[PATCH] Add option for terse parseable output
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 */
21#include <unistd.h>
22#include <fcntl.h>
23#include <string.h>
24#include <signal.h>
25#include <time.h>
26#include <assert.h>
27#include <sys/stat.h>
28#include <sys/wait.h>
29#include <sys/ipc.h>
30#include <sys/shm.h>
31#include <sys/ioctl.h>
32#include <sys/mman.h>
33
34#include "fio.h"
35#include "os.h"
36
37#define MASK (4095)
38
39#define ALIGN(buf) (char *) (((unsigned long) (buf) + MASK) & ~(MASK))
40
41int groupid = 0;
42int thread_number = 0;
43static char run_str[MAX_JOBS + 1];
44int shm_id = 0;
45static struct timeval genesis;
46static int temp_stall_ts;
47
48static void print_thread_status(void);
49
50extern unsigned long long mlock_size;
51
52/*
53 * Thread life cycle. Once a thread has a runstate beyond TD_INITIALIZED, it
54 * will never back again. It may cycle between running/verififying/fsyncing.
55 * Once the thread reaches TD_EXITED, it is just waiting for the core to
56 * reap it.
57 */
58enum {
59 TD_NOT_CREATED = 0,
60 TD_CREATED,
61 TD_INITIALIZED,
62 TD_RUNNING,
63 TD_VERIFYING,
64 TD_FSYNCING,
65 TD_EXITED,
66 TD_REAPED,
67};
68
69#define should_fsync(td) ((td_write(td) || td_rw(td)) && (!(td)->odirect || (td)->override_sync))
70
71static volatile int startup_sem;
72
73#define TERMINATE_ALL (-1)
74#define JOB_START_TIMEOUT (5 * 1000)
75
76static void terminate_threads(int group_id)
77{
78 int i;
79
80 for (i = 0; i < thread_number; i++) {
81 struct thread_data *td = &threads[i];
82
83 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
84 td->terminate = 1;
85 td->start_delay = 0;
86 }
87 }
88}
89
90static void sig_handler(int sig)
91{
92 switch (sig) {
93 case SIGALRM:
94 update_io_ticks();
95 disk_util_timer_arm();
96 print_thread_status();
97 break;
98 default:
99 printf("\nfio: terminating on signal\n");
100 fflush(stdout);
101 terminate_threads(TERMINATE_ALL);
102 break;
103 }
104}
105
106static int random_map_free(struct thread_data *td, unsigned long long block)
107{
108 unsigned int idx = RAND_MAP_IDX(td, block);
109 unsigned int bit = RAND_MAP_BIT(td, block);
110
111 return (td->file_map[idx] & (1UL << bit)) == 0;
112}
113
114static int get_next_free_block(struct thread_data *td, unsigned long long *b)
115{
116 int i;
117
118 *b = 0;
119 i = 0;
120 while ((*b) * td->min_bs < td->io_size) {
121 if (td->file_map[i] != -1UL) {
122 *b += ffz(td->file_map[i]);
123 return 0;
124 }
125
126 *b += BLOCKS_PER_MAP;
127 i++;
128 }
129
130 return 1;
131}
132
133static void mark_random_map(struct thread_data *td, struct io_u *io_u)
134{
135 unsigned long long block = io_u->offset / (unsigned long long) td->min_bs;
136 unsigned int blocks = 0;
137
138 while (blocks < (io_u->buflen / td->min_bs)) {
139 unsigned int idx, bit;
140
141 if (!random_map_free(td, block))
142 break;
143
144 idx = RAND_MAP_IDX(td, block);
145 bit = RAND_MAP_BIT(td, block);
146
147 assert(idx < td->num_maps);
148
149 td->file_map[idx] |= (1UL << bit);
150 block++;
151 blocks++;
152 }
153
154 if ((blocks * td->min_bs) < io_u->buflen)
155 io_u->buflen = blocks * td->min_bs;
156}
157
158static int get_next_offset(struct thread_data *td, unsigned long long *offset)
159{
160 unsigned long long b, rb;
161 long r;
162
163 if (!td->sequential) {
164 unsigned long long max_blocks = td->io_size / td->min_bs;
165 int loops = 50;
166
167 do {
168 r = os_random_long(&td->random_state);
169 b = ((max_blocks - 1) * r / (unsigned long long) (RAND_MAX+1.0));
170 rb = b + (td->file_offset / td->min_bs);
171 loops--;
172 } while (!random_map_free(td, rb) && loops);
173
174 if (!loops) {
175 if (get_next_free_block(td, &b))
176 return 1;
177 }
178 } else
179 b = td->last_pos / td->min_bs;
180
181 *offset = (b * td->min_bs) + td->file_offset;
182 if (*offset > td->real_file_size)
183 return 1;
184
185 return 0;
186}
187
188static unsigned int get_next_buflen(struct thread_data *td)
189{
190 unsigned int buflen;
191 long r;
192
193 if (td->min_bs == td->max_bs)
194 buflen = td->min_bs;
195 else {
196 r = os_random_long(&td->bsrange_state);
197 buflen = (1 + (double) (td->max_bs - 1) * r / (RAND_MAX + 1.0));
198 buflen = (buflen + td->min_bs - 1) & ~(td->min_bs - 1);
199 }
200
201 if (buflen > td->io_size - td->this_io_bytes[td->ddir])
202 buflen = td->io_size - td->this_io_bytes[td->ddir];
203
204 return buflen;
205}
206
207static int check_min_rate(struct thread_data *td, struct timeval *now)
208{
209 unsigned long spent;
210 unsigned long rate;
211 int ddir = td->ddir;
212
213 /*
214 * allow a 2 second settle period in the beginning
215 */
216 if (mtime_since(&td->start, now) < 2000)
217 return 0;
218
219 /*
220 * if rate blocks is set, sample is running
221 */
222 if (td->rate_bytes) {
223 spent = mtime_since(&td->lastrate, now);
224 if (spent < td->ratecycle)
225 return 0;
226
227 rate = (td->this_io_bytes[ddir] - td->rate_bytes) / spent;
228 if (rate < td->ratemin) {
229 fprintf(f_out, "%s: min rate %d not met, got %ldKiB/sec\n", td->name, td->ratemin, rate);
230 if (rate_quit)
231 terminate_threads(td->groupid);
232 return 1;
233 }
234 }
235
