Get rid of reopen_files()
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "os.h"
39
40static unsigned long page_mask;
41#define ALIGN(buf) \
42 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
43
44int groupid = 0;
45int thread_number = 0;
46int shm_id = 0;
47int temp_stall_ts;
48
49static volatile int startup_sem;
50static volatile int fio_abort;
51static int exit_value;
52
53struct io_log *agg_io_log[2];
54
55#define TERMINATE_ALL (-1)
56#define JOB_START_TIMEOUT (5 * 1000)
57
58static inline void td_set_runstate(struct thread_data *td, int runstate)
59{
60 td->runstate = runstate;
61}
62
63static void terminate_threads(int group_id)
64{
65 struct thread_data *td;
66 int i;
67
68 for_each_td(td, i) {
69 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
70 /*
71 * if the thread is running, just let it exit
72 */
73 if (td->runstate < TD_RUNNING)
74 kill(td->pid, SIGQUIT);
75 td->terminate = 1;
76 td->start_delay = 0;
77 }
78 }
79}
80
81static void sig_handler(int sig)
82{
83 switch (sig) {
84 case SIGALRM:
85 update_io_ticks();
86 disk_util_timer_arm();
87 print_thread_status();
88 break;
89 default:
90 printf("\nfio: terminating on signal %d\n", sig);
91 fflush(stdout);
92 terminate_threads(TERMINATE_ALL);
93 break;
94 }
95}
96
97/*
98 * Check if we are above the minimum rate given.
99 */
100static int check_min_rate(struct thread_data *td, struct timeval *now)
101{
102 unsigned long long bytes = 0;
103 unsigned long spent;
104 unsigned long rate;
105
106 /*
107 * No minimum rate set, always ok
108 */
109 if (!td->ratemin)
110 return 0;
111
112 /*
113 * allow a 2 second settle period in the beginning
114 */
115 if (mtime_since(&td->start, now) < 2000)
116 return 0;
117
118 if (td_read(td))
119 bytes += td->this_io_bytes[DDIR_READ];
120 if (td_write(td))
121 bytes += td->this_io_bytes[DDIR_WRITE];
122
123 /*
124 * if rate blocks is set, sample is running
125 */
126 if (td->rate_bytes) {
127 spent = mtime_since(&td->lastrate, now);
128 if (spent < td->ratecycle)
129 return 0;
130
131 if (bytes < td->rate_bytes) {
132 fprintf(f_out, "%s: min rate %u not met\n", td->name, td->ratemin);
133 return 1;
134 } else {
135 rate = (bytes - td->rate_bytes) / spent;
136 if (rate < td->ratemin || bytes < td->rate_bytes) {
137 fprintf(f_out, "%s: min rate %u not met, got %luKiB/sec\n", td->name, td->ratemin, rate);
138 return 1;
139 }
140 }
141 }
142
143 td->rate_bytes = bytes;
144 memcpy(&td->lastrate, now, sizeof(*now));
145 return 0;
146}
147
148static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
149{
150 if (!td->timeout)
151 return 0;
152 if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
153 return 1;
154
155 return 0;
156}
157
158/*
159 * When job exits, we can cancel the in-flight IO if we are using async
160 * io. Attempt to do so.
161 */
162static void cleanup_pending_aio(struct thread_data *td)
163{
164 struct list_head *entry, *n;
165 struct io_u *io_u;
166 int r;
167
168 /*
169 * get immediately available events, if any
170 */
171 r = io_u_queued_complete(td, 0);
172 if (r < 0)
173 return;
174
175 /*
176 * now cancel remaining active events
177 */
178 if (td->io_ops->cancel) {
179 list_for_each_safe(entry, n, &td->io_u_busylist) {
180 io_u = list_entry(entry, struct io_u, list);
181
182 /*
183 * if the io_u isn't in flight, then that generally
184 * means someone leaked an io_u. complain but fix
185 * it up, so we don't stall here.
186 */
187 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
188 log_err("fio: non-busy IO on busy list\n");
189 put_io_u(td, io_u);
190 } else {
191 r = td->io_ops->cancel(td, io_u);
192 if (!r)
193 put_io_u(td, io_u);
194 }
195 }
196 }
197
198 if (td->cur_depth)
199 r = io_u_queued_complete(td, td->cur_depth);
200}
201
202/*
203 * Helper to handle the final sync of a file. Works just like the normal
204 * io path, just does everything sync.
