1155 fio_mutex_remove(td->mutex);
1156
1157 /*
1158 * A new gid requires privilege, so we need to do this before setting
1159 * the uid.
1160 */
1161 if (td->o.gid != -1U && setgid(td->o.gid)) {
1162 td_verror(td, errno, "setgid");
1163 goto err;
1164 }
1165 if (td->o.uid != -1U && setuid(td->o.uid)) {
1166 td_verror(td, errno, "setuid");
1167 goto err;
1168 }
1169
1170 /*
1171 * If we have a gettimeofday() thread, make sure we exclude that
1172 * thread from this job
1173 */
1174 if (td->o.gtod_cpu)
1175 fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
1176
1177 /*
1178 * Set affinity first, in case it has an impact on the memory
1179 * allocations.
1180 */
1181 if (td->o.cpumask_set && fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1182 td_verror(td, errno, "cpu_set_affinity");
1183 goto err;
1184 }
1185
1186 /*
1187 * May alter parameters that init_io_u() will use, so we need to
1188 * do this first.
1189 */
1190 if (init_iolog(td))
1191 goto err;
1192
1193 if (init_io_u(td))
1194 goto err;
1195
1196 if (td->o.verify_async && verify_async_init(td))
1197 goto err;
1198
1199 if (td->ioprio_set) {
1200 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1201 td_verror(td, errno, "ioprio_set");
1202 goto err;
1203 }
1204 }
1205
1206 if (td->o.cgroup_weight && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1207 goto err;
1208
1209 if (nice(td->o.nice) == -1) {
1210 td_verror(td, errno, "nice");
1211 goto err;
1212 }
1213
1214 if (td->o.ioscheduler && switch_ioscheduler(td))
1215 goto err;
1216
1217 if (!td->o.create_serialize && setup_files(td))
1218 goto err;
1219
1220 if (td_io_init(td))
1221 goto err;
1222
1223 if (init_random_map(td))
1224 goto err;
1225
1226 if (td->o.exec_prerun) {
1227 if (exec_string(td->o.exec_prerun))
1228 goto err;
1229 }
1230
1231 if (td->o.pre_read) {
1232 if (pre_read_files(td) < 0)
1233 goto err;
1234 }
1235
1236 fio_gettime(&td->epoch, NULL);
1237 getrusage(RUSAGE_SELF, &td->ru_start);
1238
1239 clear_state = 0;
1240 while (keep_running(td)) {
1241 fio_gettime(&td->start, NULL);
1242 memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1243 memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1244 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1245
1246 if (td->o.ratemin[0] || td->o.ratemin[1])
1247 memcpy(&td->lastrate, &td->bw_sample_time,
1248 sizeof(td->lastrate));
1249
1250 if (clear_state)
1251 clear_io_state(td);
1252
1253 prune_io_piece_log(td);
1254
1255 do_io(td);
1256
1257 clear_state = 1;
1258
1259 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1260 elapsed = utime_since_now(&td->start);
1261 td->ts.runtime[DDIR_READ] += elapsed;
1262 }
1263 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1264 elapsed = utime_since_now(&td->start);
1265 td->ts.runtime[DDIR_WRITE] += elapsed;
1266 }
1267
1268 if (td->error || td->terminate)
1269 break;
1270
1271 if (!td->o.do_verify ||
1272 td->o.verify == VERIFY_NONE ||
1273 (td->io_ops->flags & FIO_UNIDIR))
1274 continue;
1275
1276 clear_io_state(td);
1277
1278 fio_gettime(&td->start, NULL);
1279
1280 do_verify(td);
1281
1282 td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1283
1284 if (td->error || td->terminate)
1285 break;
1286 }
1287
1288 update_rusage_stat(td);
1289 td->ts.runtime[0] = (td->ts.runtime[0] + 999) / 1000;
