Make sure profile options get added to long_options[]
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "hash.h"
39#include "smalloc.h"
40#include "verify.h"
41#include "diskutil.h"
42#include "cgroup.h"
43
44unsigned long page_mask;
45unsigned long page_size;
46
47#define PAGE_ALIGN(buf) \
48 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
49
50int groupid = 0;
51int thread_number = 0;
52int nr_process = 0;
53int nr_thread = 0;
54int shm_id = 0;
55int temp_stall_ts;
56unsigned long done_secs = 0;
57
58static struct fio_mutex *startup_mutex;
59static struct fio_mutex *writeout_mutex;
60static volatile int fio_abort;
61static int exit_value;
62static struct itimerval itimer;
63static pthread_t gtod_thread;
64static struct flist_head *cgroup_list;
65static char *cgroup_mnt;
66
67struct io_log *agg_io_log[2];
68
69#define TERMINATE_ALL (-1)
70#define JOB_START_TIMEOUT (5 * 1000)
71
72void td_set_runstate(struct thread_data *td, int runstate)
73{
74 if (td->runstate == runstate)
75 return;
76
77 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
78 td->runstate, runstate);
79 td->runstate = runstate;
80}
81
82static void terminate_threads(int group_id)
83{
84 struct thread_data *td;
85 int i;
86
87 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
88
89 for_each_td(td, i) {
90 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
91 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
92 td->o.name, (int) td->pid);
93 td->terminate = 1;
94 td->o.start_delay = 0;
95
96 /*
97 * if the thread is running, just let it exit
98 */
99 if (td->runstate < TD_RUNNING)
100 kill(td->pid, SIGQUIT);
101 else {
102 struct ioengine_ops *ops = td->io_ops;
103
104 if (ops && (ops->flags & FIO_SIGQUIT))
105 kill(td->pid, SIGQUIT);
106 }
107 }
108 }
109}
110
111static void status_timer_arm(void)
112{
113 itimer.it_value.tv_sec = 0;
114 itimer.it_value.tv_usec = DISK_UTIL_MSEC * 1000;
115 setitimer(ITIMER_REAL, &itimer, NULL);
116}
117
118static void sig_alrm(int fio_unused sig)
119{
120 if (threads) {
121 update_io_ticks();
122 print_thread_status();
123 status_timer_arm();
124 }
125}
126
127/*
128 * Happens on thread runs with ctrl-c, ignore our own SIGQUIT
129 */
130static void sig_quit(int sig)
131{
132}
133
134static void sig_int(int sig)
135{
136 if (threads) {
137 log_info("\nfio: terminating on signal %d\n", sig);
138 fflush(stdout);
139 terminate_threads(TERMINATE_ALL);
140 }
141}
142
143static void sig_ill(int fio_unused sig)
144{
145 if (!threads)
146 return;
147
148 log_err("fio: illegal instruction. your cpu does not support "
149 "the sse4.2 instruction for crc32c\n");
150 terminate_threads(TERMINATE_ALL);
151 exit(4);
152}
153
154static void set_sig_handlers(void)
155{
156 struct sigaction act;
157
158 memset(&act, 0, sizeof(act));
159 act.sa_handler = sig_alrm;
160 act.sa_flags = SA_RESTART;
161 sigaction(SIGALRM, &act, NULL);
162
163 memset(&act, 0, sizeof(act));
164 act.sa_handler = sig_int;
165 act.sa_flags = SA_RESTART;
166 sigaction(SIGINT, &act, NULL);
167
168 memset(&act, 0, sizeof(act));
169 act.sa_handler = sig_ill;
170 act.sa_flags = SA_RESTART;
171 sigaction(SIGILL, &act, NULL);
172
173 memset(&act, 0, sizeof(act));
174 act.sa_handler = sig_quit;
175 act.sa_flags = SA_RESTART;
176 sigaction(SIGQUIT, &act, NULL);
177}
178
179/*
180 * Check if we are above the minimum rate given.
