Static error value checking
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "os.h"
39
40static unsigned long page_mask;
41#define ALIGN(buf) \
42 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
43
44int groupid = 0;
45int thread_number = 0;
46int shm_id = 0;
47int temp_stall_ts;
48
49static volatile int startup_sem;
50static volatile int fio_abort;
51static int exit_value;
52
53struct io_log *agg_io_log[2];
54
55#define TERMINATE_ALL (-1)
56#define JOB_START_TIMEOUT (5 * 1000)
57
58static inline void td_set_runstate(struct thread_data *td, int runstate)
59{
60 td->runstate = runstate;
61}
62
63static void terminate_threads(int group_id, int forced_kill)
64{
65 struct thread_data *td;
66 int i;
67
68 for_each_td(td, i) {
69 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
70 td->terminate = 1;
71 td->start_delay = 0;
72 if (forced_kill)
73 td_set_runstate(td, TD_EXITED);
74 }
75 }
76}
77
78static void sig_handler(int sig)
79{
80 switch (sig) {
81 case SIGALRM:
82 update_io_ticks();
83 disk_util_timer_arm();
84 print_thread_status();
85 break;
86 default:
87 printf("\nfio: terminating on signal %d\n", sig);
88 fflush(stdout);
89 terminate_threads(TERMINATE_ALL, 0);
90 break;
91 }
92}
93
94/*
95 * Check if we are above the minimum rate given.
96 */
97static int check_min_rate(struct thread_data *td, struct timeval *now)
98{
99 unsigned long spent;
100 unsigned long rate;
101 int ddir = td->ddir;
102
103 /*
104 * allow a 2 second settle period in the beginning
105 */
106 if (mtime_since(&td->start, now) < 2000)
107 return 0;
108
109 /*
110 * if rate blocks is set, sample is running
111 */
112 if (td->rate_bytes) {
113 spent = mtime_since(&td->lastrate, now);
114 if (spent < td->ratecycle)
115 return 0;
116
117 rate = (td->this_io_bytes[ddir] - td->rate_bytes) / spent;
118 if (rate < td->ratemin) {
119 fprintf(f_out, "%s: min rate %u not met, got %luKiB/sec\n", td->name, td->ratemin, rate);
120 return 1;
121 }
122 }
123
124 td->rate_bytes = td->this_io_bytes[ddir];
125 memcpy(&td->lastrate, now, sizeof(*now));
126 return 0;
127}
128
129static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
130{
131 if (!td->timeout)
132 return 0;
133 if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
134 return 1;
135
136 return 0;
137}
138
139/*
140 * When job exits, we can cancel the in-flight IO if we are using async
141 * io. Attempt to do so.
142 */
143static void cleanup_pending_aio(struct thread_data *td)
144{
145 struct list_head *entry, *n;
146 struct io_u *io_u;
147 int r;
148
149 /*
150 * get immediately available events, if any
151 */
152 r = io_u_queued_complete(td, 0, NULL);
153 if (r < 0)
154 return;
155
156 /*
157 * now cancel remaining active events
158 */
159 if (td->io_ops->cancel) {
160 list_for_each_safe(entry, n, &td->io_u_busylist) {
161 io_u = list_entry(entry, struct io_u, list);
162
163 r = td->io_ops->cancel(td, io_u);
164 if (!r)
165 put_io_u(td, io_u);
166 }
167 }
168
169 if (td->cur_depth)
170 r = io_u_queued_complete(td, td->cur_depth, NULL);
171}
172
173/*
174 * Helper to handle the final sync of a file. Works just like the normal
175 * io path, just does everything sync.
