Cmd help type fix
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "hash.h"
39#include "smalloc.h"
40#include "verify.h"
41#include "diskutil.h"
42
43unsigned long page_mask;
44unsigned long page_size;
45#define ALIGN(buf) \
46 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
47
48int groupid = 0;
49int thread_number = 0;
50int nr_process = 0;
51int nr_thread = 0;
52int shm_id = 0;
53int temp_stall_ts;
54unsigned long done_secs = 0;
55
56static struct fio_mutex *startup_mutex;
57static struct fio_mutex *writeout_mutex;
58static volatile int fio_abort;
59static int exit_value;
60static struct itimerval itimer;
61static pthread_t gtod_thread;
62
63struct io_log *agg_io_log[2];
64
65#define TERMINATE_ALL (-1)
66#define JOB_START_TIMEOUT (5 * 1000)
67
68void td_set_runstate(struct thread_data *td, int runstate)
69{
70 if (td->runstate == runstate)
71 return;
72
73 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
74 td->runstate, runstate);
75 td->runstate = runstate;
76}
77
78static void terminate_threads(int group_id)
79{
80 struct thread_data *td;
81 int i;
82
83 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
84
85 for_each_td(td, i) {
86 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
87 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
88 td->o.name, (int) td->pid);
89 td->terminate = 1;
90 td->o.start_delay = 0;
91
92 /*
93 * if the thread is running, just let it exit
94 */
95 if (td->runstate < TD_RUNNING)
96 kill(td->pid, SIGQUIT);
97 else {
98 struct ioengine_ops *ops = td->io_ops;
99
100 if (ops && (ops->flags & FIO_SIGQUIT))
101 kill(td->pid, SIGQUIT);
102 }
103 }
104 }
105}
106
107static void status_timer_arm(void)
108{
109 itimer.it_value.tv_sec = 0;
110 itimer.it_value.tv_usec = DISK_UTIL_MSEC * 1000;
111 setitimer(ITIMER_REAL, &itimer, NULL);
112}
113
114static void sig_alrm(int fio_unused sig)
115{
116 if (threads) {
117 update_io_ticks();
118 print_thread_status();
119 status_timer_arm();
120 }
121}
122
123/*
124 * Happens on thread runs with ctrl-c, ignore our own SIGQUIT
125 */
126static void sig_quit(int sig)
127{
128}
129
130static void sig_int(int sig)
131{
132 if (threads) {
133 printf("\nfio: terminating on signal %d\n", sig);
134 fflush(stdout);
135 terminate_threads(TERMINATE_ALL);
136 }
137}
138
139static void sig_ill(int fio_unused sig)
140{
141 if (!threads)
142 return;
143
144 log_err("fio: illegal instruction. your cpu does not support "
145 "the sse4.2 instruction for crc32c\n");
146 terminate_threads(TERMINATE_ALL);
147 exit(4);
148}
149
150static void set_sig_handlers(void)
151{
152 struct sigaction act;
153
154 memset(&act, 0, sizeof(act));
155 act.sa_handler = sig_alrm;
156 act.sa_flags = SA_RESTART;
157 sigaction(SIGALRM, &act, NULL);
158
159 memset(&act, 0, sizeof(act));
160 act.sa_handler = sig_int;
161 act.sa_flags = SA_RESTART;
162 sigaction(SIGINT, &act, NULL);
163
164 memset(&act, 0, sizeof(act));
165 act.sa_handler = sig_ill;
166 act.sa_flags = SA_RESTART;
167 sigaction(SIGILL, &act, NULL);
168
169 memset(&act, 0, sizeof(act));
170 act.sa_handler = sig_quit;
171 act.sa_flags = SA_RESTART;
172 sigaction(SIGQUIT, &act, NULL);
173}
174
175/*
176 * Check if we are above the minimum rate given.
177 */
178static int __check_min_rate(struct thread_data *td, struct timeval *now,
179 enum td_ddir ddir)
180{
181 unsigned long long bytes = 0;
182 unsigned long iops = 0;
183 unsigned long spent;
184 unsigned long rate;
185 unsigned int ratemin = 0;
186 unsigned int rate_iops = 0;
187 unsigned int rate_iops_min = 0;
188
189 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
190 return 0;
191
192 /*
193 * allow a 2 second settle period in the beginning
194 */
195 if (mtime_since(&td->start, now) < 2000)
196 return 0;
197
198 iops += td->io_blocks[ddir];
199 bytes += td->this_io_bytes[ddir];
200 ratemin += td->o.ratemin[ddir];
201 rate_iops += td->o.rate_iops[ddir];
202 rate_iops_min += td->o.rate_iops_min[ddir];
203
204 /*
205 * if rate blocks is set, sample is running
206 */
207 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
208 spent = mtime_since(&td->lastrate[ddir], now);
209 if (spent < td->o.ratecycle)
210 return 0;
211
212 if (td->o.rate[ddir]) {
213 /*
214 * check bandwidth specified rate
215 */
216 if (bytes < td->rate_bytes[ddir]) {
217 log_err("%s: min rate %u not met\n", td->o.name,
218 ratemin);
219 return 1;
220 } else {
221 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
222 if (rate < ratemin ||
223 bytes < td->rate_bytes[ddir]) {
224 log_err("%s: min rate %u not met, got"
225 " %luKiB/sec\n", td->o.name,
226 ratemin, rate);
227 return 1;
228 }
229 }
230 } else {
231 /*
232 * checks iops specified rate
233 */
234 if (iops < rate_iops) {
235 log_err("%s: min iops rate %u not met\n",
236 td->o.name, rate_iops);
237 return 1;
238 } else {
239 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
240 if (rate < rate_iops_min ||
241 iops < td->rate_blocks[ddir]) {
242 log_err("%s: min iops rate %u not met,"
243 " got %lu\n", td->o.name,
244 rate_iops_min, rate);
245 }
246 }
247 }
248 }
249
250 td->rate_bytes[ddir] = bytes;
251 td->rate_blocks[ddir] = iops;
252 memcpy(&td->lastrate[ddir], now, sizeof(*now));
253 return 0;
254}
255
256static int check_min_rate(struct thread_data *td, struct timeval *now,
257 unsigned long *bytes_done)
258{
259 int ret = 0;
260
261 if (bytes_done[0])
262 ret |= __check_min_rate(td, now, 0);
263 if (bytes_done[1])
264 ret |= __check_min_rate(td, now, 1);
265
266 return ret;
267}
268
269static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
270{
271 if (!td->o.timeout)
272 return 0;
273 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
274 return 1;
275
276 return 0;
277}
278
279/*
280 * When job exits, we can cancel the in-flight IO if we are using async
281 * io. Attempt to do so.
