client: fix mem leak
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <sys/stat.h>
34#include <sys/wait.h>
35#include <sys/ipc.h>
36#include <sys/shm.h>
37#include <sys/mman.h>
38
39#include "fio.h"
40#include "hash.h"
41#include "smalloc.h"
42#include "verify.h"
43#include "trim.h"
44#include "diskutil.h"
45#include "cgroup.h"
46#include "profile.h"
47#include "lib/rand.h"
48#include "memalign.h"
49#include "server.h"
50
51unsigned long page_mask;
52unsigned long page_size;
53
54#define PAGE_ALIGN(buf) \
55 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
56
57int groupid = 0;
58int thread_number = 0;
59int nr_process = 0;
60int nr_thread = 0;
61int shm_id = 0;
62int temp_stall_ts;
63unsigned long done_secs = 0;
64
65static struct fio_mutex *startup_mutex;
66static struct fio_mutex *writeout_mutex;
67static volatile int fio_abort;
68static int exit_value;
69static pthread_t gtod_thread;
70static pthread_t disk_util_thread;
71static struct flist_head *cgroup_list;
72static char *cgroup_mnt;
73
74unsigned long arch_flags = 0;
75
76struct io_log *agg_io_log[2];
77
78#define JOB_START_TIMEOUT (5 * 1000)
79
80void td_set_runstate(struct thread_data *td, int runstate)
81{
82 if (td->runstate == runstate)
83 return;
84
85 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
86 td->runstate, runstate);
87 td->runstate = runstate;
88}
89
90void fio_terminate_threads(int group_id)
91{
92 struct thread_data *td;
93 int i;
94
95 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
96
97 for_each_td(td, i) {
98 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
99 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
100 td->o.name, (int) td->pid);
101 td->terminate = 1;
102 td->o.start_delay = 0;
103
104 /*
105 * if the thread is running, just let it exit
106 */
107 if (!td->pid)
108 continue;
109 else if (td->runstate < TD_RAMP)
110 kill(td->pid, SIGTERM);
111 else {
112 struct ioengine_ops *ops = td->io_ops;
113
114 if (ops && (ops->flags & FIO_SIGTERM))
115 kill(td->pid, SIGTERM);
116 }
117 }
118 }
119}
120
121static void sig_int(int sig)
122{
123 if (threads) {
124 log_info("\nfio: terminating on signal %d\n", sig);
125 exit_backend = 1;
126 fflush(stdout);
127 exit_value = 128;
128 fio_terminate_threads(TERMINATE_ALL);
129 }
130}
131
132static void *disk_thread_main(void *data)
133{
134 fio_mutex_up(startup_mutex);
135
136 while (threads) {
137 usleep(DISK_UTIL_MSEC * 1000);
138 if (!threads)
139 break;
140 update_io_ticks();
141
142 if (is_backend)
143 fio_server_send_status();
144 else
145 print_thread_status();
146 }
147
148 return NULL;
149}
150
151static int create_disk_util_thread(void)
152{
153 int ret;
154
155 ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
156 if (ret) {
157 log_err("Can't create disk util thread: %s\n", strerror(ret));
158 return 1;
159 }
160
161 ret = pthread_detach(disk_util_thread);
162 if (ret) {
163 log_err("Can't detatch disk util thread: %s\n", strerror(ret));
164 return 1;
165 }
166
167 dprint(FD_MUTEX, "wait on startup_mutex\n");
168 fio_mutex_down(startup_mutex);
169 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
170 return 0;
171}
172
173static void set_sig_handlers(void)
174{
175 struct sigaction act;
176
177 memset(&act, 0, sizeof(act));
178 act.sa_handler = sig_int;
179 act.sa_flags = SA_RESTART;
180 sigaction(SIGINT, &act, NULL);
181
182 memset(&act, 0, sizeof(act));
183 act.sa_handler = sig_int;
184 act.sa_flags = SA_RESTART;
185 sigaction(SIGTERM, &act, NULL);
186
187 if (is_backend) {
188 memset(&act, 0, sizeof(act));
189 act.sa_handler = sig_int;
190 act.sa_flags = SA_RESTART;
191 sigaction(SIGPIPE, &act, NULL);
192 }
193}
194
195/*
196 * Check if we are above the minimum rate given.
197 */
198static int __check_min_rate(struct thread_data *td, struct timeval *now,
199 enum fio_ddir ddir)
200{
201 unsigned long long bytes = 0;
202 unsigned long iops = 0;
203 unsigned long spent;
204 unsigned long rate;
205 unsigned int ratemin = 0;
206 unsigned int rate_iops = 0;
207 unsigned int rate_iops_min = 0;
208
209 assert(ddir_rw(ddir));
210
211 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
212 return 0;
213
214 /*
215 * allow a 2 second settle period in the beginning
216 */
217 if (mtime_since(&td->start, now) < 2000)
218 return 0;
219
220 iops += td->this_io_blocks[ddir];
221 bytes += td->this_io_bytes[ddir];
222 ratemin += td->o.ratemin[ddir];
223 rate_iops += td->o.rate_iops[ddir];
224 rate_iops_min += td->o.rate_iops_min[ddir];
225
226 /*
227 * if rate blocks is set, sample is running
228 */
229 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
230 spent = mtime_since(&td->lastrate[ddir], now);
231 if (spent < td->o.ratecycle)
232 return 0;
233
234 if (td->o.rate[ddir]) {
235 /*
236 * check bandwidth specified rate
237 */
238 if (bytes < td->rate_bytes[ddir]) {
239 log_err("%s: min rate %u not met\n", td->o.name,
240 ratemin);
241 return 1;
242 } else {
243 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
244 if (rate < ratemin ||
245 bytes < td->rate_bytes[ddir]) {
246 log_err("%s: min rate %u not met, got"
247 " %luKB/sec\n", td->o.name,
248 ratemin, rate);
249 return 1;
250 }
251 }
252 } else {
253 /*
254 * checks iops specified rate
255 */
256 if (iops < rate_iops) {
257 log_err("%s: min iops rate %u not met\n",
258 td->o.name, rate_iops);
259 return 1;
260 } else {
261 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
262 if (rate < rate_iops_min ||
263 iops < td->rate_blocks[ddir]) {
264 log_err("%s: min iops rate %u not met,"
265 " got %lu\n", td->o.name,
266 rate_iops_min, rate);
267 }
268 }
269 }
270 }
271
272 td->rate_bytes[ddir] = bytes;
273 td->rate_blocks[ddir] = iops;
274 memcpy(&td->lastrate[ddir], now, sizeof(*now));
275 return 0;
276}
277
278static int check_min_rate(struct thread_data *td, struct timeval *now,
279 unsigned long *bytes_done)
280{
281 int ret = 0;
282
283 if (bytes_done[0])
284 ret |= __check_min_rate(td, now, 0);
285 if (bytes_done[1])
286 ret |= __check_min_rate(td, now, 1);
287
288 return ret;
289}
290
291static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
292{
293 if (!td->o.timeout)
294 return 0;
295 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
296 return 1;
297
298 return 0;
299}
300
301/*
302 * When job exits, we can cancel the in-flight IO if we are using async
303 * io. Attempt to do so.