181 */
182static int __check_min_rate(struct thread_data *td, struct timeval *now,
183 enum td_ddir ddir)
184{
185 unsigned long long bytes = 0;
186 unsigned long iops = 0;
187 unsigned long spent;
188 unsigned long rate;
189 unsigned int ratemin = 0;
190 unsigned int rate_iops = 0;
191 unsigned int rate_iops_min = 0;
192
193 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
194 return 0;
195
196 /*
197 * allow a 2 second settle period in the beginning
198 */
199 if (mtime_since(&td->start, now) < 2000)
200 return 0;
201
202 iops += td->io_blocks[ddir];
203 bytes += td->this_io_bytes[ddir];
204 ratemin += td->o.ratemin[ddir];
205 rate_iops += td->o.rate_iops[ddir];
206 rate_iops_min += td->o.rate_iops_min[ddir];
207
208 /*
209 * if rate blocks is set, sample is running
210 */
211 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
212 spent = mtime_since(&td->lastrate[ddir], now);
213 if (spent < td->o.ratecycle)
214 return 0;
215
216 if (td->o.rate[ddir]) {
217 /*
218 * check bandwidth specified rate
219 */
220 if (bytes < td->rate_bytes[ddir]) {
221 log_err("%s: min rate %u not met\n", td->o.name,
222 ratemin);
223 return 1;
224 } else {
225 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
226 if (rate < ratemin ||
227 bytes < td->rate_bytes[ddir]) {
228 log_err("%s: min rate %u not met, got"
229 " %luKB/sec\n", td->o.name,
230 ratemin, rate);
231 return 1;
232 }
233 }
234 } else {
235 /*
236 * checks iops specified rate
237 */
238 if (iops < rate_iops) {
239 log_err("%s: min iops rate %u not met\n",
240 td->o.name, rate_iops);
241 return 1;
242 } else {
243 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
244 if (rate < rate_iops_min ||
245 iops < td->rate_blocks[ddir]) {
246 log_err("%s: min iops rate %u not met,"
247 " got %lu\n", td->o.name,
248 rate_iops_min, rate);
249 }
250 }
251 }
252 }
253
254 td->rate_bytes[ddir] = bytes;
255 td->rate_blocks[ddir] = iops;
256 memcpy(&td->lastrate[ddir], now, sizeof(*now));
257 return 0;
258}
259
260static int check_min_rate(struct thread_data *td, struct timeval *now,
261 unsigned long *bytes_done)
262{
263 int ret = 0;
264
265 if (bytes_done[0])
266 ret |= __check_min_rate(td, now, 0);
267 if (bytes_done[1])
268 ret |= __check_min_rate(td, now, 1);
269
270 return ret;
271}
272
273static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
274{
275 if (!td->o.timeout)
276 return 0;
277 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
278 return 1;
279
280 return 0;
281}
282
283/*
284 * When job exits, we can cancel the in-flight IO if we are using async
285 * io. Attempt to do so.
286 */
287static void cleanup_pending_aio(struct thread_data *td)
288{
289 struct flist_head *entry, *n;
290 struct io_u *io_u;
291 int r;
292
293 /*
294 * get immediately available events, if any
295 */
296 r = io_u_queued_complete(td, 0, NULL);
297 if (r < 0)
298 return;
299
300 /*
301 * now cancel remaining active events
302 */
303 if (td->io_ops->cancel) {
304 flist_for_each_safe(entry, n, &td->io_u_busylist) {
305 io_u = flist_entry(entry, struct io_u, list);
306
307 /*
308 * if the io_u isn't in flight, then that generally
309 * means someone leaked an io_u. complain but fix
310 * it up, so we don't stall here.