205 */
206static int fio_io_sync(struct thread_data *td, struct fio_file *f)
207{
208 struct io_u *io_u = __get_io_u(td);
209 int ret;
210
211 if (!io_u)
212 return 1;
213
214 io_u->ddir = DDIR_SYNC;
215 io_u->file = f;
216
217 if (td_io_prep(td, io_u)) {
218 put_io_u(td, io_u);
219 return 1;
220 }
221
222requeue:
223 ret = td_io_queue(td, io_u);
224 if (ret < 0) {
225 td_verror(td, io_u->error, "td_io_queue");
226 put_io_u(td, io_u);
227 return 1;
228 } else if (ret == FIO_Q_QUEUED) {
229 if (io_u_queued_complete(td, 1) < 0)
230 return 1;
231 } else if (ret == FIO_Q_COMPLETED) {
232 if (io_u->error) {
233 td_verror(td, io_u->error, "td_io_queue");
234 return 1;
235 }
236
237 if (io_u_sync_complete(td, io_u) < 0)
238 return 1;
239 } else if (ret == FIO_Q_BUSY) {
240 if (td_io_commit(td))
241 return 1;
242 goto requeue;
243 }
244
245 return 0;
246}
247
248/*
249 * The main verify engine. Runs over the writes we previously submitted,
250 * reads the blocks back in, and checks the crc/md5 of the data.
251 */
252static void do_verify(struct thread_data *td)
253{
254 struct fio_file *f;
255 struct io_u *io_u;
256 int ret, i, min_events;
257
258 /*
259 * sync io first and invalidate cache, to make sure we really
260 * read from disk.
261 */
262 for_each_file(td, f, i) {
263 if (fio_io_sync(td, f))
264 break;
265 if (file_invalidate_cache(td, f))
266 break;
267 }
268
269 if (td->error)
270 return;
271
272 td_set_runstate(td, TD_VERIFYING);
273
274 io_u = NULL;
275 while (!td->terminate) {
276 int ret2;
277
278 io_u = __get_io_u(td);
279 if (!io_u)
280 break;
281
282 if (runtime_exceeded(td, &io_u->start_time)) {
283 put_io_u(td, io_u);
284 break;
285 }
286
287 if (get_next_verify(td, io_u)) {
288 put_io_u(td, io_u);
289 break;
290 }
291
292 if (td_io_prep(td, io_u)) {
293 put_io_u(td, io_u);
294 break;
295 }
296
297 io_u->end_io = verify_io_u;
298
299 ret = td_io_queue(td, io_u);
300 switch (ret) {
301 case FIO_Q_COMPLETED:
302 if (io_u->error)
303 ret = -io_u->error;
304 else if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
305 int bytes = io_u->xfer_buflen - io_u->resid;
306
307 io_u->xfer_buflen = io_u->resid;
308 io_u->xfer_buf += bytes;
309 requeue_io_u(td, &io_u);
310 } else {
311 ret = io_u_sync_complete(td, io_u);
312 if (ret < 0)
313 break;
314 }
315 continue;
316 case FIO_Q_QUEUED:
317 break;
318 case FIO_Q_BUSY:
319 requeue_io_u(td, &io_u);
320 ret2 = td_io_commit(td);
321 if (ret2 < 0)
322 ret = ret2;
323 break;
324 default:
325 assert(ret < 0);
326 td_verror(td, -ret, "td_io_queue");
327 break;
328 }
329
330 if (ret < 0 || td->error)
331 break;
332
333 /*
334 * if we can queue more, do so. but check if there are
335 * completed io_u's first.
336 */
337 min_events = 0;
338 if (queue_full(td) || ret == FIO_Q_BUSY) {
339 min_events = 1;
340
341 if (td->cur_depth > td->iodepth_low)
342 min_events = td->cur_depth - td->iodepth_low;
343 }
344
345 /*
346 * Reap required number of io units, if any, and do the
347 * verification on them through the callback handler
348 */
349 if (io_u_queued_complete(td, min_events) < 0)
350 break;
351 }
352
353 if (!td->error) {
354 min_events = td->cur_depth;
355
356 if (min_events)
357 ret = io_u_queued_complete(td, min_events);
358 } else
359 cleanup_pending_aio(td);
360
361 td_set_runstate(td, TD_RUNNING);
362}
363
364/*
365 * Not really an io thread, all it does is burn CPU cycles in the specified
366 * manner.