236 td->rate_bytes = td->this_io_bytes[ddir];
237 memcpy(&td->lastrate, now, sizeof(*now));
238 return 0;
239}
240
241static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
242{
243 if (!td->timeout)
244 return 0;
245 if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
246 return 1;
247
248 return 0;
249}
250
251static void fill_random_bytes(struct thread_data *td,
252 unsigned char *p, unsigned int len)
253{
254 unsigned int todo;
255 double r;
256
257 while (len) {
258 r = os_random_double(&td->verify_state);
259
260 /*
261 * lrand48_r seems to be broken and only fill the bottom
262 * 32-bits, even on 64-bit archs with 64-bit longs
263 */
264 todo = sizeof(r);
265 if (todo > len)
266 todo = len;
267
268 memcpy(p, &r, todo);
269
270 len -= todo;
271 p += todo;
272 }
273}
274
275static void hexdump(void *buffer, int len)
276{
277 unsigned char *p = buffer;
278 int i;
279
280 for (i = 0; i < len; i++)
281 fprintf(f_out, "%02x", p[i]);
282 fprintf(f_out, "\n");
283}
284
285static int verify_io_u_crc32(struct verify_header *hdr, struct io_u *io_u)
286{
287 unsigned char *p = (unsigned char *) io_u->buf;
288 unsigned long c;
289
290 p += sizeof(*hdr);
291 c = crc32(p, hdr->len - sizeof(*hdr));
292
293 if (c != hdr->crc32) {
294 log_err("crc32: verify failed at %llu/%u\n", io_u->offset, io_u->buflen);
295 log_err("crc32: wanted %lx, got %lx\n", hdr->crc32, c);
296 return 1;
297 }
298
299 return 0;
300}
301
302static int verify_io_u_md5(struct verify_header *hdr, struct io_u *io_u)
303{
304 unsigned char *p = (unsigned char *) io_u->buf;
305 struct md5_ctx md5_ctx;
306
307 memset(&md5_ctx, 0, sizeof(md5_ctx));
308 p += sizeof(*hdr);
309 md5_update(&md5_ctx, p, hdr->len - sizeof(*hdr));
310
311 if (memcmp(hdr->md5_digest, md5_ctx.hash, sizeof(md5_ctx.hash))) {
312 log_err("md5: verify failed at %llu/%u\n", io_u->offset, io_u->buflen);
313 hexdump(hdr->md5_digest, sizeof(hdr->md5_digest));
314 hexdump(md5_ctx.hash, sizeof(md5_ctx.hash));
315 return 1;
316 }
317
318 return 0;
319}
320
321static int verify_io_u(struct io_u *io_u)
322{
323 struct verify_header *hdr = (struct verify_header *) io_u->buf;
324 int ret;
325
326 if (hdr->fio_magic != FIO_HDR_MAGIC)
327 return 1;
328
329 if (hdr->verify_type == VERIFY_MD5)
330 ret = verify_io_u_md5(hdr, io_u);
331 else if (hdr->verify_type == VERIFY_CRC32)
332 ret = verify_io_u_crc32(hdr, io_u);
333 else {
334 log_err("Bad verify type %d\n", hdr->verify_type);
335 ret = 1;
336 }
337
338 return ret;
339}
340
341static void fill_crc32(struct verify_header *hdr, void *p, unsigned int len)
342{
343 hdr->crc32 = crc32(p, len);
344}
345
346static void fill_md5(struct verify_header *hdr, void *p, unsigned int len)
347{
348 struct md5_ctx md5_ctx;
349
350 memset(&md5_ctx, 0, sizeof(md5_ctx));
351 md5_update(&md5_ctx, p, len);
352 memcpy(hdr->md5_digest, md5_ctx.hash, sizeof(md5_ctx.hash));
353}
354
355static int get_rw_ddir(struct thread_data *td)
356{
357 if (td_rw(td)) {
358 struct timeval now;
359 unsigned long elapsed;
360
361 gettimeofday(&now, NULL);
362 elapsed = mtime_since_now(&td->rwmix_switch);
363
364 /*
365 * Check if it's time to seed a new data direction.
366 */
367 if (elapsed >= td->rwmixcycle) {
368 int v;
369 long r;
370
371 r = os_random_long(&td->rwmix_state);
372 v = 1 + (int) (100.0 * (r / (RAND_MAX + 1.0)));
373 if (v < td->rwmixread)
374 td->rwmix_ddir = DDIR_READ;
375 else
376 td->rwmix_ddir = DDIR_WRITE;
377 memcpy(&td->rwmix_switch, &now, sizeof(now));
378 }
379 return td->rwmix_ddir;
380 } else if (td_read(td))
381 return DDIR_READ;
382 else
383 return DDIR_WRITE;
384}
385
386/*
387 * fill body of io_u->buf with random data and add a header with the
388 * crc32 or md5 sum of that data.
389 */
390static void populate_io_u(struct thread_data *td, struct io_u *io_u)
391{
392 unsigned char *p = (unsigned char *) io_u->buf;
393 struct verify_header hdr;
394
395 hdr.fio_magic = FIO_HDR_MAGIC;
396 hdr.len = io_u->buflen;
397 p += sizeof(hdr);
398 fill_random_bytes(td, p, io_u->buflen - sizeof(hdr));
399
400 if (td->verify == VERIFY_MD5) {
401 fill_md5(&hdr, p, io_u->buflen - sizeof(hdr));
402 hdr.verify_type = VERIFY_MD5;
403 } else {
404 fill_crc32(&hdr, p, io_u->buflen - sizeof(hdr));
405 hdr.verify_type = VERIFY_CRC32;
406 }
407
408 memcpy(io_u->buf, &hdr, sizeof(hdr));
409}
410
411static int td_io_prep(struct thread_data *td, struct io_u *io_u)
412{
413 if (td->io_prep && td->io_prep(td, io_u))
414 return 1;
415
416 return 0;
417}
418
419void put_io_u(struct thread_data *td, struct io_u *io_u)
420{
421 list_del(&io_u->list);
422 list_add(&io_u->list, &td->io_u_freelist);
423 td->cur_depth--;
424}
425
426static int fill_io_u(struct thread_data *td, struct io_u *io_u)
427{
428 /*
429 * If using an iolog, grab next piece if any available.
430 */
431 if (td->read_iolog)
432 return read_iolog_get(td, io_u);
433
434 /*
435 * No log, let the seq/rand engine retrieve the next position.
436 */
437 if (!get_next_offset(td, &io_u->offset)) {
438 io_u->buflen = get_next_buflen(td);
439
440 if (io_u->buflen) {
441 io_u->ddir = get_rw_ddir(td);
442
443 /*
444 * If using a write iolog, store this entry.