282 */
283static void cleanup_pending_aio(struct thread_data *td)
284{
285 struct flist_head *entry, *n;
286 struct io_u *io_u;
287 int r;
288
289 /*
290 * get immediately available events, if any
291 */
292 r = io_u_queued_complete(td, 0, NULL);
293 if (r < 0)
294 return;
295
296 /*
297 * now cancel remaining active events
298 */
299 if (td->io_ops->cancel) {
300 flist_for_each_safe(entry, n, &td->io_u_busylist) {
301 io_u = flist_entry(entry, struct io_u, list);
302
303 /*
304 * if the io_u isn't in flight, then that generally
305 * means someone leaked an io_u. complain but fix
306 * it up, so we don't stall here.
307 */
308 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
309 log_err("fio: non-busy IO on busy list\n");
310 put_io_u(td, io_u);
311 } else {
312 r = td->io_ops->cancel(td, io_u);
313 if (!r)
314 put_io_u(td, io_u);
315 }
316 }
317 }
318
319 if (td->cur_depth)
320 r = io_u_queued_complete(td, td->cur_depth, NULL);
321}
322
323/*
324 * Helper to handle the final sync of a file. Works just like the normal
325 * io path, just does everything sync.
326 */
327static int fio_io_sync(struct thread_data *td, struct fio_file *f)
328{
329 struct io_u *io_u = __get_io_u(td);
330 int ret;
331
332 if (!io_u)
333 return 1;
334
335 io_u->ddir = DDIR_SYNC;
336 io_u->file = f;
337
338 if (td_io_prep(td, io_u)) {
339 put_io_u(td, io_u);
340 return 1;
341 }
342
343requeue:
344 ret = td_io_queue(td, io_u);
345 if (ret < 0) {
346 td_verror(td, io_u->error, "td_io_queue");
347 put_io_u(td, io_u);
348 return 1;
349 } else if (ret == FIO_Q_QUEUED) {
350 if (io_u_queued_complete(td, 1, NULL) < 0)
351 return 1;
352 } else if (ret == FIO_Q_COMPLETED) {
353 if (io_u->error) {
354 td_verror(td, io_u->error, "td_io_queue");
355 return 1;
356 }
357
358 if (io_u_sync_complete(td, io_u, NULL) < 0)
359 return 1;
360 } else if (ret == FIO_Q_BUSY) {
361 if (td_io_commit(td))
362 return 1;
363 goto requeue;
364 }
365
366 return 0;
367}
368
369static inline void update_tv_cache(struct thread_data *td)
370{
371 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
372 fio_gettime(&td->tv_cache, NULL);
373}
374
375static int break_on_this_error(struct thread_data *td, int *retptr)
376{
377 int ret = *retptr;
378
379 if (ret < 0 || td->error) {
380 int err;
381
382 if (!td->o.continue_on_error)
383 return 1;
384
385 if (ret < 0)
386 err = -ret;
387 else
388 err = td->error;
389
390 update_error_count(td, err);
391
392 if (td_non_fatal_error(err)) {
393 /*
394 * Continue with the I/Os in case of
395 * a non fatal error.
396 */
397 td_clear_error(td);
398 *retptr = 0;
399 return 0;
400 } else {
401 /*
402 * Stop the I/O in case of a fatal
403 * error.
404 */
405 return 1;
406 }
407 }
408
409 return 0;
410}
411
412/*
413 * The main verify engine. Runs over the writes we previously submitted,
414 * reads the blocks back in, and checks the crc/md5 of the data.
415 */
416static void do_verify(struct thread_data *td)
417{
418 struct fio_file *f;
419 struct io_u *io_u;
420 int ret, min_events;
421 unsigned int i;
422
423 /*
424 * sync io first and invalidate cache, to make sure we really
425 * read from disk.