304 */
305static void cleanup_pending_aio(struct thread_data *td)
306{
307 struct flist_head *entry, *n;
308 struct io_u *io_u;
309 int r;
310
311 /*
312 * get immediately available events, if any
313 */
314 r = io_u_queued_complete(td, 0, NULL);
315 if (r < 0)
316 return;
317
318 /*
319 * now cancel remaining active events
320 */
321 if (td->io_ops->cancel) {
322 flist_for_each_safe(entry, n, &td->io_u_busylist) {
323 io_u = flist_entry(entry, struct io_u, list);
324
325 /*
326 * if the io_u isn't in flight, then that generally
327 * means someone leaked an io_u. complain but fix
328 * it up, so we don't stall here.
329 */
330 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
331 log_err("fio: non-busy IO on busy list\n");
332 put_io_u(td, io_u);
333 } else {
334 r = td->io_ops->cancel(td, io_u);
335 if (!r)
336 put_io_u(td, io_u);
337 }
338 }
339 }
340
341 if (td->cur_depth)
342 r = io_u_queued_complete(td, td->cur_depth, NULL);
343}
344
345/*
346 * Helper to handle the final sync of a file. Works just like the normal
347 * io path, just does everything sync.
348 */
349static int fio_io_sync(struct thread_data *td, struct fio_file *f)
350{
351 struct io_u *io_u = __get_io_u(td);
352 int ret;
353
354 if (!io_u)
355 return 1;
356
357 io_u->ddir = DDIR_SYNC;
358 io_u->file = f;
359
360 if (td_io_prep(td, io_u)) {
361 put_io_u(td, io_u);
362 return 1;
363 }
364
365requeue:
366 ret = td_io_queue(td, io_u);
367 if (ret < 0) {
368 td_verror(td, io_u->error, "td_io_queue");
369 put_io_u(td, io_u);
370 return 1;
371 } else if (ret == FIO_Q_QUEUED) {
372 if (io_u_queued_complete(td, 1, NULL) < 0)
373 return 1;
374 } else if (ret == FIO_Q_COMPLETED) {
375 if (io_u->error) {
376 td_verror(td, io_u->error, "td_io_queue");
377 return 1;
378 }
379
380 if (io_u_sync_complete(td, io_u, NULL) < 0)
381 return 1;
382 } else if (ret == FIO_Q_BUSY) {
383 if (td_io_commit(td))
384 return 1;
385 goto requeue;
386 }
387
388 return 0;
389}
390
391static inline void __update_tv_cache(struct thread_data *td)
392{
393 fio_gettime(&td->tv_cache, NULL);
394}
395
396static inline void update_tv_cache(struct thread_data *td)
397{
398 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
399 __update_tv_cache(td);
400}
401
402static int break_on_this_error(struct thread_data *td, int *retptr)
403{
404 int ret = *retptr;
405
406 if (ret < 0 || td->error) {
407 int err;
408
409 if (!td->o.continue_on_error)
410 return 1;
411
412 if (ret < 0)
413 err = -ret;
414 else
415 err = td->error;
416
417 if (td_non_fatal_error(err)) {
418 /*
419 * Continue with the I/Os in case of
420 * a non fatal error.
421 */
422 update_error_count(td, err);
423 td_clear_error(td);
424 *retptr = 0;
425 return 0;
426 } else if (td->o.fill_device && err == ENOSPC) {
427 /*
428 * We expect to hit this error if
429 * fill_device option is set.
430 */
431 td_clear_error(td);
432 td->terminate = 1;
433 return 1;
434 } else {
435 /*
436 * Stop the I/O in case of a fatal
437 * error.
438 */
439 update_error_count(td, err);
440 return 1;
441 }
442 }
443
444 return 0;
445}
446
447/*
448 * The main verify engine. Runs over the writes we previously submitted,
449 * reads the blocks back in, and checks the crc/md5 of the data.
450 */
451static void do_verify(struct thread_data *td)
452{
453 struct fio_file *f;
454 struct io_u *io_u;
455 int ret, min_events;
456 unsigned int i;
457
458 dprint(FD_VERIFY, "starting loop\n");
459
460 /*
461 * sync io first and invalidate cache, to make sure we really
462 * read from disk.
463 */
464 for_each_file(td, f, i) {
465 if (!fio_file_open(f))
466 continue;
467 if (fio_io_sync(td, f))
468 break;
469 if (file_invalidate_cache(td, f))
470 break;
471 }
472
473 if (td->error)
474 return;
475
476 td_set_runstate(td, TD_VERIFYING);
477
478 io_u = NULL;
479 while (!td->terminate) {
480 int ret2, full;
481
482 update_tv_cache(td);
483
484 if (runtime_exceeded(td, &td->tv_cache)) {
485 __update_tv_cache(td);
486 if (runtime_exceeded(td, &td->tv_cache)) {
487 td->terminate = 1;
488 break;
489 }
490 }
491
492 io_u = __get_io_u(td);
493 if (!io_u)
494 break;
495
496 if (get_next_verify(td, io_u)) {
497 put_io_u(td, io_u);
498 break;
499 }
500
501 if (td_io_prep(td, io_u)) {
502 put_io_u(td, io_u);
503 break;
504 }
505
506 if (td->o.verify_async)
507 io_u->end_io = verify_io_u_async;
508 else
509 io_u->end_io = verify_io_u;
510
511 ret = td_io_queue(td, io_u);
512 switch (ret) {
513 case FIO_Q_COMPLETED:
514 if (io_u->error) {
515 ret = -io_u->error;
516 clear_io_u(td, io_u);
517 } else if (io_u->resid) {
518 int bytes = io_u->xfer_buflen - io_u->resid;
519
520 /*
521 * zero read, fail
522 */
523 if (!bytes) {
524 td_verror(td, EIO, "full resid");
525 put_io_u(td, io_u);
526 break;
527 }
528
529 io_u->xfer_buflen = io_u->resid;
530 io_u->xfer_buf += bytes;
531 io_u->offset += bytes;
532
533 if (ddir_rw(io_u->ddir))
534 td->ts.short_io_u[io_u->ddir]++;
535
536 f = io_u->file;
537 if (io_u->offset == f->real_file_size)
538 goto sync_done;
539
540 requeue_io_u(td, &io_u);
541 } else {
542sync_done:
543 ret = io_u_sync_complete(td, io_u, NULL);
544 if (ret < 0)
545 break;
546 }
547 continue;
548 case FIO_Q_QUEUED:
549 break;
550 case FIO_Q_BUSY:
551 requeue_io_u(td, &io_u);
552 ret2 = td_io_commit(td);
553 if (ret2 < 0)
554 ret = ret2;
555 break;
556 default:
557 assert(ret < 0);
558 td_verror(td, -ret, "td_io_queue");
559 break;
560 }
561
562 if (break_on_this_error(td, &ret))
563 break;
564
565 /*
566 * if we can queue more, do so. but check if there are
567 * completed io_u's first. Note that we can get BUSY even
568 * without IO queued, if the system is resource starved.