445 */
446 if (td->write_iolog)
447 write_iolog_put(td, io_u);
448
449 return 0;
450 }
451 }
452
453 return 1;
454}
455
456#define queue_full(td) list_empty(&(td)->io_u_freelist)
457
458struct io_u *__get_io_u(struct thread_data *td)
459{
460 struct io_u *io_u = NULL;
461
462 if (!queue_full(td)) {
463 io_u = list_entry(td->io_u_freelist.next, struct io_u, list);
464
465 io_u->error = 0;
466 io_u->resid = 0;
467 list_del(&io_u->list);
468 list_add(&io_u->list, &td->io_u_busylist);
469 td->cur_depth++;
470 }
471
472 return io_u;
473}
474
475static struct io_u *get_io_u(struct thread_data *td)
476{
477 struct io_u *io_u;
478
479 io_u = __get_io_u(td);
480 if (!io_u)
481 return NULL;
482
483 if (td->zone_bytes >= td->zone_size) {
484 td->zone_bytes = 0;
485 td->last_pos += td->zone_skip;
486 }
487
488 if (fill_io_u(td, io_u)) {
489 put_io_u(td, io_u);
490 return NULL;
491 }
492
493 if (io_u->buflen + io_u->offset > td->real_file_size)
494 io_u->buflen = td->real_file_size - io_u->offset;
495
496 if (!io_u->buflen) {
497 put_io_u(td, io_u);
498 return NULL;
499 }
500
501 if (!td->read_iolog && !td->sequential)
502 mark_random_map(td, io_u);
503
504 td->last_pos += io_u->buflen;
505
506 if (td->verify != VERIFY_NONE)
507 populate_io_u(td, io_u);
508
509 if (td_io_prep(td, io_u)) {
510 put_io_u(td, io_u);
511 return NULL;
512 }
513
514 gettimeofday(&io_u->start_time, NULL);
515 return io_u;
516}
517
518static inline void td_set_runstate(struct thread_data *td, int runstate)
519{
520 td->runstate = runstate;
521}
522
523static int get_next_verify(struct thread_data *td, struct io_u *io_u)
524{
525 struct io_piece *ipo;
526
527 if (!list_empty(&td->io_hist_list)) {
528 ipo = list_entry(td->io_hist_list.next, struct io_piece, list);
529
530 list_del(&ipo->list);
531
532 io_u->offset = ipo->offset;
533 io_u->buflen = ipo->len;
534 io_u->ddir = DDIR_READ;
535 free(ipo);
536 return 0;
537 }
538
539 return 1;
540}
541
542static int sync_td(struct thread_data *td)
543{
544 if (td->io_sync)
545 return td->io_sync(td);
546
547 return 0;
548}
549
550static int io_u_getevents(struct thread_data *td, int min, int max,
551 struct timespec *t)
552{
553 return td->io_getevents(td, min, max, t);
554}
555
556static int io_u_queue(struct thread_data *td, struct io_u *io_u)
557{
558 gettimeofday(&io_u->issue_time, NULL);
559
560 return td->io_queue(td, io_u);
561}
562
563#define iocb_time(iocb) ((unsigned long) (iocb)->data)
564
565static void io_completed(struct thread_data *td, struct io_u *io_u,
566 struct io_completion_data *icd)
567{
568 struct timeval e;
569 unsigned long msec;
570
571 gettimeofday(&e, NULL);
572
573 if (!io_u->error) {
574 unsigned int bytes = io_u->buflen - io_u->resid;
575 const int idx = io_u->ddir;
576
577 td->io_blocks[idx]++;
578 td->io_bytes[idx] += bytes;
579 td->zone_bytes += bytes;
580 td->this_io_bytes[idx] += bytes;
581
582 msec = mtime_since(&io_u->issue_time, &e);
583
584 add_clat_sample(td, idx, msec);
585 add_bw_sample(td, idx);
586
587 if ((td_rw(td) || td_write(td)) && idx == DDIR_WRITE)
588 log_io_piece(td, io_u);
589
590 icd->bytes_done[idx] += bytes;
591 } else
592 icd->error = io_u->error;
593}
594
595static void ios_completed(struct thread_data *td,struct io_completion_data *icd)
596{
597 struct io_u *io_u;
598 int i;
599
600 icd->error = 0;
601 icd->bytes_done[0] = icd->bytes_done[1] = 0;
602
603 for (i = 0; i < icd->nr; i++) {
604 io_u = td->io_event(td, i);
605
606 io_completed(td, io_u, icd);
607 put_io_u(td, io_u);
608 }
609}
610
611static void cleanup_pending_aio(struct thread_data *td)
612{
613 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
614 struct list_head *entry, *n;
615 struct io_completion_data icd;
616 struct io_u *io_u;
617 int r;
618
619 /*
620 * get immediately available events, if any
621 */
622 r = io_u_getevents(td, 0, td->cur_depth, &ts);
623 if (r > 0) {
624 icd.nr = r;
625 ios_completed(td, &icd);
626 }
627
628 /*
629 * now cancel remaining active events
630 */
631 if (td->io_cancel) {
632 list_for_each_safe(entry, n, &td->io_u_busylist) {
633 io_u = list_entry(entry, struct io_u, list);
634
635 r = td->io_cancel(td, io_u);
636 if (!r)
637 put_io_u(td, io_u);
638 }
639 }
640
641 if (td->cur_depth) {
642 r = io_u_getevents(td, td->cur_depth, td->cur_depth, NULL);
643 if (r > 0) {
644 icd.nr = r;
645 ios_completed(td, &icd);
646 }
647 }
648}
649
650static int do_io_u_verify(struct thread_data *td, struct io_u **io_u)
651{
652 struct io_u *v_io_u = *io_u;
653 int ret = 0;
654
655 if (v_io_u) {
656 ret = verify_io_u(v_io_u);
657 put_io_u(td, v_io_u);
658 *io_u = NULL;
659 }
660
661 return ret;
662}
663
664static void do_verify(struct thread_data *td)
665{
666 struct timeval t;
667 struct io_u *io_u, *v_io_u = NULL;
668 struct io_completion_data icd;
669 int ret;
670
671 td_set_runstate(td, TD_VERIFYING);
672
673 do {
674 if (td->terminate)
675 break;
676
677 gettimeofday(&t, NULL);
678 if (runtime_exceeded(td, &t))
679 break;
680
681 io_u = __get_io_u(td);
682 if (!io_u)
683 break;
684
685 if (get_next_verify(td, io_u)) {
686 put_io_u(td, io_u);
687 break;
688 }
689
690 if (td_io_prep(td, io_u)) {
691 put_io_u(td, io_u);
692 break;
693 }
694
695 ret = io_u_queue(td, io_u);
696 if (ret) {
697 put_io_u(td, io_u);
698 td_verror(td, ret);
699 break;
700 }
701
702 /*
703 * we have one pending to verify, do that while
704 * we are doing io on the next one
705 */
706 if (do_io_u_verify(td, &v_io_u))
707 break;
708
709 ret = io_u_getevents(td, 1, 1, NULL);
710 if (ret != 1) {
711 if (ret < 0)
712 td_verror(td, ret);
713 break;
714 }
715
716 v_io_u = td->io_event(td, 0);
717 icd.nr = 1;
718 icd.error = 0;
719 io_completed(td, v_io_u, &icd);
720
721 if (icd.error) {
722 td_verror(td, icd.error);
723 put_io_u(td, v_io_u);
724 v_io_u = NULL;
725 break;
726 }
727
728 /*
729 * if we can't submit more io, we need to verify now
730 */
731 if (queue_full(td) && do_io_u_verify(td, &v_io_u))
732 break;
733
734 } while (1);
735
736 do_io_u_verify(td, &v_io_u);
737
738 if (td->cur_depth)
739 cleanup_pending_aio(td);
740
741 td_set_runstate(td, TD_RUNNING);
742}
743
744/*
745 * Main IO worker functions. It retrieves io_u's to process and queues
746 * and reaps them, checking for rate and errors along the way.