426 */
427 for_each_file(td, f, i) {
428 if (!fio_file_open(f))
429 continue;
430 if (fio_io_sync(td, f))
431 break;
432 if (file_invalidate_cache(td, f))
433 break;
434 }
435
436 if (td->error)
437 return;
438
439 td_set_runstate(td, TD_VERIFYING);
440
441 io_u = NULL;
442 while (!td->terminate) {
443 int ret2, full;
444
445 io_u = __get_io_u(td);
446 if (!io_u)
447 break;
448
449 update_tv_cache(td);
450
451 if (runtime_exceeded(td, &td->tv_cache)) {
452 put_io_u(td, io_u);
453 td->terminate = 1;
454 break;
455 }
456
457 if (get_next_verify(td, io_u)) {
458 put_io_u(td, io_u);
459 break;
460 }
461
462 if (td_io_prep(td, io_u)) {
463 put_io_u(td, io_u);
464 break;
465 }
466
467 io_u->end_io = verify_io_u;
468
469 ret = td_io_queue(td, io_u);
470 switch (ret) {
471 case FIO_Q_COMPLETED:
472 if (io_u->error) {
473 ret = -io_u->error;
474 clear_io_u(td, io_u);
475 } else if (io_u->resid) {
476 int bytes = io_u->xfer_buflen - io_u->resid;
477 struct fio_file *f = io_u->file;
478
479 /*
480 * zero read, fail
481 */
482 if (!bytes) {
483 td_verror(td, EIO, "full resid");
484 put_io_u(td, io_u);
485 break;
486 }
487
488 io_u->xfer_buflen = io_u->resid;
489 io_u->xfer_buf += bytes;
490 io_u->offset += bytes;
491
492 td->ts.short_io_u[io_u->ddir]++;
493
494 if (io_u->offset == f->real_file_size)
495 goto sync_done;
496
497 requeue_io_u(td, &io_u);
498 } else {
499sync_done:
500 ret = io_u_sync_complete(td, io_u, NULL);
501 if (ret < 0)
502 break;
503 }
504 continue;
505 case FIO_Q_QUEUED:
506 break;
507 case FIO_Q_BUSY:
508 requeue_io_u(td, &io_u);
509 ret2 = td_io_commit(td);
510 if (ret2 < 0)
511 ret = ret2;
512 break;
513 default:
514 assert(ret < 0);
515 td_verror(td, -ret, "td_io_queue");
516 break;
517 }
518
519 if (break_on_this_error(td, &ret))
520 break;
521
522 /*
523 * if we can queue more, do so. but check if there are
524 * completed io_u's first.
525 */
526 full = queue_full(td) || ret == FIO_Q_BUSY;
527 if (full || !td->o.iodepth_batch_complete) {
528 min_events = td->o.iodepth_batch_complete;
529 if (full && !min_events)
530 min_events = 1;
531
532 do {
533 /*
534 * Reap required number of io units, if any,
535 * and do the verification on them through
536 * the callback handler
537 */
538 if (io_u_queued_complete(td, min_events, NULL) < 0) {
539 ret = -1;
540 break;
541 }
542 } while (full && (td->cur_depth > td->o.iodepth_low));
543 }
544 if (ret < 0)
545 break;
546 }
547
548 if (!td->error) {
549 min_events = td->cur_depth;
550
551 if (min_events)
552 ret = io_u_queued_complete(td, min_events, NULL);
553 } else
554 cleanup_pending_aio(td);
555
556 td_set_runstate(td, TD_RUNNING);
557}
558
559/*
560 * Main IO worker function. It retrieves io_u's to process and queues
561 * and reaps them, checking for rate and errors along the way.
562 */
563static void do_io(struct thread_data *td)
564{
565 unsigned int i;
566 int ret = 0;
567
568 if (in_ramp_time(td))
569 td_set_runstate(td, TD_RAMP);
570 else
571 td_set_runstate(td, TD_RUNNING);
572
573 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) {
574 struct timeval comp_time;
575 unsigned long bytes_done[2] = { 0, 0 };
576 int min_evts = 0;
577 struct io_u *io_u;
578 int ret2, full;
579
580 if (td->terminate)
581 break;
582
583 io_u = get_io_u(td);
584 if (!io_u)
585 break;
586
587 update_tv_cache(td);
588
589 if (runtime_exceeded(td, &td->tv_cache)) {
590 put_io_u(td, io_u);
591 td->terminate = 1;
592 break;
593 }
594
595 /*
596 * Add verification end_io handler, if asked to verify
597 * a previously written file.
598 */
599 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ) {
600 io_u->end_io = verify_io_u;
601 td_set_runstate(td, TD_VERIFYING);
602 } else if (in_ramp_time(td))
603 td_set_runstate(td, TD_RAMP);
604 else
605 td_set_runstate(td, TD_RUNNING);
606
607 ret = td_io_queue(td, io_u);
608 switch (ret) {
609 case FIO_Q_COMPLETED:
610 if (io_u->error) {
611 ret = -io_u->error;
612 clear_io_u(td, io_u);
613 } else if (io_u->resid) {
614 int bytes = io_u->xfer_buflen - io_u->resid;
615 struct fio_file *f = io_u->file;
616
617 /*
618 * zero read, fail
619 */
620 if (!bytes) {
621 td_verror(td, EIO, "full resid");
622 put_io_u(td, io_u);
623 break;
624 }
625
626 io_u->xfer_buflen = io_u->resid;
627 io_u->xfer_buf += bytes;
628 io_u->offset += bytes;
629
630 td->ts.short_io_u[io_u->ddir]++;
631
632 if (io_u->offset == f->real_file_size)
633 goto sync_done;
634
635 requeue_io_u(td, &io_u);
636 } else {
637sync_done:
638 if (__should_check_rate(td, 0) ||
639 __should_check_rate(td, 1))
640 fio_gettime(&comp_time, NULL);
641
642 ret = io_u_sync_complete(td, io_u, bytes_done);
643 if (ret < 0)
644 break;
645 }
646 break;
647 case FIO_Q_QUEUED:
648 /*
649 * if the engine doesn't have a commit hook,
650 * the io_u is really queued. if it does have such
651 * a hook, it has to call io_u_queued() itself.