569 */
570 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
571 if (full || !td->o.iodepth_batch_complete) {
572 min_events = min(td->o.iodepth_batch_complete,
573 td->cur_depth);
574 if (full && !min_events && td->o.iodepth_batch_complete != 0)
575 min_events = 1;
576
577 do {
578 /*
579 * Reap required number of io units, if any,
580 * and do the verification on them through
581 * the callback handler
582 */
583 if (io_u_queued_complete(td, min_events, NULL) < 0) {
584 ret = -1;
585 break;
586 }
587 } while (full && (td->cur_depth > td->o.iodepth_low));
588 }
589 if (ret < 0)
590 break;
591 }
592
593 if (!td->error) {
594 min_events = td->cur_depth;
595
596 if (min_events)
597 ret = io_u_queued_complete(td, min_events, NULL);
598 } else
599 cleanup_pending_aio(td);
600
601 td_set_runstate(td, TD_RUNNING);
602
603 dprint(FD_VERIFY, "exiting loop\n");
604}
605
606/*
607 * Main IO worker function. It retrieves io_u's to process and queues
608 * and reaps them, checking for rate and errors along the way.
609 */
610static void do_io(struct thread_data *td)
611{
612 unsigned int i;
613 int ret = 0;
614
615 if (in_ramp_time(td))
616 td_set_runstate(td, TD_RAMP);
617 else
618 td_set_runstate(td, TD_RUNNING);
619
620 while ( (td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
621 (!flist_empty(&td->trim_list)) ||
622 ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) ) {
623 struct timeval comp_time;
624 unsigned long bytes_done[2] = { 0, 0 };
625 int min_evts = 0;
626 struct io_u *io_u;
627 int ret2, full;
628
629 if (td->terminate)
630 break;
631
632 update_tv_cache(td);
633
634 if (runtime_exceeded(td, &td->tv_cache)) {
635 __update_tv_cache(td);
636 if (runtime_exceeded(td, &td->tv_cache)) {
637 td->terminate = 1;
638 break;
639 }
640 }
641
642 io_u = get_io_u(td);
643 if (!io_u)
644 break;
645
646 /*
647 * Add verification end_io handler, if asked to verify
648 * a previously written file.
649 */
650 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
651 !td_rw(td)) {
652 if (td->o.verify_async)
653 io_u->end_io = verify_io_u_async;
654 else
655 io_u->end_io = verify_io_u;
656 td_set_runstate(td, TD_VERIFYING);
657 } else if (in_ramp_time(td))
658 td_set_runstate(td, TD_RAMP);
659 else
660 td_set_runstate(td, TD_RUNNING);
661
662 ret = td_io_queue(td, io_u);
663 switch (ret) {
664 case FIO_Q_COMPLETED:
665 if (io_u->error) {
666 ret = -io_u->error;
667 clear_io_u(td, io_u);
668 } else if (io_u->resid) {
669 int bytes = io_u->xfer_buflen - io_u->resid;
670 struct fio_file *f = io_u->file;
671
672 /*
673 * zero read, fail
674 */
675 if (!bytes) {
676 td_verror(td, EIO, "full resid");
677 put_io_u(td, io_u);
678 break;
679 }
680
681 io_u->xfer_buflen = io_u->resid;
682 io_u->xfer_buf += bytes;
683 io_u->offset += bytes;
684
685 if (ddir_rw(io_u->ddir))
686 td->ts.short_io_u[io_u->ddir]++;
687
688 if (io_u->offset == f->real_file_size)
689 goto sync_done;
690
691 requeue_io_u(td, &io_u);
692 } else {
693sync_done:
694 if (__should_check_rate(td, 0) ||
695 __should_check_rate(td, 1))
696 fio_gettime(&comp_time, NULL);
697
698 ret = io_u_sync_complete(td, io_u, bytes_done);
699 if (ret < 0)
700 break;
701 }
702 break;
703 case FIO_Q_QUEUED:
704 /*
705 * if the engine doesn't have a commit hook,
706 * the io_u is really queued. if it does have such
707 * a hook, it has to call io_u_queued() itself.
708 */
709 if (td->io_ops->commit == NULL)
710 io_u_queued(td, io_u);
711 break;
712 case FIO_Q_BUSY:
713 requeue_io_u(td, &io_u);
714 ret2 = td_io_commit(td);
715 if (ret2 < 0)
716 ret = ret2;
717 break;
718 default:
719 assert(ret < 0);
720 put_io_u(td, io_u);
721 break;
722 }
723
724 if (break_on_this_error(td, &ret))
725 break;
726
727 /*
728 * See if we need to complete some commands. Note that we
729 * can get BUSY even without IO queued, if the system is
730 * resource starved.