747 */
748static void do_io(struct thread_data *td)
749{
750 struct io_completion_data icd;
751 struct timeval s, e;
752 unsigned long usec;
753
754 td_set_runstate(td, TD_RUNNING);
755
756 while (td->this_io_bytes[td->ddir] < td->io_size) {
757 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
758 struct timespec *timeout;
759 int ret, min_evts = 0;
760 struct io_u *io_u;
761
762 if (td->terminate)
763 break;
764
765 io_u = get_io_u(td);
766 if (!io_u)
767 break;
768
769 memcpy(&s, &io_u->start_time, sizeof(s));
770
771 ret = io_u_queue(td, io_u);
772 if (ret) {
773 put_io_u(td, io_u);
774 td_verror(td, ret);
775 break;
776 }
777
778 add_slat_sample(td, io_u->ddir, mtime_since(&io_u->start_time, &io_u->issue_time));
779
780 if (td->cur_depth < td->iodepth) {
781 timeout = &ts;
782 min_evts = 0;
783 } else {
784 timeout = NULL;
785 min_evts = 1;
786 }
787
788 ret = io_u_getevents(td, min_evts, td->cur_depth, timeout);
789 if (ret < 0) {
790 td_verror(td, ret);
791 break;
792 } else if (!ret)
793 continue;
794
795 icd.nr = ret;
796 ios_completed(td, &icd);
797 if (icd.error) {
798 td_verror(td, icd.error);
799 break;
800 }
801
802 /*
803 * the rate is batched for now, it should work for batches
804 * of completions except the very first one which may look
805 * a little bursty
806 */
807 gettimeofday(&e, NULL);
808 usec = utime_since(&s, &e);
809
810 rate_throttle(td, usec, icd.bytes_done[td->ddir]);
811
812 if (check_min_rate(td, &e)) {
813 td_verror(td, ENOMEM);
814 break;
815 }
816
817 if (runtime_exceeded(td, &e))
818 break;
819
820 if (td->thinktime)
821 usec_sleep(td, td->thinktime);
822
823 if (should_fsync(td) && td->fsync_blocks &&
824 (td->io_blocks[DDIR_WRITE] % td->fsync_blocks) == 0)
825 sync_td(td);
826 }
827
828 if (td->cur_depth)
829 cleanup_pending_aio(td);
830
831 if (should_fsync(td) && td->end_fsync) {
832 td_set_runstate(td, TD_FSYNCING);
833 sync_td(td);
834 }
835}
836
837static void cleanup_io(struct thread_data *td)
838{
839 if (td->io_cleanup)
840 td->io_cleanup(td);
841}
842
843static int init_io(struct thread_data *td)
844{
845 if (td->io_engine == FIO_SYNCIO)
846 return fio_syncio_init(td);
847 else if (td->io_engine == FIO_MMAPIO)
848 return fio_mmapio_init(td);
849 else if (td->io_engine == FIO_LIBAIO)
850 return fio_libaio_init(td);
851 else if (td->io_engine == FIO_POSIXAIO)
852 return fio_posixaio_init(td);
853 else if (td->io_engine == FIO_SGIO)
854 return fio_sgio_init(td);
855 else if (td->io_engine == FIO_SPLICEIO)
856 return fio_spliceio_init(td);
857 else {
858 log_err("bad io_engine %d\n", td->io_engine);
859 return 1;
860 }
861}
862
863static void cleanup_io_u(struct thread_data *td)
864{
865 struct list_head *entry, *n;
866 struct io_u *io_u;
867
868 list_for_each_safe(entry, n, &td->io_u_freelist) {
869 io_u = list_entry(entry, struct io_u, list);
870
871 list_del(&io_u->list);
872 free(io_u);
873 }
874
875 if (td->mem_type == MEM_MALLOC)
876 free(td->orig_buffer);
877 else if (td->mem_type == MEM_SHM) {
878 struct shmid_ds sbuf;
879
880 shmdt(td->orig_buffer);
881 shmctl(td->shm_id, IPC_RMID, &sbuf);
882 } else if (td->mem_type == MEM_MMAP)
883 munmap(td->orig_buffer, td->orig_buffer_size);
884 else
885 log_err("Bad memory type %d\n", td->mem_type);
886
887 td->orig_buffer = NULL;
888}
889
890static int init_io_u(struct thread_data *td)
891{
892 struct io_u *io_u;
893 int i, max_units;
894 char *p;
895
896 if (td->io_engine & FIO_SYNCIO)
897 max_units = 1;
898 else
899 max_units = td->iodepth;
900
901 td->orig_buffer_size = td->max_bs * max_units + MASK;
902
903 if (td->mem_type == MEM_MALLOC)
904 td->orig_buffer = malloc(td->orig_buffer_size);
905 else if (td->mem_type == MEM_SHM) {
906 td->shm_id = shmget(IPC_PRIVATE, td->orig_buffer_size, IPC_CREAT | 0600);
907 if (td->shm_id < 0) {
908 td_verror(td, errno);
909 perror("shmget");
910 return 1;
911 }
912
913 td->orig_buffer = shmat(td->shm_id, NULL, 0);
914 if (td->orig_buffer == (void *) -1) {
915 td_verror(td, errno);
916 perror("shmat");
917 td->orig_buffer = NULL;
918 return 1;
919 }
920 } else if (td->mem_type == MEM_MMAP) {
921 td->orig_buffer = mmap(NULL, td->orig_buffer_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | OS_MAP_ANON, 0, 0);
922 if (td->orig_buffer == MAP_FAILED) {
923 td_verror(td, errno);
924 perror("mmap");
925 td->orig_buffer = NULL;
926 return 1;
927 }
928 }
929
930 p = ALIGN(td->orig_buffer);
931 for (i = 0; i < max_units; i++) {
932 io_u = malloc(sizeof(*io_u));
933 memset(io_u, 0, sizeof(*io_u));
934 INIT_LIST_HEAD(&io_u->list);
935
936 io_u->buf = p + td->max_bs * i;
937 io_u->index = i;
938 list_add(&io_u->list, &td->io_u_freelist);
939 }
940
941 return 0;
942}
943
944static int create_file(struct thread_data *td, unsigned long long size,
945 int extend)
946{
947 unsigned long long left;
948 unsigned int bs;
949 int r, oflags;
950 char *b;
951
952 /*
953 * unless specifically asked for overwrite, let normal io extend it
954 */
955 if (td_write(td) && !td->overwrite)
956 return 0;
957
958 if (!size) {
959 log_err("Need size for create\n");
960 td_verror(td, EINVAL);
961 return 1;
962 }
963
964 temp_stall_ts = 1;
965
966 if (!extend) {
967 oflags = O_CREAT | O_TRUNC;
968 fprintf(f_out, "%s: Laying out IO file (%LuMiB)\n", td->name, size >> 20);
969 } else {
970 oflags = O_APPEND;
971 fprintf(f_out, "%s: Extending IO file (%Lu -> %LuMiB)\n", td->name, (td->file_size - size) >> 20, td->file_size >> 20);
972 }
973
974 td->fd = open(td->file_name, O_WRONLY | oflags, 0644);
975 if (td->fd < 0) {
976 td_verror(td, errno);
977 temp_stall_ts = 0;
978 return 1;
979 }
980