176 */
177static int fio_io_sync(struct thread_data *td, struct fio_file *f)
178{
179 struct io_u *io_u = __get_io_u(td);
180 int ret;
181
182 if (!io_u)
183 return 1;
184
185 io_u->ddir = DDIR_SYNC;
186 io_u->file = f;
187
188 if (td_io_prep(td, io_u)) {
189 put_io_u(td, io_u);
190 return 1;
191 }
192
193requeue:
194 ret = td_io_queue(td, io_u);
195 if (ret < 0) {
196 td_verror(td, io_u->error);
197 put_io_u(td, io_u);
198 return 1;
199 } else if (ret == FIO_Q_QUEUED) {
200 if (io_u_queued_complete(td, 1, NULL))
201 return 1;
202 } else if (ret == FIO_Q_COMPLETED) {
203 if (io_u->error) {
204 td_verror(td, io_u->error);
205 return 1;
206 }
207
208 if (io_u_sync_complete(td, io_u, NULL) < 0)
209 return 1;
210 } else if (ret == FIO_Q_BUSY) {
211 if (td_io_commit(td))
212 return 1;
213 goto requeue;
214 }
215
216 return 0;
217}
218
219/*
220 * The main verify engine. Runs over the writes we previusly submitted,
221 * reads the blocks back in, and checks the crc/md5 of the data.
222 */
223static void do_verify(struct thread_data *td)
224{
225 struct fio_file *f;
226 struct io_u *io_u;
227 int ret, i, min_events;
228
229 /*
230 * sync io first and invalidate cache, to make sure we really
231 * read from disk.
232 */
233 for_each_file(td, f, i) {
234 if (fio_io_sync(td, f))
235 break;
236 if (file_invalidate_cache(td, f))
237 break;
238 }
239
240 if (td->error)
241 return;
242
243 td_set_runstate(td, TD_VERIFYING);
244
245 io_u = NULL;
246 while (!td->terminate) {
247 io_u = __get_io_u(td);
248 if (!io_u)
249 break;
250
251 if (runtime_exceeded(td, &io_u->start_time))
252 break;
253
254 if (get_next_verify(td, io_u))
255 break;
256
257 if (td_io_prep(td, io_u))
258 break;
259
260requeue:
261 ret = td_io_queue(td, io_u);
262
263 switch (ret) {
264 case FIO_Q_COMPLETED:
265 if (io_u->error)
266 ret = -io_u->error;
267 if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
268 int bytes = io_u->xfer_buflen - io_u->resid;
269
270 io_u->xfer_buflen = io_u->resid;
271 io_u->xfer_buf += bytes;
272 goto requeue;
273 }
274 ret = io_u_sync_complete(td, io_u, verify_io_u);
275 if (ret)
276 break;
277 continue;
278 case FIO_Q_QUEUED:
279 break;
280 case FIO_Q_BUSY:
281 requeue_io_u(td, &io_u);
282 ret = td_io_commit(td);
283 break;
284 default:
285 assert(ret < 0);
286 td_verror(td, -ret);
287 break;
288 }
289
290 if (ret < 0 || td->error)
291 break;
292
293 /*
294 * if we can queue more, do so. but check if there are
295 * completed io_u's first.
296 */
297 min_events = 0;
298 if (queue_full(td) || ret == FIO_Q_BUSY) {
299 min_events = 1;
300
301 if (td->cur_depth > td->iodepth_low)
302 min_events = td->cur_depth - td->iodepth_low;
303 }
304
305 /*
306 * Reap required number of io units, if any, and do the
307 * verification on them through the callback handler
308 */
309 if (io_u_queued_complete(td, min_events, verify_io_u))
310 break;
311 }
312
313 if (io_u)
314 put_io_u(td, io_u);
315
316 if (td->cur_depth)
317 cleanup_pending_aio(td);
318
319 td_set_runstate(td, TD_RUNNING);
320}
321
322/*
323 * Not really an io thread, all it does is burn CPU cycles in the specified
324 * manner.
325 */
326static void do_cpuio(struct thread_data *td)
327{
328 struct timeval e;
329 int split = 100 / td->cpuload;
330 int i = 0;
331
332 while (!td->terminate) {
333 fio_gettime(&e, NULL);
334
335 if (runtime_exceeded(td, &e))
336 break;
337
338 if (!(i % split))
339 __usec_sleep(10000);
340 else
341 usec_sleep(td, 10000);
342
343 i++;
344 }
345}
346
347/*
348 * Main IO worker function. It retrieves io_u's to process and queues
349 * and reaps them, checking for rate and errors along the way.