1290 td->ts.runtime[1] = (td->ts.runtime[1] + 999) / 1000;
1291 td->ts.total_run_time = mtime_since_now(&td->epoch);
1292 td->ts.io_bytes[0] = td->io_bytes[0];
1293 td->ts.io_bytes[1] = td->io_bytes[1];
1294
1295 fio_mutex_down(writeout_mutex);
1296 if (td->bw_log) {
1297 if (td->o.bw_log_file) {
1298 finish_log_named(td, td->bw_log,
1299 td->o.bw_log_file, "bw");
1300 } else
1301 finish_log(td, td->bw_log, "bw");
1302 }
1303 if (td->lat_log) {
1304 if (td->o.lat_log_file) {
1305 finish_log_named(td, td->lat_log,
1306 td->o.lat_log_file, "lat");
1307 } else
1308 finish_log(td, td->lat_log, "lat");
1309 }
1310 if (td->slat_log) {
1311 if (td->o.lat_log_file) {
1312 finish_log_named(td, td->slat_log,
1313 td->o.lat_log_file, "slat");
1314 } else
1315 finish_log(td, td->slat_log, "slat");
1316 }
1317 if (td->clat_log) {
1318 if (td->o.lat_log_file) {
1319 finish_log_named(td, td->clat_log,
1320 td->o.lat_log_file, "clat");
1321 } else
1322 finish_log(td, td->clat_log, "clat");
1323 }
1324 if (td->iops_log) {
1325 if (td->o.iops_log_file) {
1326 finish_log_named(td, td->iops_log,
1327 td->o.iops_log_file, "iops");
1328 } else
1329 finish_log(td, td->iops_log, "iops");
1330 }
1331
1332 fio_mutex_up(writeout_mutex);
1333 if (td->o.exec_postrun)
1334 exec_string(td->o.exec_postrun);
1335
1336 if (exitall_on_terminate)
1337 fio_terminate_threads(td->groupid);
1338
1339err:
1340 if (td->error)
1341 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1342 td->verror);
1343
1344 if (td->o.verify_async)
1345 verify_async_exit(td);
1346
1347 close_and_free_files(td);
1348 close_ioengine(td);
1349 cleanup_io_u(td);
1350 cgroup_shutdown(td, &cgroup_mnt);
1351
1352 if (td->o.cpumask_set) {
1353 int ret = fio_cpuset_exit(&td->o.cpumask);
1354
1355 td_verror(td, ret, "fio_cpuset_exit");
1356 }
1357
1358 /*
1359 * do this very late, it will log file closing as well
1360 */
1361 if (td->o.write_iolog_file)
1362 write_iolog_close(td);
1363
1364 td_set_runstate(td, TD_EXITED);
1365 return (void *) (unsigned long) td->error;
1366}
1367
1368/*
1369 * We cannot pass the td data into a forked process, so attach the td and
1370 * pass it to the thread worker.
1371 */
1372static int fork_main(int shmid, int offset)
1373{
1374 struct thread_data *td;
1375 void *data, *ret;
1376
1377#ifndef __hpux
1378 data = shmat(shmid, NULL, 0);
1379 if (data == (void *) -1) {
1380 int __err = errno;
1381
1382 perror("shmat");
1383 return __err;
1384 }
1385#else
1386 /*
1387 * HP-UX inherits shm mappings?
1388 */
1389 data = threads;
1390#endif
1391
1392 td = data + offset * sizeof(struct thread_data);
1393 ret = thread_main(td);
1394 shmdt(data);
1395 return (int) (unsigned long) ret;
1396}
1397
1398/*
1399 * Run over the job map and reap the threads that have exited, if any.
1400 */
1401static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1402 unsigned int *m_rate)
1403{
1404 struct thread_data *td;
1405 unsigned int cputhreads, realthreads, pending;
1406 int i, status, ret;
1407
1408 /*
1409 * reap exited threads (TD_EXITED -> TD_REAPED)
1410 */
1411 realthreads = pending = cputhreads = 0;
1412 for_each_td(td, i) {
1413 int flags = 0;
1414
1415 /*
1416 * ->io_ops is NULL for a thread that has closed its
1417 * io engine
1418 */