731 */
732 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
733 if (full || !td->o.iodepth_batch_complete) {
734 min_evts = min(td->o.iodepth_batch_complete,
735 td->cur_depth);
736 if (full && !min_evts && td->o.iodepth_batch_complete != 0)
737 min_evts = 1;
738
739 if (__should_check_rate(td, 0) ||
740 __should_check_rate(td, 1))
741 fio_gettime(&comp_time, NULL);
742
743 do {
744 ret = io_u_queued_complete(td, min_evts, bytes_done);
745 if (ret < 0)
746 break;
747
748 } while (full && (td->cur_depth > td->o.iodepth_low));
749 }
750
751 if (ret < 0)
752 break;
753 if (!(bytes_done[0] + bytes_done[1]))
754 continue;
755
756 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
757 if (check_min_rate(td, &comp_time, bytes_done)) {
758 if (exitall_on_terminate)
759 fio_terminate_threads(td->groupid);
760 td_verror(td, EIO, "check_min_rate");
761 break;
762 }
763 }
764
765 if (td->o.thinktime) {
766 unsigned long long b;
767
768 b = td->io_blocks[0] + td->io_blocks[1];
769 if (!(b % td->o.thinktime_blocks)) {
770 int left;
771
772 if (td->o.thinktime_spin)
773 usec_spin(td->o.thinktime_spin);
774
775 left = td->o.thinktime - td->o.thinktime_spin;
776 if (left)
777 usec_sleep(td, left);
778 }
779 }
780 }
781
782 if (td->trim_entries)
783 printf("trim entries %ld\n", td->trim_entries);
784
785 if (td->o.fill_device && td->error == ENOSPC) {
786 td->error = 0;
787 td->terminate = 1;
788 }
789 if (!td->error) {
790 struct fio_file *f;
791
792 i = td->cur_depth;
793 if (i) {
794 ret = io_u_queued_complete(td, i, NULL);
795 if (td->o.fill_device && td->error == ENOSPC)
796 td->error = 0;
797 }
798
799 if (should_fsync(td) && td->o.end_fsync) {
800 td_set_runstate(td, TD_FSYNCING);
801
802 for_each_file(td, f, i) {
803 if (!fio_file_open(f))
804 continue;
805 fio_io_sync(td, f);
806 }
807 }
808 } else
809 cleanup_pending_aio(td);
810
811 /*
812 * stop job if we failed doing any IO
813 */
814 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
815 td->done = 1;
816}
817
818static void cleanup_io_u(struct thread_data *td)
819{
820 struct flist_head *entry, *n;
821 struct io_u *io_u;
822
823 flist_for_each_safe(entry, n, &td->io_u_freelist) {
824 io_u = flist_entry(entry, struct io_u, list);
825
826 flist_del(&io_u->list);
827 fio_memfree(io_u, sizeof(*io_u));
828 }
829
830 free_io_mem(td);
831}
832
833static int init_io_u(struct thread_data *td)
834{
835 struct io_u *io_u;
836 unsigned int max_bs;
837 int cl_align, i, max_units;
838 char *p;
839
840 max_units = td->o.iodepth;
841 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
842 td->orig_buffer_size = (unsigned long long) max_bs
843 * (unsigned long long) max_units;
844
845 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
846 unsigned long bs;
847
848 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
849 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
850 }
851
852 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
853 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
854 return 1;
855 }
856
857 if (allocate_io_mem(td))
858 return 1;
859
860 if (td->o.odirect || td->o.mem_align ||
861 (td->io_ops->flags & FIO_RAWIO))
862 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
863 else
864 p = td->orig_buffer;
865
866 cl_align = os_cache_line_size();
867
868 for (i = 0; i < max_units; i++) {
869 void *ptr;
870
871 if (td->terminate)
872 return 1;
873
874 ptr = fio_memalign(cl_align, sizeof(*io_u));
875 if (!ptr) {
876 log_err("fio: unable to allocate aligned memory\n");
877 break;
878 }
879
880 io_u = ptr;
881 memset(io_u, 0, sizeof(*io_u));
882 INIT_FLIST_HEAD(&io_u->list);
883 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
884
885 if (!(td->io_ops->flags & FIO_NOIO)) {
886 io_u->buf = p + max_bs * i;
887 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
888
889 if (td_write(td))
890 io_u_fill_buffer(td, io_u, max_bs);
891 if (td_write(td) && td->o.verify_pattern_bytes) {
892 /*
893 * Fill the buffer with the pattern if we are
894 * going to be doing writes.
895 */
896 fill_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
897 }
898 }
899
900 io_u->index = i;
901 io_u->flags = IO_U_F_FREE;
902 flist_add(&io_u->list, &td->io_u_freelist);
903 }
904
905 return 0;
906}
907
908static int switch_ioscheduler(struct thread_data *td)
909{
910 char tmp[256], tmp2[128];
911 FILE *f;
912 int ret;
913
914 if (td->io_ops->flags & FIO_DISKLESSIO)
915 return 0;
916
917 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
918
919 f = fopen(tmp, "r+");
920 if (!f) {
921 if (errno == ENOENT) {
922 log_err("fio: os or kernel doesn't support IO scheduler"
923 " switching\n");
924 return 0;
925 }
926 td_verror(td, errno, "fopen iosched");
927 return 1;
928 }
929
930 /*
931 * Set io scheduler.
932 */
933 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
934 if (ferror(f) || ret != 1) {
935 td_verror(td, errno, "fwrite");
936 fclose(f);
937 return 1;
938 }
939
940 rewind(f);
941
942 /*
943 * Read back and check that the selected scheduler is now the default.