652 */
653 if (td->io_ops->commit == NULL)
654 io_u_queued(td, io_u);
655 break;
656 case FIO_Q_BUSY:
657 requeue_io_u(td, &io_u);
658 ret2 = td_io_commit(td);
659 if (ret2 < 0)
660 ret = ret2;
661 break;
662 default:
663 assert(ret < 0);
664 put_io_u(td, io_u);
665 break;
666 }
667
668 if (break_on_this_error(td, &ret))
669 break;
670
671 /*
672 * See if we need to complete some commands
673 */
674 full = queue_full(td) || ret == FIO_Q_BUSY;
675 if (full || !td->o.iodepth_batch_complete) {
676 min_evts = td->o.iodepth_batch_complete;
677 if (full && !min_evts)
678 min_evts = 1;
679
680 if (__should_check_rate(td, 0) ||
681 __should_check_rate(td, 1))
682 fio_gettime(&comp_time, NULL);
683
684 do {
685 ret = io_u_queued_complete(td, min_evts, bytes_done);
686 if (ret < 0)
687 break;
688
689 } while (full && (td->cur_depth > td->o.iodepth_low));
690 }
691
692 if (ret < 0)
693 break;
694 if (!(bytes_done[0] + bytes_done[1]))
695 continue;
696
697 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
698 if (check_min_rate(td, &comp_time, bytes_done)) {
699 if (exitall_on_terminate)
700 terminate_threads(td->groupid);
701 td_verror(td, EIO, "check_min_rate");
702 break;
703 }
704 }
705
706 if (td->o.thinktime) {
707 unsigned long long b;
708
709 b = td->io_blocks[0] + td->io_blocks[1];
710 if (!(b % td->o.thinktime_blocks)) {
711 int left;
712
713 if (td->o.thinktime_spin)
714 usec_spin(td->o.thinktime_spin);
715
716 left = td->o.thinktime - td->o.thinktime_spin;
717 if (left)
718 usec_sleep(td, left);
719 }
720 }
721 }
722
723 if (td->o.fill_device && td->error == ENOSPC) {
724 td->error = 0;
725 td->terminate = 1;
726 }
727 if (!td->error) {
728 struct fio_file *f;
729
730 i = td->cur_depth;
731 if (i)
732 ret = io_u_queued_complete(td, i, NULL);
733
734 if (should_fsync(td) && td->o.end_fsync) {
735 td_set_runstate(td, TD_FSYNCING);
736
737 for_each_file(td, f, i) {
738 if (!fio_file_open(f))
739 continue;
740 fio_io_sync(td, f);
741 }
742 }
743 } else
744 cleanup_pending_aio(td);
745
746 /*
747 * stop job if we failed doing any IO
748 */
749 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
750 td->done = 1;
751}
752
753static void cleanup_io_u(struct thread_data *td)
754{
755 struct flist_head *entry, *n;
756 struct io_u *io_u;
757
758 flist_for_each_safe(entry, n, &td->io_u_freelist) {
759 io_u = flist_entry(entry, struct io_u, list);
760
761 flist_del(&io_u->list);
762 free(io_u);
763 }
764
765 free_io_mem(td);
766}
767
768static int init_io_u(struct thread_data *td)
769{
770 struct io_u *io_u;
771 unsigned int max_bs;
772 int cl_align, i, max_units;
773 char *p;
774
775 max_units = td->o.iodepth;
776 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
777 td->orig_buffer_size = (unsigned long long) max_bs
778 * (unsigned long long) max_units;
779
780 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
781 unsigned long bs;
782
783 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
784 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
785 }
786
787 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
788 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
789 return 1;
790 }
791
792 if (allocate_io_mem(td))
793 return 1;
794
795 if (td->o.odirect)
796 p = ALIGN(td->orig_buffer);
797 else
798 p = td->orig_buffer;
799
800 cl_align = os_cache_line_size();
801
802 for (i = 0; i < max_units; i++) {
803 void *ptr;
804
805 if (td->terminate)
806 return 1;
807
808 if (posix_memalign(&ptr, cl_align, sizeof(*io_u))) {
809 log_err("fio: posix_memalign=%s\n", strerror(errno));
810 break;
811 }
812
813 io_u = ptr;
814 memset(io_u, 0, sizeof(*io_u));
815 INIT_FLIST_HEAD(&io_u->list);
816
817 if (!(td->io_ops->flags & FIO_NOIO)) {
818 io_u->buf = p + max_bs * i;
819
820 if (td_write(td) && !td->o.refill_buffers)
821 io_u_fill_buffer(td, io_u, max_bs);
822 }
823
824 io_u->index = i;
825 io_u->flags = IO_U_F_FREE;
826 flist_add(&io_u->list, &td->io_u_freelist);
827 }
828
829 return 0;
830}
831
832static int switch_ioscheduler(struct thread_data *td)
833{
834 char tmp[256], tmp2[128];
835 FILE *f;
836 int ret;
837
838 if (td->io_ops->flags & FIO_DISKLESSIO)
839 return 0;
840
841 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
842
843 f = fopen(tmp, "r+");
844 if (!f) {
845 if (errno == ENOENT) {
846 log_err("fio: os or kernel doesn't support IO scheduler"
847 " switching\n");
848 return 0;
849 }
850 td_verror(td, errno, "fopen iosched");
851 return 1;
852 }
853
854 /*
855 * Set io scheduler.
856 */
857 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
858 if (ferror(f) || ret != 1) {
859 td_verror(td, errno, "fwrite");
860 fclose(f);
861 return 1;
862 }
863
864 rewind(f);
865
866 /*
867 * Read back and check that the selected scheduler is now the default.