367 */
368static void do_cpuio(struct thread_data *td)
369{
370 struct timeval e;
371 int split = 100 / td->cpuload;
372 int i = 0;
373
374 while (!td->terminate) {
375 fio_gettime(&e, NULL);
376
377 if (runtime_exceeded(td, &e))
378 break;
379
380 if (!(i % split))
381 __usec_sleep(10000);
382 else
383 usec_sleep(td, 10000);
384
385 i++;
386 }
387}
388
389/*
390 * Main IO worker function. It retrieves io_u's to process and queues
391 * and reaps them, checking for rate and errors along the way.
392 */
393static void do_io(struct thread_data *td)
394{
395 struct timeval s;
396 unsigned long usec;
397 int i, ret = 0;
398
399 td_set_runstate(td, TD_RUNNING);
400
401 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->io_size) {
402 struct timeval comp_time;
403 long bytes_done = 0;
404 int min_evts = 0;
405 struct io_u *io_u;
406 int ret2;
407
408 if (td->terminate)
409 break;
410
411 io_u = get_io_u(td);
412 if (!io_u)
413 break;
414
415 memcpy(&s, &io_u->start_time, sizeof(s));
416
417 if (runtime_exceeded(td, &s)) {
418 put_io_u(td, io_u);
419 break;
420 }
421
422 ret = td_io_queue(td, io_u);
423 switch (ret) {
424 case FIO_Q_COMPLETED:
425 if (io_u->error)
426 ret = -io_u->error;
427 else if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
428 int bytes = io_u->xfer_buflen - io_u->resid;
429
430 io_u->xfer_buflen = io_u->resid;
431 io_u->xfer_buf += bytes;
432 requeue_io_u(td, &io_u);
433 } else {
434 fio_gettime(&comp_time, NULL);
435 bytes_done = io_u_sync_complete(td, io_u);
436 if (bytes_done < 0)
437 ret = bytes_done;
438 }
439 break;
440 case FIO_Q_QUEUED:
441 /*
442 * if the engine doesn't have a commit hook,
443 * the io_u is really queued. if it does have such
444 * a hook, it has to call io_u_queued() itself.
445 */
446 if (td->io_ops->commit == NULL)
447 io_u_queued(td, io_u);
448 break;
449 case FIO_Q_BUSY:
450 requeue_io_u(td, &io_u);
451 ret2 = td_io_commit(td);
452 if (ret2 < 0)
453 ret = ret2;
454 break;
455 default:
456 assert(ret < 0);
457 put_io_u(td, io_u);
458 break;
459 }
460
461 if (ret < 0 || td->error)
462 break;
463
464 /*
465 * See if we need to complete some commands
466 */
467 if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) {
468 min_evts = 0;
469 if (queue_full(td) || ret == FIO_Q_BUSY) {
470 min_evts = 1;
471
472 if (td->cur_depth > td->iodepth_low)
473 min_evts = td->cur_depth - td->iodepth_low;
474 }
475
476 fio_gettime(&comp_time, NULL);
477 bytes_done = io_u_queued_complete(td, min_evts);
478 if (bytes_done < 0)
479 break;
480 }
481
482 if (!bytes_done)
483 continue;
484
485 /*
486 * the rate is batched for now, it should work for batches
487 * of completions except the very first one which may look
488 * a little bursty
489 */
490 usec = utime_since(&s, &comp_time);
491
492 rate_throttle(td, usec, bytes_done);
493
494 if (check_min_rate(td, &comp_time)) {
495 if (exitall_on_terminate)
496 terminate_threads(td->groupid);
497 td_verror(td, ENODATA, "check_min_rate");
498 break;
499 }
500
501 if (td->thinktime) {
502 unsigned long long b;
503
504 b = td->io_blocks[0] + td->io_blocks[1];
505 if (!(b % td->thinktime_blocks)) {
506 int left;
507
508 if (td->thinktime_spin)
509 __usec_sleep(td->thinktime_spin);
510
511 left = td->thinktime - td->thinktime_spin;
512 if (left)
513 usec_sleep(td, left);
514 }
515 }
516 }
517
518 if (!td->error) {
519 struct fio_file *f;
520
521 i = td->cur_depth;
522 if (i)
523 ret = io_u_queued_complete(td, i);
524
525 if (should_fsync(td) && td->end_fsync) {