350 */
351static void do_io(struct thread_data *td)
352{
353 struct timeval s;
354 unsigned long usec;
355 int i, ret = 0;
356
357 td_set_runstate(td, TD_RUNNING);
358
359 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->io_size) {
360 struct timeval comp_time;
361 long bytes_done = 0;
362 int min_evts = 0;
363 struct io_u *io_u;
364
365 if (td->terminate)
366 break;
367
368 io_u = get_io_u(td);
369 if (!io_u)
370 break;
371
372 memcpy(&s, &io_u->start_time, sizeof(s));
373
374 if (runtime_exceeded(td, &s)) {
375 put_io_u(td, io_u);
376 break;
377 }
378requeue:
379 ret = td_io_queue(td, io_u);
380
381 switch (ret) {
382 case FIO_Q_COMPLETED:
383 if (io_u->error) {
384 ret = io_u->error;
385 break;
386 }
387 if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
388 int bytes = io_u->xfer_buflen - io_u->resid;
389
390 io_u->xfer_buflen = io_u->resid;
391 io_u->xfer_buf += bytes;
392 goto requeue;
393 }
394 fio_gettime(&comp_time, NULL);
395 bytes_done = io_u_sync_complete(td, io_u, NULL);
396 if (bytes_done < 0)
397 ret = bytes_done;
398 break;
399 case FIO_Q_QUEUED:
400 /*
401 * if the engine doesn't have a commit hook,
402 * the io_u is really queued. if it does have such
403 * a hook, it has to call io_u_queued() itself.
404 */
405 if (td->io_ops->commit == NULL)
406 io_u_queued(td, io_u);
407 break;
408 case FIO_Q_BUSY:
409 requeue_io_u(td, &io_u);
410 ret = td_io_commit(td);
411 break;
412 default:
413 assert(ret < 0);
414 put_io_u(td, io_u);
415 break;
416 }
417
418 if (ret < 0 || td->error)
419 break;
420
421 /*
422 * See if we need to complete some commands
423 */
424 if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) {
425 min_evts = 0;
426 if (queue_full(td) || ret == FIO_Q_BUSY) {
427 min_evts = 1;
428
429 if (td->cur_depth > td->iodepth_low)
430 min_evts = td->cur_depth - td->iodepth_low;
431 }
432
433 fio_gettime(&comp_time, NULL);
434 bytes_done = io_u_queued_complete(td, min_evts, NULL);
435 if (bytes_done < 0)
436 break;
437 }
438
439 if (!bytes_done)
440 continue;
441
442 /*
443 * the rate is batched for now, it should work for batches
444 * of completions except the very first one which may look
445 * a little bursty
446 */
447 usec = utime_since(&s, &comp_time);
448
449 rate_throttle(td, usec, bytes_done, td->ddir);
450
451 if (check_min_rate(td, &comp_time)) {
452 if (exitall_on_terminate)
453 terminate_threads(td->groupid, 0);
454 td_verror(td, ENODATA);
455 break;
456 }
457
458 if (td->thinktime) {
459 unsigned long long b;
460
461 b = td->io_blocks[0] + td->io_blocks[1];
462 if (!(b % td->thinktime_blocks)) {
463 int left;
464
465 if (td->thinktime_spin)
466 __usec_sleep(td->thinktime_spin);
467
468 left = td->thinktime - td->thinktime_spin;
469 if (left)
470 usec_sleep(td, left);
471 }
472 }
473 }
474
475 if (!td->error) {
476 struct fio_file *f;
477
478 if (td->cur_depth)
479 cleanup_pending_aio(td);
480
481 if (should_fsync(td) && td->end_fsync) {
482 td_set_runstate(td, TD_FSYNCING);
483 for_each_file(td, f, i)
484 fio_io_sync(td, f);
485 }
486 }
487}
488
489static void cleanup_io_u(struct thread_data *td)
490{
491 struct list_head *entry, *n;
492 struct io_u *io_u;
493