981 if (!extend && ftruncate(td->fd, td->file_size) == -1) {
982 td_verror(td, errno);
983 temp_stall_ts = 0;
984 return 1;
985 }
986
987 td->io_size = td->file_size;
988 b = malloc(td->max_bs);
989 memset(b, 0, td->max_bs);
990
991 left = size;
992 while (left && !td->terminate) {
993 bs = td->max_bs;
994 if (bs > left)
995 bs = left;
996
997 r = write(td->fd, b, bs);
998
999 if (r == (int) bs) {
1000 left -= bs;
1001 continue;
1002 } else {
1003 if (r < 0)
1004 td_verror(td, errno);
1005 else
1006 td_verror(td, EIO);
1007
1008 break;
1009 }
1010 }
1011
1012 if (td->terminate)
1013 unlink(td->file_name);
1014 else if (td->create_fsync)
1015 fsync(td->fd);
1016
1017 temp_stall_ts = 0;
1018 close(td->fd);
1019 td->fd = -1;
1020 free(b);
1021 return 0;
1022}
1023
1024static int file_size(struct thread_data *td)
1025{
1026 struct stat st;
1027
1028 if (fstat(td->fd, &st) == -1) {
1029 td_verror(td, errno);
1030 return 1;
1031 }
1032
1033 td->real_file_size = st.st_size;
1034
1035 if (!td->file_size || td->file_size > td->real_file_size)
1036 td->file_size = td->real_file_size;
1037
1038 td->file_size -= td->file_offset;
1039 return 0;
1040}
1041
1042static int bdev_size(struct thread_data *td)
1043{
1044 unsigned long long bytes;
1045 int r;
1046
1047 r = blockdev_size(td->fd, &bytes);
1048 if (r) {
1049 td_verror(td, r);
1050 return 1;
1051 }
1052
1053 td->real_file_size = bytes;
1054
1055 /*
1056 * no extend possibilities, so limit size to device size if too large
1057 */
1058 if (!td->file_size || td->file_size > td->real_file_size)
1059 td->file_size = td->real_file_size;
1060
1061 td->file_size -= td->file_offset;
1062 return 0;
1063}
1064
1065static int get_file_size(struct thread_data *td)
1066{
1067 int ret = 0;
1068
1069 if (td->filetype == FIO_TYPE_FILE)
1070 ret = file_size(td);
1071 else if (td->filetype == FIO_TYPE_BD)
1072 ret = bdev_size(td);
1073 else
1074 td->real_file_size = -1;
1075
1076 if (ret)
1077 return ret;
1078
1079 if (td->file_offset > td->real_file_size) {
1080 log_err("%s: offset extends end (%Lu > %Lu)\n", td->name, td->file_offset, td->real_file_size);
1081 return 1;
1082 }
1083
1084 td->io_size = td->file_size;
1085 if (td->io_size == 0) {
1086 log_err("%s: no io blocks\n", td->name);
1087 td_verror(td, EINVAL);
1088 return 1;
1089 }
1090
1091 if (!td->zone_size)
1092 td->zone_size = td->io_size;
1093
1094 td->total_io_size = td->io_size * td->loops;
1095 return 0;
1096}
1097
1098static int setup_file_mmap(struct thread_data *td)
1099{
1100 int flags;
1101
1102 if (td_rw(td))
1103 flags = PROT_READ | PROT_WRITE;
1104 else if (td_write(td)) {
1105 flags = PROT_WRITE;
1106
1107 if (td->verify != VERIFY_NONE)
1108 flags |= PROT_READ;
1109 } else
1110 flags = PROT_READ;
1111
1112 td->mmap = mmap(NULL, td->file_size, flags, MAP_SHARED, td->fd, td->file_offset);
1113 if (td->mmap == MAP_FAILED) {
1114 td->mmap = NULL;
1115 td_verror(td, errno);
1116 return 1;
1117 }
1118
1119 if (td->invalidate_cache) {
1120 if (madvise(td->mmap, td->file_size, MADV_DONTNEED) < 0) {
1121 td_verror(td, errno);
1122 return 1;
1123 }
1124 }
1125
1126 if (td->sequential) {
1127 if (madvise(td->mmap, td->file_size, MADV_SEQUENTIAL) < 0) {
1128 td_verror(td, errno);
1129 return 1;
1130 }
1131 } else {
1132 if (madvise(td->mmap, td->file_size, MADV_RANDOM) < 0) {
1133 td_verror(td, errno);
1134 return 1;
1135 }
1136 }
1137
1138 return 0;
1139}
1140
1141static int setup_file_plain(struct thread_data *td)
1142{
1143 if (td->invalidate_cache) {
1144 if (fadvise(td->fd, td->file_offset, td->file_size, POSIX_FADV_DONTNEED) < 0) {
1145 td_verror(td, errno);
1146 return 1;
1147 }
1148 }
1149
1150 if (td->sequential) {
1151 if (fadvise(td->fd, td->file_offset, td->file_size, POSIX_FADV_SEQUENTIAL) < 0) {
1152 td_verror(td, errno);
1153 return 1;
1154 }
1155 } else {
1156 if (fadvise(td->fd, td->file_offset, td->file_size, POSIX_FADV_RANDOM) < 0) {
1157 td_verror(td, errno);
1158 return 1;
1159 }
1160 }
1161
1162 return 0;
1163}
1164
1165static int setup_file(struct thread_data *td)
1166{
1167 struct stat st;
1168 int flags = 0;
1169
1170 if (stat(td->file_name, &st) == -1) {
1171 if (errno != ENOENT) {
1172 td_verror(td, errno);
1173 return 1;
1174 }
1175 if (!td->create_file) {
1176 td_verror(td, ENOENT);
1177 return 1;
1178 }
1179 if (create_file(td, td->file_size, 0))
1180 return 1;
1181 } else if (td->filetype == FIO_TYPE_FILE) {
1182 if (st.st_size < (off_t) td->file_size) {
1183 if (create_file(td, td->file_size - st.st_size, 1))
1184 return 1;
1185 }
1186 }
1187
1188 if (td->odirect)
1189 flags |= OS_O_DIRECT;
1190
1191 if (td_write(td) || td_rw(td)) {
1192 if (td->filetype == FIO_TYPE_FILE) {
1193 if (!td->overwrite)
1194 flags |= O_TRUNC;
1195
1196 flags |= O_CREAT;
1197 }
1198 if (td->sync_io)
1199 flags |= O_SYNC;
1200
1201 flags |= O_RDWR;
1202
1203 td->fd = open(td->file_name, flags, 0600);
1204 } else {
1205 if (td->filetype == FIO_TYPE_CHAR)
1206 flags |= O_RDWR;
1207 else
1208 flags |= O_RDONLY;
1209
1210 td->fd = open(td->file_name, flags);
1211 }
1212
1213 if (td->fd == -1) {
1214 td_verror(td, errno);
1215 return 1;
1216 }
1217
1218 if (get_file_size(td))
1219 return 1;
1220
1221 if (td->io_engine != FIO_MMAPIO)
1222 return setup_file_plain(td);
1223 else
1224 return setup_file_mmap(td);
1225}
1226
1227static int switch_ioscheduler(struct thread_data *td)
1228{
1229 char tmp[256], tmp2[128];
1230 FILE *f;
1231 int ret;
1232
1233 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1234
1235 f = fopen(tmp, "r+");
1236 if (!f) {
1237 td_verror(td, errno);
1238 return 1;
1239 }
1240
1241 /*
1242 * Set io scheduler.