526 td_set_runstate(td, TD_FSYNCING);
527 for_each_file(td, f, i)
528 fio_io_sync(td, f);
529 }
530 } else
531 cleanup_pending_aio(td);
532}
533
534static void cleanup_io_u(struct thread_data *td)
535{
536 struct list_head *entry, *n;
537 struct io_u *io_u;
538
539 list_for_each_safe(entry, n, &td->io_u_freelist) {
540 io_u = list_entry(entry, struct io_u, list);
541
542 list_del(&io_u->list);
543 free(io_u);
544 }
545
546 free_io_mem(td);
547}
548
549/*
550 * "randomly" fill the buffer contents
551 */
552static void fill_rand_buf(struct io_u *io_u, int max_bs)
553{
554 int *ptr = io_u->buf;
555
556 while ((void *) ptr - io_u->buf < max_bs) {
557 *ptr = rand() * 0x9e370001;
558 ptr++;
559 }
560}
561
562static int init_io_u(struct thread_data *td)
563{
564 struct io_u *io_u;
565 unsigned int max_bs;
566 int i, max_units;
567 char *p;
568
569 if (td->io_ops->flags & FIO_CPUIO)
570 return 0;
571
572 if (td->io_ops->flags & FIO_SYNCIO)
573 max_units = 1;
574 else
575 max_units = td->iodepth;
576
577 max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
578 td->orig_buffer_size = max_bs * max_units;
579
580 if (td->mem_type == MEM_SHMHUGE || td->mem_type == MEM_MMAPHUGE)
581 td->orig_buffer_size = (td->orig_buffer_size + td->hugepage_size - 1) & ~(td->hugepage_size - 1);
582 else
583 td->orig_buffer_size += page_mask;
584
585 if (allocate_io_mem(td))
586 return 1;
587
588 p = ALIGN(td->orig_buffer);
589 for (i = 0; i < max_units; i++) {
590 io_u = malloc(sizeof(*io_u));
591 memset(io_u, 0, sizeof(*io_u));
592 INIT_LIST_HEAD(&io_u->list);
593
594 io_u->buf = p + max_bs * i;
595 if (td_write(td) || td_rw(td))
596 fill_rand_buf(io_u, max_bs);
597
598 io_u->index = i;
599 io_u->flags = IO_U_F_FREE;
600 list_add(&io_u->list, &td->io_u_freelist);
601 }
602
603 io_u_init_timeout();
604
605 return 0;
606}
607
608static int switch_ioscheduler(struct thread_data *td)
609{
610 char tmp[256], tmp2[128];
611 FILE *f;
612 int ret;
613
614 if (td->io_ops->flags & FIO_CPUIO)
615 return 0;
616
617 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
618
619 f = fopen(tmp, "r+");
620 if (!f) {
621 td_verror(td, errno, "fopen");
622 return 1;
623 }
624
625 /*
626 * Set io scheduler.
627 */
628 ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
629 if (ferror(f) || ret != 1) {
630 td_verror(td, errno, "fwrite");
631 fclose(f);
632 return 1;
633 }
634
635 rewind(f);
636
637 /*
638 * Read back and check that the selected scheduler is now the default.
639 */
640 ret = fread(tmp, 1, sizeof(tmp), f);
641 if (ferror(f) || ret < 0) {
642 td_verror(td, errno, "fread");
643 fclose(f);
644 return 1;
645 }
646
647 sprintf(tmp2, "[%s]", td->ioscheduler);
648 if (!strstr(tmp, tmp2)) {
649 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
650 td_verror(td, EINVAL, "iosched_switch");
651 fclose(f);
652 return 1;
653 }
654
655 fclose(f);
656 return 0;
657}
658
659static int clear_io_state(struct thread_data *td)
660{
661 struct fio_file *f;
662 int i, ret;
663
664 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
665 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
666 td->zone_bytes = 0;
667
668 td->last_was_sync = 0;
669
670 for_each_file(td, f, i)
671 td_io_close_file(td, f);
672
673 ret = 0;
674 for_each_file(td, f, i) {
675 ret = td_io_open_file(td, f);
676 if (ret)
677 break;
678 }
679
680 return ret;
681}
682
683/*
684 * Entry point for the thread based jobs. The process based jobs end up
685 * here as well, after a little setup.