868 */
869 ret = fread(tmp, 1, sizeof(tmp), f);
870 if (ferror(f) || ret < 0) {
871 td_verror(td, errno, "fread");
872 fclose(f);
873 return 1;
874 }
875
876 sprintf(tmp2, "[%s]", td->o.ioscheduler);
877 if (!strstr(tmp, tmp2)) {
878 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
879 td_verror(td, EINVAL, "iosched_switch");
880 fclose(f);
881 return 1;
882 }
883
884 fclose(f);
885 return 0;
886}
887
888static int keep_running(struct thread_data *td)
889{
890 unsigned long long io_done;
891
892 if (td->done)
893 return 0;
894 if (td->o.time_based)
895 return 1;
896 if (td->o.loops) {
897 td->o.loops--;
898 return 1;
899 }
900
901 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
902 + td->io_skip_bytes;
903 if (io_done < td->o.size)
904 return 1;
905
906 return 0;
907}
908
909static void reset_io_counters(struct thread_data *td)
910{
911 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
912 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
913 td->zone_bytes = 0;
914 td->rate_bytes[0] = td->rate_bytes[1] = 0;
915 td->rate_blocks[0] = td->rate_blocks[1] = 0;
916
917 td->last_was_sync = 0;
918
919 /*
920 * reset file done count if we are to start over
921 */
922 if (td->o.time_based || td->o.loops)
923 td->nr_done_files = 0;
924
925 /*
926 * Set the same seed to get repeatable runs
927 */
928 td_fill_rand_seeds(td);
929}
930
931void reset_all_stats(struct thread_data *td)
932{
933 struct timeval tv;
934 int i;
935
936 reset_io_counters(td);
937
938 for (i = 0; i < 2; i++) {
939 td->io_bytes[i] = 0;
940 td->io_blocks[i] = 0;
941 td->io_issues[i] = 0;
942 td->ts.total_io_u[i] = 0;
943 }
944
945 fio_gettime(&tv, NULL);
946 memcpy(&td->epoch, &tv, sizeof(tv));
947 memcpy(&td->start, &tv, sizeof(tv));
948}
949
950static void clear_io_state(struct thread_data *td)
951{
952 struct fio_file *f;
953 unsigned int i;
954
955 reset_io_counters(td);
956
957 close_files(td);
958 for_each_file(td, f, i)
959 fio_file_clear_done(f);
960}
961
962static int exec_string(const char *string)
963{
964 int ret, newlen = strlen(string) + 1 + 8;
965 char *str;
966
967 str = malloc(newlen);
968 sprintf(str, "sh -c %s", string);
969
970 ret = system(str);
971 if (ret == -1)
972 log_err("fio: exec of cmd <%s> failed\n", str);
973
974 free(str);
975 return ret;
976}
977
978/*
979 * Entry point for the thread based jobs. The process based jobs end up
980 * here as well, after a little setup.
981 */
982static void *thread_main(void *data)
983{
984 unsigned long long runtime[2], elapsed;
985 struct thread_data *td = data;
986 int clear_state;
987
988 if (!td->o.use_thread)
989 setsid();
990
991 td->pid = getpid();
992
993 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
994
995 INIT_FLIST_HEAD(&td->io_u_freelist);
996 INIT_FLIST_HEAD(&td->io_u_busylist);
997 INIT_FLIST_HEAD(&td->io_u_requeues);
998 INIT_FLIST_HEAD(&td->io_log_list);
999 INIT_FLIST_HEAD(&td->io_hist_list);
1000 td->io_hist_tree = RB_ROOT;
1001
1002 td_set_runstate(td, TD_INITIALIZED);
1003 dprint(FD_MUTEX, "up startup_mutex\n");
1004 fio_mutex_up(startup_mutex);
1005 dprint(FD_MUTEX, "wait on td->mutex\n");
1006 fio_mutex_down(td->mutex);
1007 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1008
1009 /*
1010 * the ->mutex mutex is now no longer used, close it to avoid
1011 * eating a file descriptor
1012 */
1013 fio_mutex_remove(td->mutex);
1014
1015 /*
1016 * May alter parameters that init_io_u() will use, so we need to
1017 * do this first.