1243 */
1244 ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
1245 if (ferror(f) || ret != 1) {
1246 td_verror(td, errno);
1247 fclose(f);
1248 return 1;
1249 }
1250
1251 rewind(f);
1252
1253 /*
1254 * Read back and check that the selected scheduler is now the default.
1255 */
1256 ret = fread(tmp, 1, sizeof(tmp), f);
1257 if (ferror(f) || ret < 0) {
1258 td_verror(td, errno);
1259 fclose(f);
1260 return 1;
1261 }
1262
1263 sprintf(tmp2, "[%s]", td->ioscheduler);
1264 if (!strstr(tmp, tmp2)) {
1265 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
1266 td_verror(td, EINVAL);
1267 fclose(f);
1268 return 1;
1269 }
1270
1271 fclose(f);
1272 return 0;
1273}
1274
1275static void clear_io_state(struct thread_data *td)
1276{
1277 if (td->io_engine == FIO_SYNCIO)
1278 lseek(td->fd, SEEK_SET, 0);
1279
1280 td->last_pos = 0;
1281 td->stat_io_bytes[0] = td->stat_io_bytes[1] = 0;
1282 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
1283 td->zone_bytes = 0;
1284
1285 if (td->file_map)
1286 memset(td->file_map, 0, td->num_maps * sizeof(long));
1287}
1288
1289static void *thread_main(void *data)
1290{
1291 struct thread_data *td = data;
1292
1293 if (!td->use_thread)
1294 setsid();
1295
1296 td->pid = getpid();
1297
1298 INIT_LIST_HEAD(&td->io_u_freelist);
1299 INIT_LIST_HEAD(&td->io_u_busylist);
1300 INIT_LIST_HEAD(&td->io_hist_list);
1301 INIT_LIST_HEAD(&td->io_log_list);
1302
1303 if (init_io_u(td))
1304 goto err;
1305
1306 if (fio_setaffinity(td) == -1) {
1307 td_verror(td, errno);
1308 goto err;
1309 }
1310
1311 if (init_io(td))
1312 goto err;
1313
1314 if (init_iolog(td))
1315 goto err;
1316
1317 if (td->ioprio) {
1318 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1319 td_verror(td, errno);
1320 goto err;
1321 }
1322 }
1323
1324 if (nice(td->nice) < 0) {
1325 td_verror(td, errno);
1326 goto err;
1327 }
1328
1329 if (init_random_state(td))
1330 goto err;
1331
1332 if (td->ioscheduler && switch_ioscheduler(td))
1333 goto err;
1334
1335 td_set_runstate(td, TD_INITIALIZED);
1336 fio_sem_up(&startup_sem);
1337 fio_sem_down(&td->mutex);
1338
1339 if (!td->create_serialize && setup_file(td))
1340 goto err;
1341
1342 gettimeofday(&td->epoch, NULL);
1343
1344 if (td->exec_prerun)
1345 system(td->exec_prerun);
1346
1347 while (td->loops--) {
1348 getrusage(RUSAGE_SELF, &td->ru_start);
1349 gettimeofday(&td->start, NULL);
1350 memcpy(&td->stat_sample_time, &td->start, sizeof(td->start));
1351
1352 if (td->ratemin)
1353 memcpy(&td->lastrate, &td->stat_sample_time, sizeof(td->lastrate));
1354
1355 clear_io_state(td);
1356 prune_io_piece_log(td);
1357
1358 do_io(td);
1359
1360 td->runtime[td->ddir] += mtime_since_now(&td->start);
1361 if (td_rw(td) && td->io_bytes[td->ddir ^ 1])
1362 td->runtime[td->ddir ^ 1] = td->runtime[td->ddir];
1363
1364 update_rusage_stat(td);
1365
1366 if (td->error || td->terminate)
1367 break;
1368
1369 if (td->verify == VERIFY_NONE)
1370 continue;
1371
1372 clear_io_state(td);
1373 gettimeofday(&td->start, NULL);
1374
1375 do_verify(td);
1376
1377 td->runtime[DDIR_READ] += mtime_since_now(&td->start);
1378
1379 if (td->error || td->terminate)
1380 break;
1381 }
1382
1383 if (td->bw_log)
1384 finish_log(td, td->bw_log, "bw");
1385 if (td->slat_log)
1386 finish_log(td, td->slat_log, "slat");
1387 if (td->clat_log)
1388 finish_log(td, td->clat_log, "clat");
1389 if (td->write_iolog)
1390 write_iolog_close(td);
1391 if (td->exec_postrun)
1392 system(td->exec_postrun);
1393
1394 if (exitall_on_terminate)
1395 terminate_threads(td->groupid);
1396
1397err:
1398 if (td->fd != -1) {
1399 close(td->fd);
1400 td->fd = -1;
1401 }
1402 if (td->mmap)
1403 munmap(td->mmap, td->file_size);
1404 cleanup_io(td);
1405 cleanup_io_u(td);
1406 td_set_runstate(td, TD_EXITED);
1407 return NULL;
1408
1409}
1410
1411static void *fork_main(int shmid, int offset)
1412{
1413 struct thread_data *td;
1414 void *data;
1415
1416 data = shmat(shmid, NULL, 0);
1417 if (data == (void *) -1) {
1418 perror("shmat");
1419 return NULL;
1420 }
1421
1422 td = data + offset * sizeof(struct thread_data);
1423 thread_main(td);
1424 shmdt(data);
1425 return NULL;
1426}
1427
1428static void check_str_update(struct thread_data *td)
1429{
1430 char c = run_str[td->thread_number - 1];
1431
1432 switch (td->runstate) {
1433 case TD_REAPED:
1434 c = '_';
1435 break;
1436 case TD_EXITED:
1437 c = 'E';
1438 break;
1439 case TD_RUNNING:
1440 if (td_rw(td)) {
1441 if (td->sequential)
1442 c = 'M';
1443 else
1444 c = 'm';
1445 } else if (td_read(td)) {
1446 if (td->sequential)
1447 c = 'R';
1448 else
1449 c = 'r';
1450 } else {
1451 if (td->sequential)
1452 c = 'W';
1453 else
1454 c = 'w';
1455 }
1456 break;
1457 case TD_VERIFYING:
1458 c = 'V';
1459 break;
1460 case TD_FSYNCING:
1461 c = 'F';
1462 break;
1463 case TD_CREATED:
1464 c = 'C';
1465 break;
1466 case TD_INITIALIZED:
1467 c = 'I';
1468 break;
1469 case TD_NOT_CREATED:
1470 c = 'P';
1471 break;
1472 default:
1473 log_err("state %d\n", td->runstate);
1474 }
1475
1476 run_str[td->thread_number - 1] = c;
1477}
1478
1479static void eta_to_str(char *str, int eta_sec)
1480{
1481 unsigned int d, h, m, s;
1482 static int always_d, always_h;
1483
1484 d = h = m = s = 0;
1485
1486 s = eta_sec % 60;
1487 eta_sec /= 60;
1488 m = eta_sec % 60;
1489 eta_sec /= 60;
1490 h = eta_sec % 24;
1491 eta_sec /= 24;
1492 d = eta_sec;
1493
1494 if (d || always_d) {
1495 always_d = 1;
1496 str += sprintf(str, "%02dd:", d);
1497 }
1498 if (h || always_h) {
1499 always_h = 1;
1500 str += sprintf(str, "%02dh:", h);
1501 }
1502
1503 str += sprintf(str, "%02dm:", m);
1504 str += sprintf(str, "%02ds", s);
1505}
1506
1507static int thread_eta(struct thread_data *td, unsigned long elapsed)
1508{
1509 unsigned long long bytes_total, bytes_done;
1510 unsigned int eta_sec = 0;
1511
1512 bytes_total = td->total_io_size;
1513
1514 /*
1515 * if writing, bytes_total will be twice the size. If mixing,
1516 * assume a 50/50 split and thus bytes_total will be 50% larger.
1517 */
1518 if (td->verify) {
1519 if (td_rw(td))
1520 bytes_total = bytes_total * 3 / 2;
1521 else
1522 bytes_total <<= 1;
1523 }
1524 if (td->zone_size && td->zone_skip)
1525 bytes_total /= (td->zone_skip / td->zone_size);
1526
1527 if (td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING) {
1528 double perc;
1529
1530 bytes_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE];
1531 perc = (double) bytes_done / (double) bytes_total;
1532 if (perc > 1.0)
1533 perc = 1.0;
1534
1535 eta_sec = (elapsed * (1.0 / perc)) - elapsed;
1536
1537 if (td->timeout && eta_sec > (td->timeout - elapsed))
1538 eta_sec = td->timeout - elapsed;
1539 } else if (td->runstate == TD_NOT_CREATED || td->runstate == TD_CREATED
1540 || td->runstate == TD_INITIALIZED) {
1541 int t_eta = 0, r_eta = 0;
1542
1543 /*
1544 * We can only guess - assume it'll run the full timeout
1545 * if given, otherwise assume it'll run at the specified rate.
1546 */
1547 if (td->timeout)
1548 t_eta = td->timeout + td->start_delay - elapsed;
1549 if (td->rate) {
1550 r_eta = (bytes_total / 1024) / td->rate;
1551 r_eta += td->start_delay - elapsed;
1552 }
1553
1554 if (r_eta && t_eta)
1555 eta_sec = min(r_eta, t_eta);
1556 else if (r_eta)
1557 eta_sec = r_eta;
1558 else if (t_eta)
1559 eta_sec = t_eta;
1560 else
1561 eta_sec = 0;
1562 } else {
1563 /*
1564 * thread is already done or waiting for fsync
1565 */
1566 eta_sec = 0;
1567 }
1568
1569 return eta_sec;
1570}
1571
1572static void print_thread_status(void)
1573{
1574 unsigned long elapsed = time_since_now(&genesis);
1575 int i, nr_running, nr_pending, t_rate, m_rate, *eta_secs, eta_sec;
1576 char eta_str[32];
1577 double perc = 0.0;
1578
1579 if (temp_stall_ts || terse_output)
1580 return;
1581
1582 eta_secs = malloc(thread_number * sizeof(int));
1583 memset(eta_secs, 0, thread_number * sizeof(int));
1584
1585 nr_pending = nr_running = t_rate = m_rate = 0;
1586 for (i = 0; i < thread_number; i++) {
1587 struct thread_data *td = &threads[i];
1588
1589 if (td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING||
1590 td->runstate == TD_FSYNCING) {
1591 nr_running++;
1592 t_rate += td->rate;
1593 m_rate += td->ratemin;
1594 } else if (td->runstate < TD_RUNNING)
1595 nr_pending++;
1596
1597 if (elapsed >= 3)
1598 eta_secs[i] = thread_eta(td, elapsed);
1599 else
1600 eta_secs[i] = INT_MAX;
1601
1602 check_str_update(td);
1603 }
1604
1605 if (exitall_on_terminate)
1606 eta_sec = INT_MAX;
1607 else
1608 eta_sec = 0;
1609
1610 for (i = 0; i < thread_number; i++) {
1611 if (exitall_on_terminate) {
1612 if (eta_secs[i] < eta_sec)
1613 eta_sec = eta_secs[i];
1614 } else {
1615 if (eta_secs[i] > eta_sec)
1616 eta_sec = eta_secs[i];
1617 }
1618 }
1619
1620 if (eta_sec != INT_MAX && elapsed) {
1621 perc = (double) elapsed / (double) (elapsed + eta_sec);
1622 eta_to_str(eta_str, eta_sec);
1623 }
1624
1625 if (!nr_running && !nr_pending)
1626 return;
1627
1628 printf("Threads running: %d", nr_running);
1629 if (m_rate || t_rate)
1630 printf(", commitrate %d/%dKiB/sec", t_rate, m_rate);
1631 if (eta_sec != INT_MAX) {
1632 perc *= 100.0;
1633 printf(": [%s] [%3.2f%% done] [eta %s]", run_str, perc,eta_str);
1634 }
1635 printf("\r");
1636 fflush(stdout);
1637 free(eta_secs);
1638}
1639
1640static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1641{
1642 int i;
1643
1644 /*
1645 * reap exited threads (TD_EXITED -> TD_REAPED)
1646 */
1647 for (i = 0; i < thread_number; i++) {
1648 struct thread_data *td = &threads[i];
1649
1650 if (td->runstate != TD_EXITED)
1651 continue;
1652
1653 td_set_runstate(td, TD_REAPED);
1654
1655 if (td->use_thread) {
1656 long ret;
1657
1658 if (pthread_join(td->thread, (void *) &ret))
1659 perror("thread_join");
1660 } else
1661 waitpid(td->pid, NULL, 0);
1662
1663 (*nr_running)--;
1664 (*m_rate) -= td->ratemin;
1665 (*t_rate) -= td->rate;
1666 }
1667}
1668
1669static void fio_unpin_memory(void *pinned)
1670{