1419 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1420 cputhreads++;
1421 else
1422 realthreads++;
1423
1424 if (!td->pid) {
1425 pending++;
1426 continue;
1427 }
1428 if (td->runstate == TD_REAPED)
1429 continue;
1430 if (td->o.use_thread) {
1431 if (td->runstate == TD_EXITED) {
1432 td_set_runstate(td, TD_REAPED);
1433 goto reaped;
1434 }
1435 continue;
1436 }
1437
1438 flags = WNOHANG;
1439 if (td->runstate == TD_EXITED)
1440 flags = 0;
1441
1442 /*
1443 * check if someone quit or got killed in an unusual way
1444 */
1445 ret = waitpid(td->pid, &status, flags);
1446 if (ret < 0) {
1447 if (errno == ECHILD) {
1448 log_err("fio: pid=%d disappeared %d\n",
1449 (int) td->pid, td->runstate);
1450 td_set_runstate(td, TD_REAPED);
1451 goto reaped;
1452 }
1453 perror("waitpid");
1454 } else if (ret == td->pid) {
1455 if (WIFSIGNALED(status)) {
1456 int sig = WTERMSIG(status);
1457
1458 if (sig != SIGTERM)
1459 log_err("fio: pid=%d, got signal=%d\n",
1460 (int) td->pid, sig);
1461 td_set_runstate(td, TD_REAPED);
1462 goto reaped;
1463 }
1464 if (WIFEXITED(status)) {
1465 if (WEXITSTATUS(status) && !td->error)
1466 td->error = WEXITSTATUS(status);
1467
1468 td_set_runstate(td, TD_REAPED);
1469 goto reaped;
1470 }
1471 }
1472
1473 /*
1474 * thread is not dead, continue
1475 */
1476 pending++;
1477 continue;
1478reaped:
1479 (*nr_running)--;
1480 (*m_rate) -= (td->o.ratemin[0] + td->o.ratemin[1]);
1481 (*t_rate) -= (td->o.rate[0] + td->o.rate[1]);
1482 if (!td->pid)
1483 pending--;
1484
1485 if (td->error)
1486 exit_value++;
1487
1488 done_secs += mtime_since_now(&td->epoch) / 1000;
1489 }
1490
1491 if (*nr_running == cputhreads && !pending && realthreads)
1492 fio_terminate_threads(TERMINATE_ALL);
1493}
1494
1495static void *gtod_thread_main(void *data)
1496{
1497 fio_mutex_up(startup_mutex);
1498
1499 /*
1500 * As long as we have jobs around, update the clock. It would be nice
1501 * to have some way of NOT hammering that CPU with gettimeofday(),
1502 * but I'm not sure what to use outside of a simple CPU nop to relax
1503 * it - we don't want to lose precision.
1504 */
1505 while (threads) {
1506 fio_gtod_update();
1507 nop;
1508 }
1509
1510 return NULL;
1511}
1512
1513static int fio_start_gtod_thread(void)
1514{
1515 pthread_attr_t attr;
1516 int ret;
1517
1518 pthread_attr_init(&attr);
1519 pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN);
1520 ret = pthread_create(&gtod_thread, &attr, gtod_thread_main, NULL);
1521 pthread_attr_destroy(&attr);
1522 if (ret) {
1523 log_err("Can't create gtod thread: %s\n", strerror(ret));
1524 return 1;
1525 }
1526
1527 ret = pthread_detach(gtod_thread);
1528 if (ret) {
1529 log_err("Can't detatch gtod thread: %s\n", strerror(ret));
1530 return 1;
1531 }
1532
1533 dprint(FD_MUTEX, "wait on startup_mutex\n");
1534 fio_mutex_down(startup_mutex);
1535 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1536 return 0;
1537}
1538
1539/*
1540 * Main function for kicking off and reaping jobs, as needed.
1541 */
1542static void run_threads(void)
1543{
1544 struct thread_data *td;
1545 unsigned long spent;
1546 unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1547
1548 if (fio_pin_memory())
1549 return;
1550
1551 if (fio_gtod_offload && fio_start_gtod_thread())
1552 return;
1553
1554 set_sig_handlers();
1555
1556 if (!terse_output) {