686 */
687static void *thread_main(void *data)
688{
689 unsigned long long runtime[2];
690 struct thread_data *td = data;
691 int clear_state;
692
693 if (!td->use_thread)
694 setsid();
695
696 td->pid = getpid();
697
698 INIT_LIST_HEAD(&td->io_u_freelist);
699 INIT_LIST_HEAD(&td->io_u_busylist);
700 INIT_LIST_HEAD(&td->io_u_requeues);
701 INIT_LIST_HEAD(&td->io_hist_list);
702 INIT_LIST_HEAD(&td->io_log_list);
703
704 if (init_io_u(td))
705 goto err;
706
707 if (fio_setaffinity(td) == -1) {
708 td_verror(td, errno, "cpu_set_affinity");
709 goto err;
710 }
711
712 if (init_iolog(td))
713 goto err;
714
715 if (td->ioprio) {
716 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
717 td_verror(td, errno, "ioprio_set");
718 goto err;
719 }
720 }
721
722 if (nice(td->nice) == -1) {
723 td_verror(td, errno, "nice");
724 goto err;
725 }
726
727 if (init_random_state(td))
728 goto err;
729
730 if (td->ioscheduler && switch_ioscheduler(td))
731 goto err;
732
733 td_set_runstate(td, TD_INITIALIZED);
734 fio_sem_up(&startup_sem);
735 fio_sem_down(&td->mutex);
736
737 if (!td->create_serialize && setup_files(td))
738 goto err;
739
740 if (td_io_init(td))
741 goto err;
742
743 if (open_files(td))
744 goto err;
745
746 if (td->exec_prerun) {
747 if (system(td->exec_prerun) < 0)
748 goto err;
749 }
750
751 fio_gettime(&td->epoch, NULL);
752 memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch));
753 getrusage(RUSAGE_SELF, &td->ts.ru_start);
754
755 runtime[0] = runtime[1] = 0;
756 clear_state = 0;
757 while (td->loops--) {
758 fio_gettime(&td->start, NULL);
759 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
760
761 if (td->ratemin)
762 memcpy(&td->lastrate, &td->ts.stat_sample_time, sizeof(td->lastrate));
763
764 if (clear_state && clear_io_state(td))
765 break;
766
767 prune_io_piece_log(td);
768
769 if (td->io_ops->flags & FIO_CPUIO)
770 do_cpuio(td);
771 else
772 do_io(td);
773
774 clear_state = 1;
775
776 if (td_read(td) && td->io_bytes[DDIR_READ])
777 runtime[DDIR_READ] += utime_since_now(&td->start);
778 if (td_write(td) && td->io_bytes[DDIR_WRITE])
779 runtime[DDIR_WRITE] += utime_since_now(&td->start);
780
781 if (td->error || td->terminate)
782 break;
783
784 if (td->verify == VERIFY_NONE)
785 continue;
786
787 if (clear_io_state(td))
788 break;
789
790 fio_gettime(&td->start, NULL);
791
792 do_verify(td);
793
794 runtime[DDIR_READ] += utime_since_now(&td->start);
795
796 if (td->error || td->terminate)
797 break;
798 }
799
800 update_rusage_stat(td);
801 td->ts.runtime[0] = runtime[0] / 1000;
802 td->ts.runtime[1] = runtime[1] / 1000;
803 td->ts.total_run_time = mtime_since_now(&td->epoch);
804 td->ts.io_bytes[0] = td->io_bytes[0];
805 td->ts.io_bytes[1] = td->io_bytes[1];
806
807 if (td->ts.bw_log)
808 finish_log(td, td->ts.bw_log, "bw");
809 if (td->ts.slat_log)
810 finish_log(td, td->ts.slat_log, "slat");
811 if (td->ts.clat_log)
812 finish_log(td, td->ts.clat_log, "clat");
813 if (td->write_iolog_file)
814 write_iolog_close(td);
815 if (td->exec_postrun) {
816 if (system(td->exec_postrun) < 0)
817 log_err("fio: postrun %s failed\n", td->exec_postrun);
818 }
819
820 if (exitall_on_terminate)
821 terminate_threads(td->groupid);
822
823err:
824 if (td->error)
825 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
826 close_files(td);
827 close_ioengine(td);
828 cleanup_io_u(td);
829 td_set_runstate(td, TD_EXITED);
830 return (void *) (unsigned long) td->error;
831}
832
833/*
834 * We cannot pass the td data into a forked process, so attach the td and
835 * pass it to the thread worker.