494 list_for_each_safe(entry, n, &td->io_u_freelist) {
495 io_u = list_entry(entry, struct io_u, list);
496
497 list_del(&io_u->list);
498 free(io_u);
499 }
500
501 free_io_mem(td);
502}
503
504/*
505 * "randomly" fill the buffer contents
506 */
507static void fill_rand_buf(struct io_u *io_u, int max_bs)
508{
509 int *ptr = io_u->buf;
510
511 while ((void *) ptr - io_u->buf < max_bs) {
512 *ptr = rand() * 0x9e370001;
513 ptr++;
514 }
515}
516
517static int init_io_u(struct thread_data *td)
518{
519 struct io_u *io_u;
520 unsigned int max_bs;
521 int i, max_units;
522 char *p;
523
524 if (td->io_ops->flags & FIO_CPUIO)
525 return 0;
526
527 if (td->io_ops->flags & FIO_SYNCIO)
528 max_units = 1;
529 else
530 max_units = td->iodepth;
531
532 max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
533 td->orig_buffer_size = max_bs * max_units;
534
535 if (td->mem_type == MEM_SHMHUGE || td->mem_type == MEM_MMAPHUGE)
536 td->orig_buffer_size = (td->orig_buffer_size + td->hugepage_size - 1) & ~(td->hugepage_size - 1);
537 else
538 td->orig_buffer_size += page_mask;
539
540 if (allocate_io_mem(td))
541 return 1;
542
543 p = ALIGN(td->orig_buffer);
544 for (i = 0; i < max_units; i++) {
545 io_u = malloc(sizeof(*io_u));
546 memset(io_u, 0, sizeof(*io_u));
547 INIT_LIST_HEAD(&io_u->list);
548
549 io_u->buf = p + max_bs * i;
550 if (td_write(td) || td_rw(td))
551 fill_rand_buf(io_u, max_bs);
552
553 io_u->index = i;
554 list_add(&io_u->list, &td->io_u_freelist);
555 }
556
557 return 0;
558}
559
560static int switch_ioscheduler(struct thread_data *td)
561{
562 char tmp[256], tmp2[128];
563 FILE *f;
564 int ret;
565
566 if (td->io_ops->flags & FIO_CPUIO)
567 return 0;
568
569 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
570
571 f = fopen(tmp, "r+");
572 if (!f) {
573 td_verror(td, errno);
574 return 1;
575 }
576
577 /*
578 * Set io scheduler.
579 */
580 ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
581 if (ferror(f) || ret != 1) {
582 td_verror(td, errno);
583 fclose(f);
584 return 1;
585 }
586
587 rewind(f);
588
589 /*
590 * Read back and check that the selected scheduler is now the default.
591 */
592 ret = fread(tmp, 1, sizeof(tmp), f);
593 if (ferror(f) || ret < 0) {
594 td_verror(td, errno);
595 fclose(f);
596 return 1;
597 }
598
599 sprintf(tmp2, "[%s]", td->ioscheduler);
600 if (!strstr(tmp, tmp2)) {
601 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
602 td_verror(td, EINVAL);
603 fclose(f);
604 return 1;
605 }
606
607 fclose(f);
608 return 0;
609}
610
611static void clear_io_state(struct thread_data *td)
612{
613 struct fio_file *f;
614 int i;
615
616 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
617 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
618 td->zone_bytes = 0;
619
620 td->last_was_sync = 0;
621
622 for_each_file(td, f, i) {
623 f->last_completed_pos = 0;
624
625 f->last_pos = 0;
626 if (td->io_ops->flags & FIO_SYNCIO)
627 lseek(f->fd, SEEK_SET, 0);
628
629 if (f->file_map)
630 memset(f->file_map, 0, f->num_maps * sizeof(long));
631 }
632}
633
634/*
635 * Entry point for the thread based jobs. The process based jobs end up
636 * here as well, after a little setup.