1557 log_info("Starting ");
1558 if (nr_thread)
1559 log_info("%d thread%s", nr_thread,
1560 nr_thread > 1 ? "s" : "");
1561 if (nr_process) {
1562 if (nr_thread)
1563 log_info(" and ");
1564 log_info("%d process%s", nr_process,
1565 nr_process > 1 ? "es" : "");
1566 }
1567 log_info("\n");
1568 fflush(stdout);
1569 }
1570
1571 todo = thread_number;
1572 nr_running = 0;
1573 nr_started = 0;
1574 m_rate = t_rate = 0;
1575
1576 for_each_td(td, i) {
1577 print_status_init(td->thread_number - 1);
1578
1579 if (!td->o.create_serialize)
1580 continue;
1581
1582 /*
1583 * do file setup here so it happens sequentially,
1584 * we don't want X number of threads getting their
1585 * client data interspersed on disk
1586 */
1587 if (setup_files(td)) {
1588 exit_value++;
1589 if (td->error)
1590 log_err("fio: pid=%d, err=%d/%s\n",
1591 (int) td->pid, td->error, td->verror);
1592 td_set_runstate(td, TD_REAPED);
1593 todo--;
1594 } else {
1595 struct fio_file *f;
1596 unsigned int j;
1597
1598 /*
1599 * for sharing to work, each job must always open
1600 * its own files. so close them, if we opened them
1601 * for creation
1602 */
1603 for_each_file(td, f, j) {
1604 if (fio_file_open(f))
1605 td_io_close_file(td, f);
1606 }
1607 }
1608 }
1609
1610 set_genesis_time();
1611
1612 while (todo) {
1613 struct thread_data *map[REAL_MAX_JOBS];
1614 struct timeval this_start;
1615 int this_jobs = 0, left;
1616
1617 /*
1618 * create threads (TD_NOT_CREATED -> TD_CREATED)
1619 */
1620 for_each_td(td, i) {
1621 if (td->runstate != TD_NOT_CREATED)
1622 continue;
1623
1624 /*
1625 * never got a chance to start, killed by other
1626 * thread for some reason
1627 */
1628 if (td->terminate) {
1629 todo--;
1630 continue;
1631 }
1632
1633 if (td->o.start_delay) {
1634 spent = mtime_since_genesis();
1635
1636 if (td->o.start_delay * 1000 > spent)
1637 continue;
1638 }
1639
1640 if (td->o.stonewall && (nr_started || nr_running)) {
1641 dprint(FD_PROCESS, "%s: stonewall wait\n",
1642 td->o.name);
1643 break;
1644 }
1645
1646 init_disk_util(td);
1647
1648 /*
1649 * Set state to created. Thread will transition
1650 * to TD_INITIALIZED when it's done setting up.
1651 */
1652 td_set_runstate(td, TD_CREATED);
1653 map[this_jobs++] = td;
1654 nr_started++;
1655
1656 if (td->o.use_thread) {
1657 int ret;
1658
1659 dprint(FD_PROCESS, "will pthread_create\n");
1660 ret = pthread_create(&td->thread, NULL,
1661 thread_main, td);
1662 if (ret) {
1663 log_err("pthread_create: %s\n",
1664 strerror(ret));
1665 nr_started--;
1666 break;
1667 }
1668 ret = pthread_detach(td->thread);
1669 if (ret)
1670 log_err("pthread_detach: %s",
1671 strerror(ret));
1672 } else {
1673 pid_t pid;
1674 dprint(FD_PROCESS, "will fork\n");
1675 pid = fork();
1676 if (!pid) {
1677 int ret = fork_main(shm_id, i);
1678
1679 _exit(ret);
1680 } else if (i == fio_debug_jobno)
1681 *fio_debug_jobp = pid;
1682 }
1683 dprint(FD_MUTEX, "wait on startup_mutex\n");
1684 if (fio_mutex_down_timeout(startup_mutex, 10)) {
1685 log_err("fio: job startup hung? exiting.\n");
1686 fio_terminate_threads(TERMINATE_ALL);
1687 fio_abort = 1;
1688 nr_started--;
1689 break;
1690 }
1691 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1692 }
1693
1694 /*
1695 * Wait for the started threads to transition to
1696 * TD_INITIALIZED.