1018 */
1019 if (init_iolog(td))
1020 goto err;
1021
1022 if (init_io_u(td))
1023 goto err;
1024
1025 if (td->o.cpumask_set && fio_setaffinity(td) == -1) {
1026 td_verror(td, errno, "cpu_set_affinity");
1027 goto err;
1028 }
1029
1030 /*
1031 * If we have a gettimeofday() thread, make sure we exclude that
1032 * thread from this job
1033 */
1034 if (td->o.gtod_cpu) {
1035 fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
1036 if (fio_setaffinity(td) == -1) {
1037 td_verror(td, errno, "cpu_set_affinity");
1038 goto err;
1039 }
1040 }
1041
1042 if (td->ioprio_set) {
1043 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1044 td_verror(td, errno, "ioprio_set");
1045 goto err;
1046 }
1047 }
1048
1049 if (nice(td->o.nice) == -1) {
1050 td_verror(td, errno, "nice");
1051 goto err;
1052 }
1053
1054 if (td->o.ioscheduler && switch_ioscheduler(td))
1055 goto err;
1056
1057 if (!td->o.create_serialize && setup_files(td))
1058 goto err;
1059
1060 if (td_io_init(td))
1061 goto err;
1062
1063 if (init_random_map(td))
1064 goto err;
1065
1066 if (td->o.exec_prerun) {
1067 if (exec_string(td->o.exec_prerun))
1068 goto err;
1069 }
1070
1071 if (td->o.pre_read) {
1072 if (pre_read_files(td) < 0)
1073 goto err;
1074 }
1075
1076 fio_gettime(&td->epoch, NULL);
1077 getrusage(RUSAGE_SELF, &td->ts.ru_start);
1078
1079 runtime[0] = runtime[1] = 0;
1080 clear_state = 0;
1081 while (keep_running(td)) {
1082 fio_gettime(&td->start, NULL);
1083 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
1084 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1085
1086 if (td->o.ratemin[0] || td->o.ratemin[1])
1087 memcpy(&td->lastrate, &td->ts.stat_sample_time,
1088 sizeof(td->lastrate));
1089
1090 if (clear_state)
1091 clear_io_state(td);
1092
1093 prune_io_piece_log(td);
1094
1095 do_io(td);
1096
1097 clear_state = 1;
1098
1099 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1100 elapsed = utime_since_now(&td->start);
1101 runtime[DDIR_READ] += elapsed;
1102 }
1103 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1104 elapsed = utime_since_now(&td->start);
1105 runtime[DDIR_WRITE] += elapsed;
1106 }
1107
1108 if (td->error || td->terminate)
1109 break;
1110
1111 if (!td->o.do_verify ||
1112 td->o.verify == VERIFY_NONE ||
1113 (td->io_ops->flags & FIO_UNIDIR))
1114 continue;
1115
1116 clear_io_state(td);
1117
1118 fio_gettime(&td->start, NULL);
1119
1120 do_verify(td);
1121
1122 runtime[DDIR_READ] += utime_since_now(&td->start);
1123
1124 if (td->error || td->terminate)
1125 break;
1126 }
1127
1128 update_rusage_stat(td);
1129 td->ts.runtime[0] = (runtime[0] + 999) / 1000;
1130 td->ts.runtime[1] = (runtime[1] + 999) / 1000;
1131 td->ts.total_run_time = mtime_since_now(&td->epoch);
1132 td->ts.io_bytes[0] = td->io_bytes[0];
1133 td->ts.io_bytes[1] = td->io_bytes[1];
1134
1135 fio_mutex_down(writeout_mutex);
1136 if (td->ts.bw_log) {
1137 if (td->o.bw_log_file) {
1138 finish_log_named(td, td->ts.bw_log,
1139 td->o.bw_log_file, "bw");
1140 } else
1141 finish_log(td, td->ts.bw_log, "bw");
1142 }
1143 if (td->ts.slat_log) {
1144 if (td->o.lat_log_file) {
1145 finish_log_named(td, td->ts.slat_log,
1146 td->o.lat_log_file, "slat");
1147 } else
1148 finish_log(td, td->ts.slat_log, "slat");
1149 }
1150 if (td->ts.clat_log) {
1151 if (td->o.lat_log_file) {
1152 finish_log_named(td, td->ts.clat_log,
1153 td->o.lat_log_file, "clat");
1154 } else
1155 finish_log(td, td->ts.clat_log, "clat");
1156 }
1157 fio_mutex_up(writeout_mutex);
1158 if (td->o.exec_postrun)
1159 exec_string(td->o.exec_postrun);
1160
1161 if (exitall_on_terminate)
1162 terminate_threads(td->groupid);
1163
1164err:
1165 if (td->error)
1166 printf("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1167 td->verror);
1168 close_and_free_files(td);
1169 close_ioengine(td);
1170 cleanup_io_u(td);
1171
1172 if (td->o.cpumask_set) {
1173 int ret = fio_cpuset_exit(&td->o.cpumask);
1174
1175 td_verror(td, ret, "fio_cpuset_exit");
1176 }
1177
1178 /*
1179 * do this very late, it will log file closing as well
1180 */
1181 if (td->o.write_iolog_file)
1182 write_iolog_close(td);
1183
1184 options_mem_free(td);
1185 td_set_runstate(td, TD_EXITED);
1186 return (void *) (unsigned long) td->error;
1187}
1188
1189/*
1190 * We cannot pass the td data into a forked process, so attach the td and
1191 * pass it to the thread worker.
1192 */
1193static int fork_main(int shmid, int offset)
1194{
1195 struct thread_data *td;
1196 void *data, *ret;
1197
1198 data = shmat(shmid, NULL, 0);
1199 if (data == (void *) -1) {
1200 int __err = errno;
1201
1202 perror("shmat");
1203 return __err;
1204 }
1205
1206 td = data + offset * sizeof(struct thread_data);
1207 ret = thread_main(td);
1208 shmdt(data);
1209 return (int) (unsigned long) ret;
1210}
1211
1212/*
1213 * Run over the job map and reap the threads that have exited, if any.