944 */
945 ret = fread(tmp, 1, sizeof(tmp), f);
946 if (ferror(f) || ret < 0) {
947 td_verror(td, errno, "fread");
948 fclose(f);
949 return 1;
950 }
951
952 sprintf(tmp2, "[%s]", td->o.ioscheduler);
953 if (!strstr(tmp, tmp2)) {
954 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
955 td_verror(td, EINVAL, "iosched_switch");
956 fclose(f);
957 return 1;
958 }
959
960 fclose(f);
961 return 0;
962}
963
964static int keep_running(struct thread_data *td)
965{
966 unsigned long long io_done;
967
968 if (td->done)
969 return 0;
970 if (td->o.time_based)
971 return 1;
972 if (td->o.loops) {
973 td->o.loops--;
974 return 1;
975 }
976
977 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
978 + td->io_skip_bytes;
979 if (io_done < td->o.size)
980 return 1;
981
982 return 0;
983}
984
985static void reset_io_counters(struct thread_data *td)
986{
987 td->stat_io_bytes[0] = td->stat_io_bytes[1] = 0;
988 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
989 td->stat_io_blocks[0] = td->stat_io_blocks[1] = 0;
990 td->this_io_blocks[0] = td->this_io_blocks[1] = 0;
991 td->zone_bytes = 0;
992 td->rate_bytes[0] = td->rate_bytes[1] = 0;
993 td->rate_blocks[0] = td->rate_blocks[1] = 0;
994
995 td->last_was_sync = 0;
996
997 /*
998 * reset file done count if we are to start over
999 */
1000 if (td->o.time_based || td->o.loops)
1001 td->nr_done_files = 0;
1002}
1003
1004void reset_all_stats(struct thread_data *td)
1005{
1006 struct timeval tv;
1007 int i;
1008
1009 reset_io_counters(td);
1010
1011 for (i = 0; i < 2; i++) {
1012 td->io_bytes[i] = 0;
1013 td->io_blocks[i] = 0;
1014 td->io_issues[i] = 0;
1015 td->ts.total_io_u[i] = 0;
1016 }
1017
1018 fio_gettime(&tv, NULL);
1019 td->ts.runtime[0] = 0;
1020 td->ts.runtime[1] = 0;
1021 memcpy(&td->epoch, &tv, sizeof(tv));
1022 memcpy(&td->start, &tv, sizeof(tv));
1023}
1024
1025static void clear_io_state(struct thread_data *td)
1026{
1027 struct fio_file *f;
1028 unsigned int i;
1029
1030 reset_io_counters(td);
1031
1032 close_files(td);
1033 for_each_file(td, f, i)
1034 fio_file_clear_done(f);
1035
1036 /*
1037 * Set the same seed to get repeatable runs
1038 */
1039 td_fill_rand_seeds(td);
1040}
1041
1042static int exec_string(const char *string)
1043{
1044 int ret, newlen = strlen(string) + 1 + 8;
1045 char *str;
1046
1047 str = malloc(newlen);
1048 sprintf(str, "sh -c %s", string);
1049
1050 ret = system(str);
1051 if (ret == -1)
1052 log_err("fio: exec of cmd <%s> failed\n", str);
1053
1054 free(str);
1055 return ret;
1056}
1057
1058/*
1059 * Entry point for the thread based jobs. The process based jobs end up
1060 * here as well, after a little setup.
1061 */
1062static void *thread_main(void *data)
1063{
1064 unsigned long long elapsed;
1065 struct thread_data *td = data;
1066 pthread_condattr_t attr;
1067 int clear_state;
1068
1069 if (!td->o.use_thread) {
1070 setsid();
1071 td->pid = getpid();
1072 } else
1073 td->pid = gettid();
1074
1075 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1076
1077 INIT_FLIST_HEAD(&td->io_u_freelist);
1078 INIT_FLIST_HEAD(&td->io_u_busylist);
1079 INIT_FLIST_HEAD(&td->io_u_requeues);
1080 INIT_FLIST_HEAD(&td->io_log_list);
1081 INIT_FLIST_HEAD(&td->io_hist_list);
1082 INIT_FLIST_HEAD(&td->verify_list);
1083 INIT_FLIST_HEAD(&td->trim_list);
1084 pthread_mutex_init(&td->io_u_lock, NULL);
1085 td->io_hist_tree = RB_ROOT;
1086
1087 pthread_condattr_init(&attr);
1088 pthread_cond_init(&td->verify_cond, &attr);
1089 pthread_cond_init(&td->free_cond, &attr);
1090
1091 td_set_runstate(td, TD_INITIALIZED);
1092 dprint(FD_MUTEX, "up startup_mutex\n");
1093 fio_mutex_up(startup_mutex);
1094 dprint(FD_MUTEX, "wait on td->mutex\n");
1095 fio_mutex_down(td->mutex);
1096 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1097
1098 /*
1099 * the ->mutex mutex is now no longer used, close it to avoid
1100 * eating a file descriptor
1101 */
1102 fio_mutex_remove(td->mutex);
1103
1104 /*
1105 * A new gid requires privilege, so we need to do this before setting
1106 * the uid.
1107 */
1108 if (td->o.gid != -1U && setgid(td->o.gid)) {
1109 td_verror(td, errno, "setgid");
1110 goto err;
1111 }
1112 if (td->o.uid != -1U && setuid(td->o.uid)) {
1113 td_verror(td, errno, "setuid");
1114 goto err;
1115 }
1116
1117 /*
1118 * If we have a gettimeofday() thread, make sure we exclude that
1119 * thread from this job
1120 */
1121 if (td->o.gtod_cpu)
1122 fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
1123
1124 /*
1125 * Set affinity first, in case it has an impact on the memory
1126 * allocations.
1127 */
1128 if (td->o.cpumask_set && fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1129 td_verror(td, errno, "cpu_set_affinity");
1130 goto err;
1131 }
1132
1133 /*
1134 * May alter parameters that init_io_u() will use, so we need to
1135 * do this first.