311 */
312 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
313 log_err("fio: non-busy IO on busy list\n");
314 put_io_u(td, io_u);
315 } else {
316 r = td->io_ops->cancel(td, io_u);
317 if (!r)
318 put_io_u(td, io_u);
319 }
320 }
321 }
322
323 if (td->cur_depth)
324 r = io_u_queued_complete(td, td->cur_depth, NULL);
325}
326
327/*
328 * Helper to handle the final sync of a file. Works just like the normal
329 * io path, just does everything sync.
330 */
331static int fio_io_sync(struct thread_data *td, struct fio_file *f)
332{
333 struct io_u *io_u = __get_io_u(td);
334 int ret;
335
336 if (!io_u)
337 return 1;
338
339 io_u->ddir = DDIR_SYNC;
340 io_u->file = f;
341
342 if (td_io_prep(td, io_u)) {
343 put_io_u(td, io_u);
344 return 1;
345 }
346
347requeue:
348 ret = td_io_queue(td, io_u);
349 if (ret < 0) {
350 td_verror(td, io_u->error, "td_io_queue");
351 put_io_u(td, io_u);
352 return 1;
353 } else if (ret == FIO_Q_QUEUED) {
354 if (io_u_queued_complete(td, 1, NULL) < 0)
355 return 1;
356 } else if (ret == FIO_Q_COMPLETED) {
357 if (io_u->error) {
358 td_verror(td, io_u->error, "td_io_queue");
359 return 1;
360 }
361
362 if (io_u_sync_complete(td, io_u, NULL) < 0)
363 return 1;
364 } else if (ret == FIO_Q_BUSY) {
365 if (td_io_commit(td))
366 return 1;
367 goto requeue;
368 }
369
370 return 0;
371}
372
373static inline void update_tv_cache(struct thread_data *td)
374{
375 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
376 fio_gettime(&td->tv_cache, NULL);
377}
378
379static int break_on_this_error(struct thread_data *td, int *retptr)
380{
381 int ret = *retptr;
382
383 if (ret < 0 || td->error) {
384 int err;
385
386 if (!td->o.continue_on_error)
387 return 1;
388
389 if (ret < 0)
390 err = -ret;
391 else
392 err = td->error;
393
394 if (td_non_fatal_error(err)) {
395 /*
396 * Continue with the I/Os in case of
397 * a non fatal error.
398 */
399 update_error_count(td, err);
400 td_clear_error(td);
401 *retptr = 0;
402 return 0;
403 } else if (td->o.fill_device && err == ENOSPC) {
404 /*
405 * We expect to hit this error if
406 * fill_device option is set.
407 */
408 td_clear_error(td);
409 td->terminate = 1;
410 return 1;
411 } else {
412 /*
413 * Stop the I/O in case of a fatal
414 * error.
415 */
416 update_error_count(td, err);
417 return 1;
418 }
419 }
420
421 return 0;
422}
423
424/*
425 * The main verify engine. Runs over the writes we previously submitted,
426 * reads the blocks back in, and checks the crc/md5 of the data.
427 */
428static void do_verify(struct thread_data *td)
429{
430 struct fio_file *f;
431 struct io_u *io_u;
432 int ret, min_events;
433 unsigned int i;
434
435 /*
436 * sync io first and invalidate cache, to make sure we really
437 * read from disk.