1697 */
1698 fio_gettime(&this_start, NULL);
1699 left = this_jobs;
1700 while (left && !fio_abort) {
1701 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1702 break;
1703
1704 usleep(100000);
1705
1706 for (i = 0; i < this_jobs; i++) {
1707 td = map[i];
1708 if (!td)
1709 continue;
1710 if (td->runstate == TD_INITIALIZED) {
1711 map[i] = NULL;
1712 left--;
1713 } else if (td->runstate >= TD_EXITED) {
1714 map[i] = NULL;
1715 left--;
1716 todo--;
1717 nr_running++; /* work-around... */
1718 }
1719 }
1720 }
1721
1722 if (left) {
1723 log_err("fio: %d jobs failed to start\n", left);
1724 for (i = 0; i < this_jobs; i++) {
1725 td = map[i];
1726 if (!td)
1727 continue;
1728 kill(td->pid, SIGTERM);
1729 }
1730 break;
1731 }
1732
1733 /*
1734 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1735 */
1736 for_each_td(td, i) {
1737 if (td->runstate != TD_INITIALIZED)
1738 continue;
1739
1740 if (in_ramp_time(td))
1741 td_set_runstate(td, TD_RAMP);
1742 else
1743 td_set_runstate(td, TD_RUNNING);
1744 nr_running++;
1745 nr_started--;
1746 m_rate += td->o.ratemin[0] + td->o.ratemin[1];
1747 t_rate += td->o.rate[0] + td->o.rate[1];
1748 todo--;
1749 fio_mutex_up(td->mutex);
1750 }
1751
1752 reap_threads(&nr_running, &t_rate, &m_rate);
1753
1754 if (todo) {
1755 if (is_backend)
1756 fio_server_idle_loop();
1757 else
1758 usleep(100000);
1759 }
1760 }
1761
1762 while (nr_running) {
1763 reap_threads(&nr_running, &t_rate, &m_rate);
1764
1765 if (is_backend)
1766 fio_server_idle_loop();
1767 else
1768 usleep(10000);
1769 }
1770
1771 update_io_ticks();
1772 fio_unpin_memory();
1773}
1774
1775int exec_run(void)
1776{
1777 struct thread_data *td;
1778 int i;
1779
1780 if (nr_clients)
1781 return fio_handle_clients();
1782 if (exec_profile) {
1783 if (load_profile(exec_profile))
1784 return 1;
1785 free(exec_profile);
1786 exec_profile = NULL;
1787 }
1788 if (!thread_number)
1789 return 0;
1790
1791 if (write_bw_log) {
1792 setup_log(&agg_io_log[DDIR_READ]);
1793 setup_log(&agg_io_log[DDIR_WRITE]);
1794 }
1795
1796 startup_mutex = fio_mutex_init(0);
1797 if (startup_mutex == NULL)
1798 return 1;
1799 writeout_mutex = fio_mutex_init(1);
1800 if (writeout_mutex == NULL)
1801 return 1;
1802
1803 set_genesis_time();
1804 create_disk_util_thread();
1805
1806 cgroup_list = smalloc(sizeof(*cgroup_list));
1807 INIT_FLIST_HEAD(cgroup_list);
1808
1809 run_threads();
1810
1811 if (!fio_abort) {
1812 show_run_stats();
1813 if (write_bw_log) {
1814 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1815 __finish_log(agg_io_log[DDIR_WRITE],
1816 "agg-write_bw.log");
1817 }
1818 }
1819
1820 for_each_td(td, i)
1821 fio_options_free(td);
1822
1823 cgroup_kill(cgroup_list);
1824 sfree(cgroup_list);
1825 sfree(cgroup_mnt);
1826
1827 fio_mutex_remove(startup_mutex);
1828 fio_mutex_remove(writeout_mutex);
1829 return exit_value;
1830}
1831
1832void reset_fio_state(void)
1833{
1834 groupid = 0;
1835 thread_number = 0;
1836 nr_process = 0;
1837 nr_thread = 0;
1838 done_secs = 0;
1839}
1840
1841static int endian_check(void)
1842{
1843 union {
1844 uint8_t c[8];
1845 uint64_t v;
1846 } u;
1847 int le = 0, be = 0;
1848
1849 u.v = 0x12;
1850 if (u.c[7] == 0x12)
1851 be = 1;
1852 else if (u.c[0] == 0x12)
1853 le = 1;
1854
1855#if defined(FIO_LITTLE_ENDIAN)
1856 if (be)
1857 return 1;
1858#elif defined(FIO_BIG_ENDIAN)
1859 if (le)
1860 return 1;
1861#else
1862 return 1;
1863#endif
1864
1865 if (!le && !be)
1866 return 1;
1867
1868 return 0;
1869}
1870
1871int main(int argc, char *argv[], char *envp[])
1872{
1873 long ps;
1874
1875 if (endian_check()) {
1876 log_err("fio: endianness settings appear wrong.\n");
1877 log_err("fio: please report this to fio@vger.kernel.org\n");
1878 return 1;
1879 }
1880
1881 arch_init(envp);
1882
1883 sinit();
1884
1885 /*
1886 * We need locale for number printing, if it isn't set then just
1887 * go with the US format.
1888 */
1889 if (!getenv("LC_NUMERIC"))
1890 setlocale(LC_NUMERIC, "en_US");
1891
1892 ps = sysconf(_SC_PAGESIZE);
1893 if (ps < 0) {
1894 log_err("Failed to get page size\n");
1895 return 1;
1896 }
1897
1898 page_size = ps;
1899 page_mask = ps - 1;
1900
1901 fio_keywords_init();
1902
1903 if (parse_options(argc, argv))
1904 return 1;
1905
1906 return exec_run();
1907}