1136 */
1137 if (init_iolog(td))
1138 goto err;
1139
1140 if (init_io_u(td))
1141 goto err;
1142
1143 if (td->o.verify_async && verify_async_init(td))
1144 goto err;
1145
1146 if (td->ioprio_set) {
1147 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1148 td_verror(td, errno, "ioprio_set");
1149 goto err;
1150 }
1151 }
1152
1153 if (td->o.cgroup_weight && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1154 goto err;
1155
1156 if (nice(td->o.nice) == -1) {
1157 td_verror(td, errno, "nice");
1158 goto err;
1159 }
1160
1161 if (td->o.ioscheduler && switch_ioscheduler(td))
1162 goto err;
1163
1164 if (!td->o.create_serialize && setup_files(td))
1165 goto err;
1166
1167 if (td_io_init(td))
1168 goto err;
1169
1170 if (init_random_map(td))
1171 goto err;
1172
1173 if (td->o.exec_prerun) {
1174 if (exec_string(td->o.exec_prerun))
1175 goto err;
1176 }
1177
1178 if (td->o.pre_read) {
1179 if (pre_read_files(td) < 0)
1180 goto err;
1181 }
1182
1183 fio_gettime(&td->epoch, NULL);
1184 getrusage(RUSAGE_SELF, &td->ru_start);
1185
1186 clear_state = 0;
1187 while (keep_running(td)) {
1188 fio_gettime(&td->start, NULL);
1189 memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1190 memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1191 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1192
1193 if (td->o.ratemin[0] || td->o.ratemin[1])
1194 memcpy(&td->lastrate, &td->bw_sample_time,
1195 sizeof(td->lastrate));
1196
1197 if (clear_state)
1198 clear_io_state(td);
1199
1200 prune_io_piece_log(td);
1201
1202 do_io(td);
1203
1204 clear_state = 1;
1205
1206 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1207 elapsed = utime_since_now(&td->start);
1208 td->ts.runtime[DDIR_READ] += elapsed;
1209 }
1210 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1211 elapsed = utime_since_now(&td->start);
1212 td->ts.runtime[DDIR_WRITE] += elapsed;
1213 }
1214
1215 if (td->error || td->terminate)
1216 break;
1217
1218 if (!td->o.do_verify ||
1219 td->o.verify == VERIFY_NONE ||
1220 (td->io_ops->flags & FIO_UNIDIR))
1221 continue;
1222
1223 clear_io_state(td);
1224
1225 fio_gettime(&td->start, NULL);
1226
1227 do_verify(td);
1228
1229 td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1230
1231 if (td->error || td->terminate)
1232 break;
1233 }
1234
1235 update_rusage_stat(td);
1236 td->ts.runtime[0] = (td->ts.runtime[0] + 999) / 1000;
1237 td->ts.runtime[1] = (td->ts.runtime[1] + 999) / 1000;
1238 td->ts.total_run_time = mtime_since_now(&td->epoch);
1239 td->ts.io_bytes[0] = td->io_bytes[0];
1240 td->ts.io_bytes[1] = td->io_bytes[1];
1241
1242 fio_mutex_down(writeout_mutex);
1243 if (td->bw_log) {
1244 if (td->o.bw_log_file) {
1245 finish_log_named(td, td->bw_log,
1246 td->o.bw_log_file, "bw");
1247 } else
1248 finish_log(td, td->bw_log, "bw");
1249 }
1250 if (td->lat_log) {
1251 if (td->o.lat_log_file) {
1252 finish_log_named(td, td->lat_log,
1253 td->o.lat_log_file, "lat");
1254 } else
1255 finish_log(td, td->lat_log, "lat");
1256 }
1257 if (td->slat_log) {
1258 if (td->o.lat_log_file) {
1259 finish_log_named(td, td->slat_log,
1260 td->o.lat_log_file, "slat");
1261 } else
1262 finish_log(td, td->slat_log, "slat");
1263 }
1264 if (td->clat_log) {
1265 if (td->o.lat_log_file) {
1266 finish_log_named(td, td->clat_log,
1267 td->o.lat_log_file, "clat");
1268 } else
1269 finish_log(td, td->clat_log, "clat");
1270 }
1271 if (td->iops_log) {
1272 if (td->o.iops_log_file) {
1273 finish_log_named(td, td->iops_log,
1274 td->o.iops_log_file, "iops");
1275 } else
1276 finish_log(td, td->iops_log, "iops");
1277 }
1278
1279 fio_mutex_up(writeout_mutex);
1280 if (td->o.exec_postrun)
1281 exec_string(td->o.exec_postrun);
1282
1283 if (exitall_on_terminate)
1284 fio_terminate_threads(td->groupid);
1285
1286err:
1287 if (td->error)
1288 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1289 td->verror);
1290
1291 if (td->o.verify_async)
1292 verify_async_exit(td);
1293
1294 close_and_free_files(td);
1295 close_ioengine(td);
1296 cleanup_io_u(td);
1297 cgroup_shutdown(td, &cgroup_mnt);
1298
1299 if (td->o.cpumask_set) {
1300 int ret = fio_cpuset_exit(&td->o.cpumask);
1301
1302 td_verror(td, ret, "fio_cpuset_exit");
1303 }
1304
1305 /*
1306 * do this very late, it will log file closing as well
1307 */
1308 if (td->o.write_iolog_file)
1309 write_iolog_close(td);
1310
1311 options_mem_free(td);
1312 td_set_runstate(td, TD_EXITED);
1313 return (void *) (unsigned long) td->error;
1314}
1315
1316/*
1317 * We cannot pass the td data into a forked process, so attach the td and
1318 * pass it to the thread worker.
1319 */
1320static int fork_main(int shmid, int offset)
1321{
1322 struct thread_data *td;
1323 void *data, *ret;
1324
1325#ifndef __hpux
1326 data = shmat(shmid, NULL, 0);
1327 if (data == (void *) -1) {
1328 int __err = errno;
1329
1330 perror("shmat");
1331 return __err;
1332 }
1333#else
1334 /*
1335 * HP-UX inherits shm mappings?
1336 */
1337 data = threads;
1338#endif
1339
1340 td = data + offset * sizeof(struct thread_data);
1341 ret = thread_main(td);
1342 shmdt(data);
1343 return (int) (unsigned long) ret;
1344}
1345
1346/*
1347 * Run over the job map and reap the threads that have exited, if any.