637 */
638static void *thread_main(void *data)
639{
640 unsigned long long runtime[2];
641 struct thread_data *td = data;
642
643 if (!td->use_thread)
644 setsid();
645
646 td->pid = getpid();
647
648 INIT_LIST_HEAD(&td->io_u_freelist);
649 INIT_LIST_HEAD(&td->io_u_busylist);
650 INIT_LIST_HEAD(&td->io_u_requeues);
651 INIT_LIST_HEAD(&td->io_hist_list);
652 INIT_LIST_HEAD(&td->io_log_list);
653
654 if (init_io_u(td))
655 goto err;
656
657 if (fio_setaffinity(td) == -1) {
658 td_verror(td, errno);
659 goto err;
660 }
661
662 if (init_iolog(td))
663 goto err;
664
665 if (td->ioprio) {
666 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
667 td_verror(td, errno);
668 goto err;
669 }
670 }
671
672 if (nice(td->nice) == -1) {
673 td_verror(td, errno);
674 goto err;
675 }
676
677 if (init_random_state(td))
678 goto err;
679
680 if (td->ioscheduler && switch_ioscheduler(td))
681 goto err;
682
683 td_set_runstate(td, TD_INITIALIZED);
684 fio_sem_up(&startup_sem);
685 fio_sem_down(&td->mutex);
686
687 if (!td->create_serialize && setup_files(td))
688 goto err;
689 if (open_files(td))
690 goto err;
691
692 /*
693 * Do this late, as some IO engines would like to have the
694 * files setup prior to initializing structures.
695 */
696 if (td_io_init(td))
697 goto err;
698
699 if (td->exec_prerun) {
700 if (system(td->exec_prerun) < 0)
701 goto err;
702 }
703
704 fio_gettime(&td->epoch, NULL);
705 getrusage(RUSAGE_SELF, &td->ts.ru_start);
706
707 runtime[0] = runtime[1] = 0;
708 while (td->loops--) {
709 fio_gettime(&td->start, NULL);
710 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
711
712 if (td->ratemin)
713 memcpy(&td->lastrate, &td->ts.stat_sample_time, sizeof(td->lastrate));
714
715 clear_io_state(td);
716 prune_io_piece_log(td);
717
718 if (td->io_ops->flags & FIO_CPUIO)
719 do_cpuio(td);
720 else
721 do_io(td);
722
723 runtime[td->ddir] += utime_since_now(&td->start);
724 if (td_rw(td) && td->io_bytes[td->ddir ^ 1])
725 runtime[td->ddir ^ 1] = runtime[td->ddir];
726
727 if (td->error || td->terminate)
728 break;
729
730 if (td->verify == VERIFY_NONE)
731 continue;
732
733 clear_io_state(td);
734 fio_gettime(&td->start, NULL);
735
736 do_verify(td);
737
738 runtime[DDIR_READ] += utime_since_now(&td->start);
739
740 if (td->error || td->terminate)
741 break;
742 }
743
744 update_rusage_stat(td);
745 fio_gettime(&td->end_time, NULL);
746 td->runtime[0] = runtime[0] / 1000;
747 td->runtime[1] = runtime[1] / 1000;
748
749 if (td->ts.bw_log)
750 finish_log(td, td->ts.bw_log, "bw");
751 if (td->ts.slat_log)
752 finish_log(td, td->ts.slat_log, "slat");
753 if (td->ts.clat_log)
754 finish_log(td, td->ts.clat_log, "clat");
755 if (td->write_iolog_file)
756 write_iolog_close(td);
757 if (td->exec_postrun) {
758 if (system(td->exec_postrun) < 0)
759 log_err("fio: postrun %s failed\n", td->exec_postrun);
760 }
761
762 if (exitall_on_terminate)
763 terminate_threads(td->groupid, 0);
764
765err:
766 if (td->error)
767 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
768 close_files(td);
769 close_ioengine(td);
770 cleanup_io_u(td);
771 td_set_runstate(td, TD_EXITED);
772 return (void *) td->error;
773}
774
775/*
776 * We cannot pass the td data into a forked process, so attach the td and
777 * pass it to the thread worker.