1214 */
1215static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1216{
1217 struct thread_data *td;
1218 int i, cputhreads, realthreads, pending, status, ret;
1219
1220 /*
1221 * reap exited threads (TD_EXITED -> TD_REAPED)
1222 */
1223 realthreads = pending = cputhreads = 0;
1224 for_each_td(td, i) {
1225 int flags = 0;
1226
1227 /*
1228 * ->io_ops is NULL for a thread that has closed its
1229 * io engine
1230 */
1231 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1232 cputhreads++;
1233 else
1234 realthreads++;
1235
1236 if (!td->pid) {
1237 pending++;
1238 continue;
1239 }
1240 if (td->runstate == TD_REAPED)
1241 continue;
1242 if (td->o.use_thread) {
1243 if (td->runstate == TD_EXITED) {
1244 td_set_runstate(td, TD_REAPED);
1245 goto reaped;
1246 }
1247 continue;
1248 }
1249
1250 flags = WNOHANG;
1251 if (td->runstate == TD_EXITED)
1252 flags = 0;
1253
1254 /*
1255 * check if someone quit or got killed in an unusual way
1256 */
1257 ret = waitpid(td->pid, &status, flags);
1258 if (ret < 0) {
1259 if (errno == ECHILD) {
1260 log_err("fio: pid=%d disappeared %d\n",
1261 (int) td->pid, td->runstate);
1262 td_set_runstate(td, TD_REAPED);
1263 goto reaped;
1264 }
1265 perror("waitpid");
1266 } else if (ret == td->pid) {
1267 if (WIFSIGNALED(status)) {
1268 int sig = WTERMSIG(status);
1269
1270 if (sig != SIGQUIT)
1271 log_err("fio: pid=%d, got signal=%d\n",
1272 (int) td->pid, sig);
1273 td_set_runstate(td, TD_REAPED);
1274 goto reaped;
1275 }
1276 if (WIFEXITED(status)) {
1277 if (WEXITSTATUS(status) && !td->error)
1278 td->error = WEXITSTATUS(status);
1279
1280 td_set_runstate(td, TD_REAPED);
1281 goto reaped;
1282 }
1283 }
1284
1285 /*
1286 * thread is not dead, continue
1287 */
1288 pending++;
1289 continue;
1290reaped:
1291 (*nr_running)--;
1292 (*m_rate) -= (td->o.ratemin[0] + td->o.ratemin[1]);
1293 (*t_rate) -= (td->o.rate[0] + td->o.rate[1]);
1294 if (!td->pid)
1295 pending--;
1296
1297 if (td->error)
1298 exit_value++;
1299
1300 done_secs += mtime_since_now(&td->epoch) / 1000;
1301 }
1302
1303 if (*nr_running == cputhreads && !pending && realthreads)
1304 terminate_threads(TERMINATE_ALL);
1305}
1306
1307static void *gtod_thread_main(void *data)
1308{
1309 fio_mutex_up(startup_mutex);
1310
1311 /*
1312 * As long as we have jobs around, update the clock. It would be nice
1313 * to have some way of NOT hammering that CPU with gettimeofday(),
1314 * but I'm not sure what to use outside of a simple CPU nop to relax
1315 * it - we don't want to lose precision.
1316 */
1317 while (threads) {
1318 fio_gtod_update();
1319 nop;
1320 }
1321
1322 return NULL;
1323}
1324
1325static int fio_start_gtod_thread(void)
1326{
1327 int ret;
1328
1329 ret = pthread_create(&gtod_thread, NULL, gtod_thread_main, NULL);
1330 if (ret) {
1331 log_err("Can't create gtod thread: %s\n", strerror(ret));
1332 return 1;
1333 }
1334
1335 ret = pthread_detach(gtod_thread);
1336 if (ret) {
1337 log_err("Can't detatch gtod thread: %s\n", strerror(ret));
1338 return 1;
1339 }
1340
1341 dprint(FD_MUTEX, "wait on startup_mutex\n");
1342 fio_mutex_down(startup_mutex);
1343 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1344 return 0;
1345}
1346
1347/*
1348 * Main function for kicking off and reaping jobs, as needed.
1349 */
1350static void run_threads(void)
1351{
1352 struct thread_data *td;
1353 unsigned long spent;
1354 int i, todo, nr_running, m_rate, t_rate, nr_started;
1355
1356 if (fio_pin_memory())
1357 return;
1358
1359 if (fio_gtod_offload && fio_start_gtod_thread())
1360 return;
1361
1362 if (!terse_output) {
1363 printf("Starting ");
1364 if (nr_thread)
1365 printf("%d thread%s", nr_thread,
1366 nr_thread > 1 ? "s" : "");
1367 if (nr_process) {
1368 if (nr_thread)
1369 printf(" and ");
1370 printf("%d process%s", nr_process,
1371 nr_process > 1 ? "es" : "");
1372 }
1373 printf("\n");
1374 fflush(stdout);
1375 }
1376
1377 set_sig_handlers();
1378
1379 todo = thread_number;
1380 nr_running = 0;
1381 nr_started = 0;
1382 m_rate = t_rate = 0;
1383
1384 for_each_td(td, i) {
1385 print_status_init(td->thread_number - 1);
1386
1387 if (!td->o.create_serialize) {
1388 init_disk_util(td);
1389 continue;
1390 }
1391
1392 /*
1393 * do file setup here so it happens sequentially,
1394 * we don't want X number of threads getting their
1395 * client data interspersed on disk
1396 */
1397 if (setup_files(td)) {
1398 exit_value++;
1399 if (td->error)
1400 log_err("fio: pid=%d, err=%d/%s\n",
1401 (int) td->pid, td->error, td->verror);
1402 td_set_runstate(td, TD_REAPED);
1403 todo--;
1404 } else {
1405 struct fio_file *f;
1406 unsigned int i;
1407
1408 /*
1409 * for sharing to work, each job must always open
1410 * its own files. so close them, if we opened them
1411 * for creation
1412 */
1413 for_each_file(td, f, i) {
1414 if (fio_file_open(f))
1415 td_io_close_file(td, f);
1416 }
1417 }
1418
1419 init_disk_util(td);
1420 }
1421
1422 set_genesis_time();
1423
1424 while (todo) {
1425 struct thread_data *map[MAX_JOBS];
1426 struct timeval this_start;
1427 int this_jobs = 0, left;
1428
1429 /*
1430 * create threads (TD_NOT_CREATED -> TD_CREATED)
1431 */
1432 for_each_td(td, i) {
1433 if (td->runstate != TD_NOT_CREATED)
1434 continue;
1435
1436 /*
1437 * never got a chance to start, killed by other
1438 * thread for some reason
1439 */
1440 if (td->terminate) {
1441 todo--;
1442 continue;
1443 }
1444
1445 if (td->o.start_delay) {
1446 spent = mtime_since_genesis();
1447
1448 if (td->o.start_delay * 1000 > spent)
1449 continue;
1450 }
1451
1452 if (td->o.stonewall && (nr_started || nr_running)) {
1453 dprint(FD_PROCESS, "%s: stonewall wait\n",
1454 td->o.name);
1455 break;
1456 }
1457
1458 /*
1459 * Set state to created. Thread will transition
1460 * to TD_INITIALIZED when it's done setting up.