1348 */
1349static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1350{
1351 struct thread_data *td;
1352 int i, cputhreads, realthreads, pending, status, ret;
1353
1354 /*
1355 * reap exited threads (TD_EXITED -> TD_REAPED)
1356 */
1357 realthreads = pending = cputhreads = 0;
1358 for_each_td(td, i) {
1359 int flags = 0;
1360
1361 /*
1362 * ->io_ops is NULL for a thread that has closed its
1363 * io engine
1364 */
1365 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1366 cputhreads++;
1367 else
1368 realthreads++;
1369
1370 if (!td->pid) {
1371 pending++;
1372 continue;
1373 }
1374 if (td->runstate == TD_REAPED)
1375 continue;
1376 if (td->o.use_thread) {
1377 if (td->runstate == TD_EXITED) {
1378 td_set_runstate(td, TD_REAPED);
1379 goto reaped;
1380 }
1381 continue;
1382 }
1383
1384 flags = WNOHANG;
1385 if (td->runstate == TD_EXITED)
1386 flags = 0;
1387
1388 /*
1389 * check if someone quit or got killed in an unusual way
1390 */
1391 ret = waitpid(td->pid, &status, flags);
1392 if (ret < 0) {
1393 if (errno == ECHILD) {
1394 log_err("fio: pid=%d disappeared %d\n",
1395 (int) td->pid, td->runstate);
1396 td_set_runstate(td, TD_REAPED);
1397 goto reaped;
1398 }
1399 perror("waitpid");
1400 } else if (ret == td->pid) {
1401 if (WIFSIGNALED(status)) {
1402 int sig = WTERMSIG(status);
1403
1404 if (sig != SIGTERM)
1405 log_err("fio: pid=%d, got signal=%d\n",
1406 (int) td->pid, sig);
1407 td_set_runstate(td, TD_REAPED);
1408 goto reaped;
1409 }
1410 if (WIFEXITED(status)) {
1411 if (WEXITSTATUS(status) && !td->error)
1412 td->error = WEXITSTATUS(status);
1413
1414 td_set_runstate(td, TD_REAPED);
1415 goto reaped;
1416 }
1417 }
1418
1419 /*
1420 * thread is not dead, continue
1421 */
1422 pending++;
1423 continue;
1424reaped:
1425 (*nr_running)--;
1426 (*m_rate) -= (td->o.ratemin[0] + td->o.ratemin[1]);
1427 (*t_rate) -= (td->o.rate[0] + td->o.rate[1]);
1428 if (!td->pid)
1429 pending--;
1430
1431 if (td->error)
1432 exit_value++;
1433
1434 done_secs += mtime_since_now(&td->epoch) / 1000;
1435 }
1436
1437 if (*nr_running == cputhreads && !pending && realthreads)
1438 fio_terminate_threads(TERMINATE_ALL);
1439}
1440
1441static void *gtod_thread_main(void *data)
1442{
1443 fio_mutex_up(startup_mutex);
1444
1445 /*
1446 * As long as we have jobs around, update the clock. It would be nice
1447 * to have some way of NOT hammering that CPU with gettimeofday(),
1448 * but I'm not sure what to use outside of a simple CPU nop to relax
1449 * it - we don't want to lose precision.
1450 */
1451 while (threads) {
1452 fio_gtod_update();
1453 nop;
1454 }
1455
1456 return NULL;
1457}
1458
1459static int fio_start_gtod_thread(void)
1460{
1461 pthread_attr_t attr;
1462 int ret;
1463
1464 pthread_attr_init(&attr);
1465 pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN);
1466 ret = pthread_create(&gtod_thread, &attr, gtod_thread_main, NULL);
1467 pthread_attr_destroy(&attr);
1468 if (ret) {
1469 log_err("Can't create gtod thread: %s\n", strerror(ret));
1470 return 1;
1471 }
1472
1473 ret = pthread_detach(gtod_thread);
1474 if (ret) {
1475 log_err("Can't detatch gtod thread: %s\n", strerror(ret));
1476 return 1;
1477 }
1478
1479 dprint(FD_MUTEX, "wait on startup_mutex\n");
1480 fio_mutex_down(startup_mutex);
1481 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1482 return 0;
1483}
1484
1485/*
1486 * Main function for kicking off and reaping jobs, as needed.
1487 */
1488static void run_threads(void)
1489{
1490 struct thread_data *td;
1491 unsigned long spent;
1492 int i, todo, nr_running, m_rate, t_rate, nr_started;
1493
1494 if (fio_pin_memory())
1495 return;
1496
1497 if (fio_gtod_offload && fio_start_gtod_thread())
1498 return;
1499
1500 set_sig_handlers();
1501
1502 if (!terse_output) {
1503 log_info("Starting ");
1504 if (nr_thread)
1505 log_info("%d thread%s", nr_thread,
1506 nr_thread > 1 ? "s" : "");
1507 if (nr_process) {
1508 if (nr_thread)
1509 printf(" and ");
1510 log_info("%d process%s", nr_process,
1511 nr_process > 1 ? "es" : "");
1512 }
1513 log_info("\n");
1514 fflush(stdout);
1515 }
1516
1517 todo = thread_number;
1518 nr_running = 0;
1519 nr_started = 0;
1520 m_rate = t_rate = 0;
1521
1522 for_each_td(td, i) {
1523 print_status_init(td->thread_number - 1);
1524
1525 if (!td->o.create_serialize)
1526 continue;
1527
1528 /*
1529 * do file setup here so it happens sequentially,
1530 * we don't want X number of threads getting their
1531 * client data interspersed on disk
1532 */
1533 if (setup_files(td)) {
1534 exit_value++;
1535 if (td->error)
1536 log_err("fio: pid=%d, err=%d/%s\n",
1537 (int) td->pid, td->error, td->verror);
1538 td_set_runstate(td, TD_REAPED);
1539 todo--;
1540 } else {
1541 struct fio_file *f;
1542 unsigned int j;
1543
1544 /*
1545 * for sharing to work, each job must always open
1546 * its own files. so close them, if we opened them
1547 * for creation
1548 */
1549 for_each_file(td, f, j) {
1550 if (fio_file_open(f))
1551 td_io_close_file(td, f);
1552 }
1553 }
1554 }
1555
1556 set_genesis_time();
1557
1558 while (todo) {
1559 struct thread_data *map[REAL_MAX_JOBS];
1560 struct timeval this_start;
1561 int this_jobs = 0, left;
1562
1563 /*
1564 * create threads (TD_NOT_CREATED -> TD_CREATED)
1565 */
1566 for_each_td(td, i) {
1567 if (td->runstate != TD_NOT_CREATED)
1568 continue;
1569
1570 /*
1571 * never got a chance to start, killed by other
1572 * thread for some reason
1573 */
1574 if (td->terminate) {
1575 todo--;
1576 continue;
1577 }
1578
1579 if (td->o.start_delay) {
1580 spent = mtime_since_genesis();
1581
1582 if (td->o.start_delay * 1000 > spent)
1583 continue;
1584 }
1585
1586 if (td->o.stonewall && (nr_started || nr_running)) {
1587 dprint(FD_PROCESS, "%s: stonewall wait\n",
1588 td->o.name);
1589 break;
1590 }
1591
1592 init_disk_util(td);
1593
1594 /*
1595 * Set state to created. Thread will transition
1596 * to TD_INITIALIZED when it's done setting up.