778 */
779static int fork_main(int shmid, int offset)
780{
781 struct thread_data *td;
782 void *data, *ret;
783
784 data = shmat(shmid, NULL, 0);
785 if (data == (void *) -1) {
786 int __err = errno;
787
788 perror("shmat");
789 return __err;
790 }
791
792 td = data + offset * sizeof(struct thread_data);
793 ret = thread_main(td);
794 shmdt(data);
795 return (int) ret;
796}
797
798/*
799 * Run over the job map and reap the threads that have exited, if any.
800 */
801static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
802{
803 struct thread_data *td;
804 int i, cputhreads, pending, status, ret;
805
806 /*
807 * reap exited threads (TD_EXITED -> TD_REAPED)
808 */
809 pending = cputhreads = 0;
810 for_each_td(td, i) {
811 /*
812 * ->io_ops is NULL for a thread that has closed its
813 * io engine
814 */
815 if (td->io_ops && td->io_ops->flags & FIO_CPUIO)
816 cputhreads++;
817
818 if (td->runstate < TD_EXITED) {
819 /*
820 * check if someone quit or got killed in an unusual way
821 */
822 ret = waitpid(td->pid, &status, WNOHANG);
823 if (ret < 0)
824 perror("waitpid");
825 else if ((ret == td->pid) && WIFSIGNALED(status)) {
826 int sig = WTERMSIG(status);
827
828 log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
829 td_set_runstate(td, TD_REAPED);
830 goto reaped;
831 }
832 }
833
834 if (td->runstate != TD_EXITED) {
835 if (td->runstate < TD_RUNNING)
836 pending++;
837
838 continue;
839 }
840
841 if (td->error)
842 exit_value++;
843
844 td_set_runstate(td, TD_REAPED);
845
846 if (td->use_thread) {
847 long ret;
848
849 if (pthread_join(td->thread, (void *) &ret))
850 perror("thread_join");
851 } else {
852 int status;
853
854 ret = waitpid(td->pid, &status, 0);
855 if (ret < 0)
856 perror("waitpid");
857 else if (WIFEXITED(status) && WEXITSTATUS(status)) {
858 if (!exit_value)
859 exit_value++;
860 }
861 }
862
863reaped:
864 (*nr_running)--;
865 (*m_rate) -= td->ratemin;
866 (*t_rate) -= td->rate;
867 }
868
869 if (*nr_running == cputhreads && !pending)
870 terminate_threads(TERMINATE_ALL, 0);
871}
872
873/*
874 * Main function for kicking off and reaping jobs, as needed.
875 */
876static void run_threads(void)
877{
878 struct thread_data *td;
879 unsigned long spent;
880 int i, todo, nr_running, m_rate, t_rate, nr_started;
881
882 if (fio_pin_memory())
883 return;
884
885 if (!terse_output) {
886 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
887 fflush(stdout);
888 }
889
890 signal(SIGINT, sig_handler);
891 signal(SIGALRM, sig_handler);
892
893 todo = thread_number;
894 nr_running = 0;
895 nr_started = 0;
896 m_rate = t_rate = 0;
897
898 for_each_td(td, i) {
899 print_status_init(td->thread_number - 1);
900
901 if (!td->create_serialize) {
902 init_disk_util(td);
903 continue;
904 }
905
906 /*
907 * do file setup here so it happens sequentially,
908 * we don't want X number of threads getting their
909 * client data interspersed on disk
910 */
911 if (setup_files(td)) {
912 exit_value++;
913 if (td->error)
914 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
915 td_set_runstate(td, TD_REAPED);
916 todo--;
917 }
918
919 init_disk_util(td);
920 }
921
922 while (todo) {
923 struct thread_data *map[MAX_JOBS];
924 struct timeval this_start;
925 int this_jobs = 0, left;
926
927 /*
928 * create threads (TD_NOT_CREATED -> TD_CREATED)
929 */
930 for_each_td(td, i) {
931 if (td->runstate != TD_NOT_CREATED)
932 continue;
933
934 /*
935 * never got a chance to start, killed by other
936 * thread for some reason
937 */
938 if (td->terminate) {
939 todo--;
940 continue;
941 }
942
943 if (td->start_delay) {
944 spent = mtime_since_genesis();
945
946 if (td->start_delay * 1000 > spent)
947 continue;
948 }
949
950 if (td->stonewall && (nr_started || nr_running))
951 break;
952
953 /*
954 * Set state to created. Thread will transition
955 * to TD_INITIALIZED when it's done setting up.