836 */
837static int fork_main(int shmid, int offset)
838{
839 struct thread_data *td;
840 void *data, *ret;
841
842 data = shmat(shmid, NULL, 0);
843 if (data == (void *) -1) {
844 int __err = errno;
845
846 perror("shmat");
847 return __err;
848 }
849
850 td = data + offset * sizeof(struct thread_data);
851 ret = thread_main(td);
852 shmdt(data);
853 return (int) (unsigned long) ret;
854}
855
856/*
857 * Run over the job map and reap the threads that have exited, if any.
858 */
859static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
860{
861 struct thread_data *td;
862 int i, cputhreads, pending, status, ret;
863
864 /*
865 * reap exited threads (TD_EXITED -> TD_REAPED)
866 */
867 pending = cputhreads = 0;
868 for_each_td(td, i) {
869 int flags = 0;
870
871 /*
872 * ->io_ops is NULL for a thread that has closed its
873 * io engine
874 */
875 if (td->io_ops && td->io_ops->flags & FIO_CPUIO)
876 cputhreads++;
877
878 if (!td->pid || td->runstate == TD_REAPED)
879 continue;
880 if (td->use_thread) {
881 if (td->runstate == TD_EXITED) {
882 td_set_runstate(td, TD_REAPED);
883 goto reaped;
884 }
885 continue;
886 }
887
888 flags = WNOHANG;
889 if (td->runstate == TD_EXITED)
890 flags = 0;
891
892 /*
893 * check if someone quit or got killed in an unusual way
894 */
895 ret = waitpid(td->pid, &status, flags);
896 if (ret < 0) {
897 if (errno == ECHILD) {
898 log_err("fio: pid=%d disappeared %d\n", td->pid, td->runstate);
899 td_set_runstate(td, TD_REAPED);
900 goto reaped;
901 }
902 perror("waitpid");
903 } else if (ret == td->pid) {
904 if (WIFSIGNALED(status)) {
905 int sig = WTERMSIG(status);
906
907 if (sig != SIGQUIT)
908 log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
909 td_set_runstate(td, TD_REAPED);
910 goto reaped;
911 }
912 if (WIFEXITED(status)) {
913 if (WEXITSTATUS(status) && !td->error)
914 td->error = WEXITSTATUS(status);
915
916 td_set_runstate(td, TD_REAPED);
917 goto reaped;
918 }
919 }
920
921 /*
922 * thread is not dead, continue
923 */
924 continue;
925reaped:
926 if (td->use_thread) {
927 long ret;
928
929 if (pthread_join(td->thread, (void *) &ret))
930 perror("pthread_join");
931 }
932
933 (*nr_running)--;
934 (*m_rate) -= td->ratemin;
935 (*t_rate) -= td->rate;
936
937 if (td->error)
938 exit_value++;
939 }
940
941 if (*nr_running == cputhreads && !pending)
942 terminate_threads(TERMINATE_ALL);
943}
944
945/*
946 * Main function for kicking off and reaping jobs, as needed.
947 */
948static void run_threads(void)
949{
950 struct thread_data *td;
951 unsigned long spent;
952 int i, todo, nr_running, m_rate, t_rate, nr_started;
953
954 if (fio_pin_memory())
955 return;
956
957 if (!terse_output) {
958 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
959 fflush(stdout);
960 }
961
962 signal(SIGINT, sig_handler);
963 signal(SIGALRM, sig_handler);
964
965 todo = thread_number;
966 nr_running = 0;
967 nr_started = 0;
968 m_rate = t_rate = 0;
969
970 for_each_td(td, i) {
971 print_status_init(td->thread_number - 1);
972
973 if (!td->create_serialize) {
974 init_disk_util(td);
975 continue;
976 }
977
978 /*
979 * do file setup here so it happens sequentially,
980 * we don't want X number of threads getting their
981 * client data interspersed on disk
982 */
983 if (setup_files(td)) {
984 exit_value++;
985 if (td->error)
986 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
987 td_set_runstate(td, TD_REAPED);
988 todo--;
989 }
990
991 init_disk_util(td);
992 }
993
994 set_genesis_time();
995
996 while (todo) {
997 struct thread_data *map[MAX_JOBS];
998 struct timeval this_start;
999 int this_jobs = 0, left;
1000
1001 /*
1002 * create threads (TD_NOT_CREATED -> TD_CREATED)
1003 */
1004 for_each_td(td, i) {
1005 if (td->runstate != TD_NOT_CREATED)
1006 continue;
1007
1008 /*
1009 * never got a chance to start, killed by other
1010 * thread for some reason
1011 */
1012 if (td->terminate) {
1013 todo--;
1014 continue;
1015 }
1016
1017 if (td->start_delay) {
1018 spent = mtime_since_genesis();
1019
1020 if (td->start_delay * 1000 > spent)
1021 continue;
1022 }
1023
1024 if (td->stonewall && (nr_started || nr_running))
1025 break;
1026
1027 /*
1028 * Set state to created. Thread will transition
1029 * to TD_INITIALIZED when it's done setting up.