438 */
439 for_each_file(td, f, i) {
440 if (!fio_file_open(f))
441 continue;
442 if (fio_io_sync(td, f))
443 break;
444 if (file_invalidate_cache(td, f))
445 break;
446 }
447
448 if (td->error)
449 return;
450
451 td_set_runstate(td, TD_VERIFYING);
452
453 io_u = NULL;
454 while (!td->terminate) {
455 int ret2, full;
456
457 update_tv_cache(td);
458
459 if (runtime_exceeded(td, &td->tv_cache)) {
460 td->terminate = 1;
461 break;
462 }
463
464 io_u = __get_io_u(td);
465 if (!io_u)
466 break;
467
468 if (get_next_verify(td, io_u)) {
469 put_io_u(td, io_u);
470 break;
471 }
472
473 if (td_io_prep(td, io_u)) {
474 put_io_u(td, io_u);
475 break;
476 }
477
478 if (td->o.verify_async)
479 io_u->end_io = verify_io_u_async;
480 else
481 io_u->end_io = verify_io_u;
482
483 ret = td_io_queue(td, io_u);
484 switch (ret) {
485 case FIO_Q_COMPLETED:
486 if (io_u->error) {
487 ret = -io_u->error;
488 clear_io_u(td, io_u);
489 } else if (io_u->resid) {
490 int bytes = io_u->xfer_buflen - io_u->resid;
491 struct fio_file *f = io_u->file;
492
493 /*
494 * zero read, fail
495 */
496 if (!bytes) {
497 td_verror(td, EIO, "full resid");
498 put_io_u(td, io_u);
499 break;
500 }
501
502 io_u->xfer_buflen = io_u->resid;
503 io_u->xfer_buf += bytes;
504 io_u->offset += bytes;
505
506 td->ts.short_io_u[io_u->ddir]++;
507
508 if (io_u->offset == f->real_file_size)
509 goto sync_done;
510
511 requeue_io_u(td, &io_u);
512 } else {
513sync_done:
514 ret = io_u_sync_complete(td, io_u, NULL);
515 if (ret < 0)
516 break;
517 }
518 continue;
519 case FIO_Q_QUEUED:
520 break;
521 case FIO_Q_BUSY:
522 requeue_io_u(td, &io_u);
523 ret2 = td_io_commit(td);
524 if (ret2 < 0)
525 ret = ret2;
526 break;
527 default:
528 assert(ret < 0);
529 td_verror(td, -ret, "td_io_queue");
530 break;
531 }
532
533 if (break_on_this_error(td, &ret))
534 break;
535
536 /*
537 * if we can queue more, do so. but check if there are
538 * completed io_u's first.
539 */
540 full = queue_full(td) || ret == FIO_Q_BUSY;
541 if (full || !td->o.iodepth_batch_complete) {
542 min_events = min(td->o.iodepth_batch_complete,
543 td->cur_depth);
544 if (full && !min_events)
545 min_events = 1;
546
547 do {
548 /*
549 * Reap required number of io units, if any,
550 * and do the verification on them through
551 * the callback handler
552 */
553 if (io_u_queued_complete(td, min_events, NULL) < 0) {
554 ret = -1;
555 break;
556 }
557 } while (full && (td->cur_depth > td->o.iodepth_low));
558 }
559 if (ret < 0)
560 break;
561 }
562
563 if (!td->error) {
564 min_events = td->cur_depth;
565
566 if (min_events)
567 ret = io_u_queued_complete(td, min_events, NULL);
568 } else
569 cleanup_pending_aio(td);
570
571 td_set_runstate(td, TD_RUNNING);
572}
573
574/*
575 * Main IO worker function. It retrieves io_u's to process and queues
576 * and reaps them, checking for rate and errors along the way.
577 */
578static void do_io(struct thread_data *td)
579{
580 unsigned int i;
581 int ret = 0;
582
583 if (in_ramp_time(td))
584 td_set_runstate(td, TD_RAMP);
585 else
586 td_set_runstate(td, TD_RUNNING);
587
588 while ( (td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
589 ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) ) {
590 struct timeval comp_time;
591 unsigned long bytes_done[2] = { 0, 0 };
592 int min_evts = 0;
593 struct io_u *io_u;
594 int ret2, full;
595
596 if (td->terminate)
597 break;
598
599 update_tv_cache(td);
600
601 if (runtime_exceeded(td, &td->tv_cache)) {
602 td->terminate = 1;
603 break;
604 }
605
606 io_u = get_io_u(td);
607 if (!io_u)
608 break;
609
610 /*
611 * Add verification end_io handler, if asked to verify
612 * a previously written file.