1597 */
1598 td_set_runstate(td, TD_CREATED);
1599 map[this_jobs++] = td;
1600 nr_started++;
1601
1602 if (td->o.use_thread) {
1603 int ret;
1604
1605 dprint(FD_PROCESS, "will pthread_create\n");
1606 ret = pthread_create(&td->thread, NULL,
1607 thread_main, td);
1608 if (ret) {
1609 log_err("pthread_create: %s\n",
1610 strerror(ret));
1611 nr_started--;
1612 break;
1613 }
1614 ret = pthread_detach(td->thread);
1615 if (ret)
1616 log_err("pthread_detach: %s",
1617 strerror(ret));
1618 } else {
1619 pid_t pid;
1620 dprint(FD_PROCESS, "will fork\n");
1621 pid = fork();
1622 if (!pid) {
1623 int ret = fork_main(shm_id, i);
1624
1625 _exit(ret);
1626 } else if (i == fio_debug_jobno)
1627 *fio_debug_jobp = pid;
1628 }
1629 dprint(FD_MUTEX, "wait on startup_mutex\n");
1630 if (fio_mutex_down_timeout(startup_mutex, 10)) {
1631 log_err("fio: job startup hung? exiting.\n");
1632 fio_terminate_threads(TERMINATE_ALL);
1633 fio_abort = 1;
1634 nr_started--;
1635 break;
1636 }
1637 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1638 }
1639
1640 /*
1641 * Wait for the started threads to transition to
1642 * TD_INITIALIZED.
1643 */
1644 fio_gettime(&this_start, NULL);
1645 left = this_jobs;
1646 while (left && !fio_abort) {
1647 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1648 break;
1649
1650 usleep(100000);
1651
1652 for (i = 0; i < this_jobs; i++) {
1653 td = map[i];
1654 if (!td)
1655 continue;
1656 if (td->runstate == TD_INITIALIZED) {
1657 map[i] = NULL;
1658 left--;
1659 } else if (td->runstate >= TD_EXITED) {
1660 map[i] = NULL;
1661 left--;
1662 todo--;
1663 nr_running++; /* work-around... */
1664 }
1665 }
1666 }
1667
1668 if (left) {
1669 log_err("fio: %d jobs failed to start\n", left);
1670 for (i = 0; i < this_jobs; i++) {
1671 td = map[i];
1672 if (!td)
1673 continue;
1674 kill(td->pid, SIGTERM);
1675 }
1676 break;
1677 }
1678
1679 /*
1680 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1681 */
1682 for_each_td(td, i) {
1683 if (td->runstate != TD_INITIALIZED)
1684 continue;
1685
1686 if (in_ramp_time(td))
1687 td_set_runstate(td, TD_RAMP);
1688 else
1689 td_set_runstate(td, TD_RUNNING);
1690 nr_running++;
1691 nr_started--;
1692 m_rate += td->o.ratemin[0] + td->o.ratemin[1];
1693 t_rate += td->o.rate[0] + td->o.rate[1];
1694 todo--;
1695 fio_mutex_up(td->mutex);
1696 }
1697
1698 reap_threads(&nr_running, &t_rate, &m_rate);
1699
1700 if (todo) {
1701 if (is_backend)
1702 fio_server_idle_loop();
1703 else
1704 usleep(100000);
1705 }
1706 }
1707
1708 while (nr_running) {
1709 reap_threads(&nr_running, &t_rate, &m_rate);
1710
1711 if (is_backend)
1712 fio_server_idle_loop();
1713 else
1714 usleep(10000);
1715 }
1716
1717 update_io_ticks();
1718 fio_unpin_memory();
1719}
1720
1721int exec_run(void)
1722{
1723 if (nr_clients)
1724 return fio_handle_clients();
1725 if (exec_profile && load_profile(exec_profile))
1726 return 1;
1727
1728 if (!thread_number)
1729 return 0;
1730
1731 if (write_bw_log) {
1732 setup_log(&agg_io_log[DDIR_READ]);
1733 setup_log(&agg_io_log[DDIR_WRITE]);
1734 }
1735
1736 startup_mutex = fio_mutex_init(0);
1737 if (startup_mutex == NULL)
1738 return 1;
1739 writeout_mutex = fio_mutex_init(1);
1740 if (writeout_mutex == NULL)
1741 return 1;
1742
1743 set_genesis_time();
1744 create_disk_util_thread();
1745
1746 cgroup_list = smalloc(sizeof(*cgroup_list));
1747 INIT_FLIST_HEAD(cgroup_list);
1748
1749 run_threads();
1750
1751 if (!fio_abort) {
1752 show_run_stats();
1753 if (write_bw_log) {
1754 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1755 __finish_log(agg_io_log[DDIR_WRITE],
1756 "agg-write_bw.log");
1757 }
1758 }
1759
1760 cgroup_kill(cgroup_list);
1761 sfree(cgroup_list);
1762 sfree(cgroup_mnt);
1763
1764 fio_mutex_remove(startup_mutex);
1765 fio_mutex_remove(writeout_mutex);
1766 return exit_value;
1767}
1768
1769void reset_fio_state(void)
1770{
1771 groupid = 0;
1772 thread_number = 0;
1773 nr_process = 0;
1774 nr_thread = 0;
1775 done_secs = 0;
1776}
1777
1778static int endian_check(void)
1779{
1780 union {
1781 uint8_t c[8];
1782 uint64_t v;
1783 } u;
1784 int le = 0, be = 0;
1785
1786 u.v = 0x12;
1787 if (u.c[7] == 0x12)
1788 be = 1;
1789 else if (u.c[0] == 0x12)
1790 le = 1;
1791
1792#if defined(FIO_LITTLE_ENDIAN)
1793 if (be)
1794 return 1;
1795#elif defined(FIO_BIG_ENDIAN)
1796 if (le)
1797 return 1;
1798#else
1799 return 1;
1800#endif
1801
1802 if (!le && !be)
1803 return 1;
1804
1805 return 0;
1806}
1807
1808int main(int argc, char *argv[], char *envp[])
1809{
1810 long ps;
1811
1812 if (endian_check()) {
1813 log_err("fio: endianness settings appear wrong.\n");
1814 log_err("fio: please report this to fio@vger.kernel.org\n");
1815 return 1;
1816 }
1817
1818 arch_init(envp);
1819
1820 sinit();
1821
1822 /*
1823 * We need locale for number printing, if it isn't set then just
1824 * go with the US format.
1825 */
1826 if (!getenv("LC_NUMERIC"))
1827 setlocale(LC_NUMERIC, "en_US");
1828
1829 ps = sysconf(_SC_PAGESIZE);
1830 if (ps < 0) {
1831 log_err("Failed to get page size\n");
1832 return 1;
1833 }
1834
1835 page_size = ps;
1836 page_mask = ps - 1;
1837
1838 fio_keywords_init();
1839
1840 if (parse_options(argc, argv))
1841 return 1;
1842
1843 return exec_run();
1844}