1030 */
1031 td_set_runstate(td, TD_CREATED);
1032 map[this_jobs++] = td;
1033 fio_sem_init(&startup_sem, 1);
1034 nr_started++;
1035
1036 if (td->use_thread) {
1037 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1038 perror("thread_create");
1039 nr_started--;
1040 }
1041 } else {
1042 if (fork())
1043 fio_sem_down(&startup_sem);
1044 else {
1045 int ret = fork_main(shm_id, i);
1046
1047 exit(ret);
1048 }
1049 }
1050 }
1051
1052 /*
1053 * Wait for the started threads to transition to
1054 * TD_INITIALIZED.
1055 */
1056 fio_gettime(&this_start, NULL);
1057 left = this_jobs;
1058 while (left && !fio_abort) {
1059 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1060 break;
1061
1062 usleep(100000);
1063
1064 for (i = 0; i < this_jobs; i++) {
1065 td = map[i];
1066 if (!td)
1067 continue;
1068 if (td->runstate == TD_INITIALIZED) {
1069 map[i] = NULL;
1070 left--;
1071 } else if (td->runstate >= TD_EXITED) {
1072 map[i] = NULL;
1073 left--;
1074 todo--;
1075 nr_running++; /* work-around... */
1076 }
1077 }
1078 }
1079
1080 if (left) {
1081 log_err("fio: %d jobs failed to start\n", left);
1082 for (i = 0; i < this_jobs; i++) {
1083 td = map[i];
1084 if (!td)
1085 continue;
1086 kill(td->pid, SIGTERM);
1087 }
1088 break;
1089 }
1090
1091 /*
1092 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1093 */
1094 for_each_td(td, i) {
1095 if (td->runstate != TD_INITIALIZED)
1096 continue;
1097
1098 td_set_runstate(td, TD_RUNNING);
1099 nr_running++;
1100 nr_started--;
1101 m_rate += td->ratemin;
1102 t_rate += td->rate;
1103 todo--;
1104 fio_sem_up(&td->mutex);
1105 }
1106
1107 reap_threads(&nr_running, &t_rate, &m_rate);
1108
1109 if (todo)
1110 usleep(100000);
1111 }
1112
1113 while (nr_running) {
1114 reap_threads(&nr_running, &t_rate, &m_rate);
1115 usleep(10000);
1116 }
1117
1118 update_io_ticks();
1119 fio_unpin_memory();
1120}
1121
1122int main(int argc, char *argv[])
1123{
1124 long ps;
1125
1126 /*
1127 * We need locale for number printing, if it isn't set then just
1128 * go with the US format.
1129 */
1130 if (!getenv("LC_NUMERIC"))
1131 setlocale(LC_NUMERIC, "en_US");
1132
1133 if (parse_options(argc, argv))
1134 return 1;
1135
1136 if (!thread_number) {
1137 log_err("Nothing to do\n");
1138 return 1;
1139 }
1140
1141 ps = sysconf(_SC_PAGESIZE);
1142 if (ps < 0) {
1143 log_err("Failed to get page size\n");
1144 return 1;
1145 }
1146
1147 page_mask = ps - 1;
1148
1149 if (write_bw_log) {
1150 setup_log(&agg_io_log[DDIR_READ]);
1151 setup_log(&agg_io_log[DDIR_WRITE]);
1152 }
1153
1154 set_genesis_time();
1155
1156 disk_util_timer_arm();
1157
1158 run_threads();
1159
1160 if (!fio_abort) {
1161 show_run_stats();
1162 if (write_bw_log) {
1163 __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1164 __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1165 }
1166 }
1167
1168 return exit_value;
1169}