613 */
614 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
615 !td_rw(td)) {
616 if (td->o.verify_async)
617 io_u->end_io = verify_io_u_async;
618 else
619 io_u->end_io = verify_io_u;
620 td_set_runstate(td, TD_VERIFYING);
621 } else if (in_ramp_time(td))
622 td_set_runstate(td, TD_RAMP);
623 else
624 td_set_runstate(td, TD_RUNNING);
625
626 ret = td_io_queue(td, io_u);
627 switch (ret) {
628 case FIO_Q_COMPLETED:
629 if (io_u->error) {
630 ret = -io_u->error;
631 clear_io_u(td, io_u);
632 } else if (io_u->resid) {
633 int bytes = io_u->xfer_buflen - io_u->resid;
634 struct fio_file *f = io_u->file;
635
636 /*
637 * zero read, fail
638 */
639 if (!bytes) {
640 td_verror(td, EIO, "full resid");
641 put_io_u(td, io_u);
642 break;
643 }
644
645 io_u->xfer_buflen = io_u->resid;
646 io_u->xfer_buf += bytes;
647 io_u->offset += bytes;
648
649 td->ts.short_io_u[io_u->ddir]++;
650
651 if (io_u->offset == f->real_file_size)
652 goto sync_done;
653
654 requeue_io_u(td, &io_u);
655 } else {
656sync_done:
657 if (__should_check_rate(td, 0) ||
658 __should_check_rate(td, 1))
659 fio_gettime(&comp_time, NULL);
660
661 ret = io_u_sync_complete(td, io_u, bytes_done);
662 if (ret < 0)
663 break;
664 }
665 break;
666 case FIO_Q_QUEUED:
667 /*
668 * if the engine doesn't have a commit hook,
669 * the io_u is really queued. if it does have such
670 * a hook, it has to call io_u_queued() itself.
671 */
672 if (td->io_ops->commit == NULL)
673 io_u_queued(td, io_u);
674 break;
675 case FIO_Q_BUSY:
676 requeue_io_u(td, &io_u);
677 ret2 = td_io_commit(td);
678 if (ret2 < 0)
679 ret = ret2;
680 break;
681 default:
682 assert(ret < 0);
683 put_io_u(td, io_u);
684 break;
685 }
686
687 if (break_on_this_error(td, &ret))
688 break;
689
690 /*
691 * See if we need to complete some commands
692 */
693 full = queue_full(td) || ret == FIO_Q_BUSY;
694 if (full || !td->o.iodepth_batch_complete) {
695 min_evts = min(td->o.iodepth_batch_complete,
696 td->cur_depth);
697 if (full && !min_evts)
698 min_evts = 1;
699
700 if (__should_check_rate(td, 0) ||
701 __should_check_rate(td, 1))
702 fio_gettime(&comp_time, NULL);
703
704 do {
705 ret = io_u_queued_complete(td, min_evts, bytes_done);
706 if (ret < 0)
707 break;
708
709 } while (full && (td->cur_depth > td->o.iodepth_low));
710 }
711
712 if (ret < 0)
713 break;
714 if (!(bytes_done[0] + bytes_done[1]))
715 continue;
716
717 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
718 if (check_min_rate(td, &comp_time, bytes_done)) {
719 if (exitall_on_terminate)
720 terminate_threads(td->groupid);
721 td_verror(td, EIO, "check_min_rate");
722 break;
723 }
724 }
725
726 if (td->o.thinktime) {
727 unsigned long long b;
728
729 b = td->io_blocks[0] + td->io_blocks[1];
730 if (!(b % td->o.thinktime_blocks)) {
731 int left;
732
733 if (td->o.thinktime_spin)
734 usec_spin(td->o.thinktime_spin);
735
736 left = td->o.thinktime - td->o.thinktime_spin;
737 if (left)
738 usec_sleep(td, left);
739 }
740 }
741 }
742
743 if (td->o.fill_device && td->error == ENOSPC) {
744 td->error = 0;
745 td->terminate = 1;
746 }
747 if (!td->error) {
748 struct fio_file *f;
749
750 i = td->cur_depth;
751 if (i)