1671 if (pinned) {
1672 if (munlock(pinned, mlock_size) < 0)
1673 perror("munlock");
1674 munmap(pinned, mlock_size);
1675 }
1676}
1677
1678static void *fio_pin_memory(void)
1679{
1680 unsigned long long phys_mem;
1681 void *ptr;
1682
1683 if (!mlock_size)
1684 return NULL;
1685
1686 /*
1687 * Don't allow mlock of more than real_mem-128MB
1688 */
1689 phys_mem = os_phys_mem();
1690 if (phys_mem) {
1691 if ((mlock_size + 128 * 1024 * 1024) > phys_mem) {
1692 mlock_size = phys_mem - 128 * 1024 * 1024;
1693 fprintf(f_out, "fio: limiting mlocked memory to %lluMiB\n", mlock_size >> 20);
1694 }
1695 }
1696
1697 ptr = mmap(NULL, mlock_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | OS_MAP_ANON, 0, 0);
1698 if (!ptr) {
1699 perror("malloc locked mem");
1700 return NULL;
1701 }
1702 if (mlock(ptr, mlock_size) < 0) {
1703 munmap(ptr, mlock_size);
1704 perror("mlock");
1705 return NULL;
1706 }
1707
1708 return ptr;
1709}
1710
1711static void run_threads(void)
1712{
1713 struct thread_data *td;
1714 unsigned long spent;
1715 int i, todo, nr_running, m_rate, t_rate, nr_started;
1716 void *mlocked_mem;
1717
1718 mlocked_mem = fio_pin_memory();
1719
1720 if (!terse_output) {
1721 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
1722 fflush(stdout);
1723 }
1724
1725 signal(SIGINT, sig_handler);
1726 signal(SIGALRM, sig_handler);
1727
1728 todo = thread_number;
1729 nr_running = 0;
1730 nr_started = 0;
1731 m_rate = t_rate = 0;
1732
1733 for (i = 0; i < thread_number; i++) {
1734 td = &threads[i];
1735
1736 run_str[td->thread_number - 1] = 'P';
1737
1738 init_disk_util(td);
1739
1740 if (!td->create_serialize)
1741 continue;
1742
1743 /*
1744 * do file setup here so it happens sequentially,
1745 * we don't want X number of threads getting their
1746 * client data interspersed on disk
1747 */
1748 if (setup_file(td)) {
1749 td_set_runstate(td, TD_REAPED);
1750 todo--;
1751 }
1752 }
1753
1754 gettimeofday(&genesis, NULL);
1755
1756 while (todo) {
1757 struct thread_data *map[MAX_JOBS];
1758 struct timeval this_start;
1759 int this_jobs = 0, left;
1760
1761 /*
1762 * create threads (TD_NOT_CREATED -> TD_CREATED)
1763 */
1764 for (i = 0; i < thread_number; i++) {
1765 td = &threads[i];
1766
1767 if (td->runstate != TD_NOT_CREATED)
1768 continue;
1769
1770 /*
1771 * never got a chance to start, killed by other
1772 * thread for some reason
1773 */
1774 if (td->terminate) {
1775 todo--;
1776 continue;
1777 }
1778
1779 if (td->start_delay) {
1780 spent = mtime_since_now(&genesis);
1781
1782 if (td->start_delay * 1000 > spent)
1783 continue;
1784 }
1785
1786 if (td->stonewall && (nr_started || nr_running))
1787 break;
1788
1789 /*
1790 * Set state to created. Thread will transition
1791 * to TD_INITIALIZED when it's done setting up.
1792 */
1793 td_set_runstate(td, TD_CREATED);
1794 map[this_jobs++] = td;
1795 fio_sem_init(&startup_sem, 1);
1796 nr_started++;
1797
1798 if (td->use_thread) {
1799 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1800 perror("thread_create");
1801 nr_started--;
1802 }
1803 } else {
1804 if (fork())
1805 fio_sem_down(&startup_sem);
1806 else {
1807 fork_main(shm_id, i);
1808 exit(0);
1809 }
1810 }
1811 }
1812
1813 /*
1814 * Wait for the started threads to transition to
1815 * TD_INITIALIZED.
1816 */
1817 gettimeofday(&this_start, NULL);
1818 left = this_jobs;
1819 while (left) {
1820 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1821 break;
1822
1823 usleep(100000);
1824
1825 for (i = 0; i < this_jobs; i++) {
1826 td = map[i];
1827 if (!td)
1828 continue;
1829 if (td->runstate == TD_INITIALIZED) {
1830 map[i] = NULL;
1831 left--;
1832 } else if (td->runstate >= TD_EXITED) {
1833 map[i] = NULL;
1834 left--;
1835 todo--;
1836 nr_running++; /* work-around... */
1837 }
1838 }
1839 }
1840
1841 if (left) {
1842 log_err("fio: %d jobs failed to start\n", left);
1843 for (i = 0; i < this_jobs; i++) {
1844 td = map[i];
1845 if (!td)
1846 continue;
1847 kill(td->pid, SIGTERM);
1848 }
1849 break;
1850 }
1851
1852 /*
1853 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1854 */
1855 for (i = 0; i < thread_number; i++) {
1856 td = &threads[i];
1857
1858 if (td->runstate != TD_INITIALIZED)
1859 continue;
1860
1861 td_set_runstate(td, TD_RUNNING);
1862 nr_running++;
1863 nr_started--;
1864 m_rate += td->ratemin;
1865 t_rate += td->rate;
1866 todo--;
1867 fio_sem_up(&td->mutex);
1868 }
1869
1870 reap_threads(&nr_running, &t_rate, &m_rate);
1871
1872 if (todo)
1873 usleep(100000);
1874 }
1875
1876 while (nr_running) {
1877 reap_threads(&nr_running, &t_rate, &m_rate);
1878 usleep(10000);
1879 }
1880
1881 update_io_ticks();
1882 fio_unpin_memory(mlocked_mem);
1883}
1884
1885int main(int argc, char *argv[])
1886{
1887 if (parse_options(argc, argv))
1888 return 1;
1889
1890 if (!thread_number) {
1891 log_err("Nothing to do\n");
1892 return 1;
1893 }
1894
1895 disk_util_timer_arm();
1896
1897 run_threads();
1898 show_run_stats();
1899
1900 return 0;
1901}