1461 */
1462 td_set_runstate(td, TD_CREATED);
1463 map[this_jobs++] = td;
1464 nr_started++;
1465
1466 if (td->o.use_thread) {
1467 int ret;
1468
1469 dprint(FD_PROCESS, "will pthread_create\n");
1470 ret = pthread_create(&td->thread, NULL,
1471 thread_main, td);
1472 if (ret) {
1473 log_err("pthread_create: %s\n",
1474 strerror(ret));
1475 nr_started--;
1476 break;
1477 }
1478 ret = pthread_detach(td->thread);
1479 if (ret)
1480 log_err("pthread_detach: %s",
1481 strerror(ret));
1482 } else {
1483 pid_t pid;
1484 dprint(FD_PROCESS, "will fork\n");
1485 pid = fork();
1486 if (!pid) {
1487 int ret = fork_main(shm_id, i);
1488
1489 _exit(ret);
1490 } else if (i == fio_debug_jobno)
1491 *fio_debug_jobp = pid;
1492 }
1493 dprint(FD_MUTEX, "wait on startup_mutex\n");
1494 fio_mutex_down(startup_mutex);
1495 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1496 }
1497
1498 /*
1499 * Wait for the started threads to transition to
1500 * TD_INITIALIZED.
1501 */
1502 fio_gettime(&this_start, NULL);
1503 left = this_jobs;
1504 while (left && !fio_abort) {
1505 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1506 break;
1507
1508 usleep(100000);
1509
1510 for (i = 0; i < this_jobs; i++) {
1511 td = map[i];
1512 if (!td)
1513 continue;
1514 if (td->runstate == TD_INITIALIZED) {
1515 map[i] = NULL;
1516 left--;
1517 } else if (td->runstate >= TD_EXITED) {
1518 map[i] = NULL;
1519 left--;
1520 todo--;
1521 nr_running++; /* work-around... */
1522 }
1523 }
1524 }
1525
1526 if (left) {
1527 log_err("fio: %d jobs failed to start\n", left);
1528 for (i = 0; i < this_jobs; i++) {
1529 td = map[i];
1530 if (!td)
1531 continue;
1532 kill(td->pid, SIGTERM);
1533 }
1534 break;
1535 }
1536
1537 /*
1538 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1539 */
1540 for_each_td(td, i) {
1541 if (td->runstate != TD_INITIALIZED)
1542 continue;
1543
1544 if (in_ramp_time(td))
1545 td_set_runstate(td, TD_RAMP);
1546 else
1547 td_set_runstate(td, TD_RUNNING);
1548 nr_running++;
1549 nr_started--;
1550 m_rate += td->o.ratemin[0] + td->o.ratemin[1];
1551 t_rate += td->o.rate[0] + td->o.rate[1];
1552 todo--;
1553 fio_mutex_up(td->mutex);
1554 }
1555
1556 reap_threads(&nr_running, &t_rate, &m_rate);
1557
1558 if (todo)
1559 usleep(100000);
1560 }
1561
1562 while (nr_running) {
1563 reap_threads(&nr_running, &t_rate, &m_rate);
1564 usleep(10000);
1565 }
1566
1567 update_io_ticks();
1568 fio_unpin_memory();
1569}
1570
1571int main(int argc, char *argv[])
1572{
1573 long ps;
1574
1575 sinit();
1576
1577 /*
1578 * We need locale for number printing, if it isn't set then just
1579 * go with the US format.
1580 */
1581 if (!getenv("LC_NUMERIC"))
1582 setlocale(LC_NUMERIC, "en_US");
1583
1584 if (parse_options(argc, argv))
1585 return 1;
1586
1587 if (!thread_number)
1588 return 0;
1589
1590 ps = sysconf(_SC_PAGESIZE);
1591 if (ps < 0) {
1592 log_err("Failed to get page size\n");
1593 return 1;
1594 }
1595
1596 page_size = ps;
1597 page_mask = ps - 1;
1598
1599 if (write_bw_log) {
1600 setup_log(&agg_io_log[DDIR_READ]);
1601 setup_log(&agg_io_log[DDIR_WRITE]);
1602 }
1603
1604 startup_mutex = fio_mutex_init(0);
1605 writeout_mutex = fio_mutex_init(1);
1606
1607 set_genesis_time();
1608
1609 status_timer_arm();
1610
1611 run_threads();
1612
1613 if (!fio_abort) {
1614 show_run_stats();
1615 if (write_bw_log) {
1616 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1617 __finish_log(agg_io_log[DDIR_WRITE],
1618 "agg-write_bw.log");
1619 }
1620 }
1621
1622 fio_mutex_remove(startup_mutex);
1623 fio_mutex_remove(writeout_mutex);
1624 return exit_value;
1625}