752 ret = io_u_queued_complete(td, i, NULL);
753
754 if (should_fsync(td) && td->o.end_fsync) {
755 td_set_runstate(td, TD_FSYNCING);
756
757 for_each_file(td, f, i) {
758 if (!fio_file_open(f))
759 continue;
760 fio_io_sync(td, f);
761 }
762 }
763 } else
764 cleanup_pending_aio(td);
765
766 /*
767 * stop job if we failed doing any IO
768 */
769 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
770 td->done = 1;
771}
772
773static void cleanup_io_u(struct thread_data *td)
774{
775 struct flist_head *entry, *n;
776 struct io_u *io_u;
777
778 flist_for_each_safe(entry, n, &td->io_u_freelist) {
779 io_u = flist_entry(entry, struct io_u, list);
780
781 flist_del(&io_u->list);
782 free(io_u);
783 }
784
785 free_io_mem(td);
786}
787
788static int init_io_u(struct thread_data *td)
789{
790 struct io_u *io_u;
791 unsigned int max_bs;
792 int cl_align, i, max_units;
793 char *p;
794
795 max_units = td->o.iodepth;
796 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
797 td->orig_buffer_size = (unsigned long long) max_bs
798 * (unsigned long long) max_units;
799
800 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
801 unsigned long bs;
802
803 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
804 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
805 }
806
807 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
808 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
809 return 1;
810 }
811
812 if (allocate_io_mem(td))
813 return 1;
814
815 if (td->o.odirect || td->o.mem_align)
816 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
817 else
818 p = td->orig_buffer;
819
820 cl_align = os_cache_line_size();
821
822 for (i = 0; i < max_units; i++) {
823 void *ptr;
824
825 if (td->terminate)
826 return 1;
827
828 if (posix_memalign(&ptr, cl_align, sizeof(*io_u))) {
829 log_err("fio: posix_memalign=%s\n", strerror(errno));
830 break;
831 }
832
833 io_u = ptr;
834 memset(io_u, 0, sizeof(*io_u));
835 INIT_FLIST_HEAD(&io_u->list);
836 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
837
838 if (!(td->io_ops->flags & FIO_NOIO)) {
839 io_u->buf = p + max_bs * i;
840 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
841
842 if (td_write(td) && !td->o.refill_buffers)
843 io_u_fill_buffer(td, io_u, max_bs);
844 }
845
846 io_u->index = i;
847 io_u->flags = IO_U_F_FREE;
848 flist_add(&io_u->list, &td->io_u_freelist);
849 }
850
851 return 0;
852}
853
854static int switch_ioscheduler(struct thread_data *td)
855{
856 char tmp[256], tmp2[128];
857 FILE *f;
858 int ret;
859
860 if (td->io_ops->flags & FIO_DISKLESSIO)
861 return 0;
862
863 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
864
865 f = fopen(tmp, "r+");
866 if (!f) {
867 if (errno == ENOENT) {
868 log_err("fio: os or kernel doesn't support IO scheduler"
869 " switching\n");
870 return 0;
871 }
872 td_verror(td, errno, "fopen iosched");
873 return 1;
874 }
875
876 /*
877 * Set io scheduler.
878 */
879 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
880 if (ferror(f) || ret != 1) {
881 td_verror(td, errno, "fwrite");
882 fclose(f);
883 return 1;
884 }
885
886 rewind(f);
887
888 /*
889 * Read back and check that the selected scheduler is now the default.