956 */
957 td_set_runstate(td, TD_CREATED);
958 map[this_jobs++] = td;
959 fio_sem_init(&startup_sem, 1);
960 nr_started++;
961
962 if (td->use_thread) {
963 if (pthread_create(&td->thread, NULL, thread_main, td)) {
964 perror("thread_create");
965 nr_started--;
966 }
967 } else {
968 if (fork())
969 fio_sem_down(&startup_sem);
970 else {
971 int ret = fork_main(shm_id, i);
972
973 exit(ret);
974 }
975 }
976 }
977
978 /*
979 * Wait for the started threads to transition to
980 * TD_INITIALIZED.
981 */
982 fio_gettime(&this_start, NULL);
983 left = this_jobs;
984 while (left && !fio_abort) {
985 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
986 break;
987
988 usleep(100000);
989
990 for (i = 0; i < this_jobs; i++) {
991 td = map[i];
992 if (!td)
993 continue;
994 if (td->runstate == TD_INITIALIZED) {
995 map[i] = NULL;
996 left--;
997 } else if (td->runstate >= TD_EXITED) {
998 map[i] = NULL;
999 left--;
1000 todo--;
1001 nr_running++; /* work-around... */
1002 }
1003 }
1004 }
1005
1006 if (left) {
1007 log_err("fio: %d jobs failed to start\n", left);
1008 for (i = 0; i < this_jobs; i++) {
1009 td = map[i];
1010 if (!td)
1011 continue;
1012 kill(td->pid, SIGTERM);
1013 }
1014 break;
1015 }
1016
1017 /*
1018 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1019 */
1020 for_each_td(td, i) {
1021 if (td->runstate != TD_INITIALIZED)
1022 continue;
1023
1024 td_set_runstate(td, TD_RUNNING);
1025 nr_running++;
1026 nr_started--;
1027 m_rate += td->ratemin;
1028 t_rate += td->rate;
1029 todo--;
1030 fio_sem_up(&td->mutex);
1031 }
1032
1033 reap_threads(&nr_running, &t_rate, &m_rate);
1034
1035 if (todo)
1036 usleep(100000);
1037 }
1038
1039 while (nr_running) {
1040 reap_threads(&nr_running, &t_rate, &m_rate);
1041 usleep(10000);
1042 }
1043
1044 update_io_ticks();
1045 fio_unpin_memory();
1046}
1047
1048int main(int argc, char *argv[])
1049{
1050 long ps;
1051
1052 /*
1053 * We need locale for number printing, if it isn't set then just
1054 * go with the US format.
1055 */
1056 if (!getenv("LC_NUMERIC"))
1057 setlocale(LC_NUMERIC, "en_US");
1058
1059 if (parse_options(argc, argv))
1060 return 1;
1061
1062 if (!thread_number) {
1063 log_err("Nothing to do\n");
1064 return 1;
1065 }
1066
1067 ps = sysconf(_SC_PAGESIZE);
1068 if (ps < 0) {
1069 log_err("Failed to get page size\n");
1070 return 1;
1071 }
1072
1073 page_mask = ps - 1;
1074
1075 if (write_bw_log) {
1076 setup_log(&agg_io_log[DDIR_READ]);
1077 setup_log(&agg_io_log[DDIR_WRITE]);
1078 }
1079
1080 disk_util_timer_arm();
1081
1082 run_threads();
1083
1084 if (!fio_abort) {
1085 show_run_stats();
1086 if (write_bw_log) {
1087 __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1088 __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1089 }
1090 }
1091
1092 return exit_value;
1093}