890 */
891 ret = fread(tmp, 1, sizeof(tmp), f);
892 if (ferror(f) || ret < 0) {
893 td_verror(td, errno, "fread");
894 fclose(f);
895 return 1;
896 }
897
898 sprintf(tmp2, "[%s]", td->o.ioscheduler);
899 if (!strstr(tmp, tmp2)) {
900 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
901 td_verror(td, EINVAL, "iosched_switch");
902 fclose(f);
903 return 1;
904 }
905
906 fclose(f);
907 return 0;
908}
909
910static int keep_running(struct thread_data *td)
911{
912 unsigned long long io_done;
913
914 if (td->done)
915 return 0;
916 if (td->o.time_based)
917 return 1;
918 if (td->o.loops) {
919 td->o.loops--;
920 return 1;
921 }
922
923 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
924 + td->io_skip_bytes;
925 if (io_done < td->o.size)
926 return 1;
927
928 return 0;
929}
930
931static void reset_io_counters(struct thread_data *td)
932{
933 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
934 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
935 td->zone_bytes = 0;
936 td->rate_bytes[0] = td->rate_bytes[1] = 0;
937 td->rate_blocks[0] = td->rate_blocks[1] = 0;
938
939 td->last_was_sync = 0;
940
941 /*
942 * reset file done count if we are to start over
943 */
944 if (td->o.time_based || td->o.loops)
945 td->nr_done_files = 0;
946
947 /*
948 * Set the same seed to get repeatable runs
949 */
950 td_fill_rand_seeds(td);
951}
952
953void reset_all_stats(struct thread_data *td)
954{
955 struct timeval tv;
956 int i;
957
958 reset_io_counters(td);
959
960 for (i = 0; i < 2; i++) {
961 td->io_bytes[i] = 0;
962 td->io_blocks[i] = 0;
963 td->io_issues[i] = 0;
964 td->ts.total_io_u[i] = 0;
965 }
966
967 fio_gettime(&tv, NULL);
968 memcpy(&td->epoch, &tv, sizeof(tv));
969 memcpy(&td->start, &tv, sizeof(tv));
970}
971
972static void clear_io_state(struct thread_data *td)
973{
974 struct fio_file *f;
975 unsigned int i;
976
977 reset_io_counters(td);
978
979 close_files(td);
980 for_each_file(td, f, i)
981 fio_file_clear_done(f);
982}
983
984static int exec_string(const char *string)
985{
986 int ret, newlen = strlen(string) + 1 + 8;
987 char *str;
988
989 str = malloc(newlen);
990 sprintf(str, "sh -c %s", string);
991
992 ret = system(str);
993 if (ret == -1)
994 log_err("fio: exec of cmd <%s> failed\n", str);
995
996 free(str);
997 return ret;
998}
999
1000/*
1001 * Entry point for the thread based jobs. The process based jobs end up
1002 * here as well, after a little setup.
1003 */
1004static void *thread_main(void *data)
1005{
1006 unsigned long long runtime[2], elapsed;
1007 struct thread_data *td = data;
1008 pthread_condattr_t attr;
1009 int clear_state;
1010
1011 if (!td->o.use_thread)
1012 setsid();
1013
1014 td->pid = getpid();
1015
1016 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1017
1018 INIT_FLIST_HEAD(&td->io_u_freelist);
1019 INIT_FLIST_HEAD(&td->io_u_busylist);
1020 INIT_FLIST_HEAD(&td->io_u_requeues);
1021 INIT_FLIST_HEAD(&td->io_log_list);
1022 INIT_FLIST_HEAD(&td->io_hist_list);
1023 INIT_FLIST_HEAD(&td->verify_list);
1024 pthread_mutex_init(&td->io_u_lock, NULL);
1025 td->io_hist_tree = RB_ROOT;
1026
1027 pthread_condattr_init(&attr);
1028 pthread_cond_init(&td->verify_cond, &attr);
1029 pthread_cond_init(&td->free_cond, &attr);
1030
1031 td_set_runstate(td, TD_INITIALIZED);
1032 dprint(FD_MUTEX, "up startup_mutex\n");
1033 fio_mutex_up(startup_mutex);
1034 dprint(FD_MUTEX, "wait on td->mutex\n");
1035 fio_mutex_down(td->mutex);
1036 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1037
1038 /*
1039 * the ->mutex mutex is now no longer used, close it to avoid
1040 * eating a file descriptor
1041 */
1042 fio_mutex_remove(td->mutex);
1043
1044 if (td->o.uid != -1U && setuid(td->o.uid)) {
1045 td_verror(td, errno, "setuid");
1046 goto err;
1047 }
1048 if (td->o.gid != -1U && setgid(td->o.gid)) {
1049 td_verror(td, errno, "setgid");
1050 goto err;
1051 }
1052
1053 /*
1054 * May alter parameters that init_io_u() will use, so we need to
1055 * do this first.
1056 */
1057 if (init_iolog(td))
1058 goto err;
1059
1060 if (init_io_u(td))
1061 goto err;
1062
1063 if (td->o.verify_async && verify_async_init(td))
1064 goto err;
1065
1066 if (td->o.cpumask_set && fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1067 td_verror(td, errno, "cpu_set_affinity");
1068 goto err;
1069 }
1070
1071 /*
1072 * If we have a gettimeofday() thread, make sure we exclude that
1073 * thread from this job
1074 */
1075 if (td->o.gtod_cpu) {
1076 fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
1077 if (fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1078 td_verror(td, errno, "cpu_set_affinity");
1079 goto err;
1080 }
1081 }
1082
1083 if (td->ioprio_set) {
1084 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1085 td_verror(td, errno, "ioprio_set");
1086 goto err;
1087 }
1088 }
1089
1090 if (td->o.cgroup_weight && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1091 goto err;
1092
1093 if (nice(td->o.nice) == -1) {
1094 td_verror(td, errno, "nice");
1095 goto err;
1096 }
1097
1098 if (td->o.ioscheduler && switch_ioscheduler(td))
1099 goto err;
1100
1101 if (!td->o.create_serialize && setup_files(td))
1102 goto err;
1103
1104 if (td_io_init(td))
1105 goto err;
1106
1107 if (init_random_map(td))
1108 goto err;
1109
1110 if (td->o.exec_prerun) {
1111 if (exec_string(td->o.exec_prerun))
1112 goto err;
1113 }
1114
1115 if (td->o.pre_read) {
1116 if (pre_read_files(td) < 0)
1117 goto err;
1118 }
1119
1120 fio_gettime(&td->epoch, NULL);
1121 getrusage(RUSAGE_SELF, &td->ts.ru_start);
1122
1123 runtime[0] = runtime[1] = 0;
1124 clear_state = 0;
1125 while (keep_running(td)) {
1126 fio_gettime(&td->start, NULL);
1127 memcpy(&td->ts.stat_sample_time[0], &td->start,
1128 sizeof(td->start));
1129 memcpy(&td->ts.stat_sample_time[1], &td->start,
1130 sizeof(td->start));
1131 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1132
1133 if (td->o.ratemin[0] || td->o.ratemin[1])
1134 memcpy(&td->lastrate, &td->ts.stat_sample_time,
1135 sizeof(td->lastrate));
1136
1137 if (clear_state)
1138 clear_io_state(td);
1139
1140 prune_io_piece_log(td);
1141
1142 do_io(td);
1143
1144 clear_state = 1;
1145
1146 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1147 elapsed = utime_since_now(&td->start);
1148 runtime[DDIR_READ] += elapsed;
1149 }
1150 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1151 elapsed = utime_since_now(&td->start);
1152 runtime[DDIR_WRITE] += elapsed;
1153 }
1154
1155 if (td->error || td->terminate)
1156 break;
1157
1158 if (!td->o.do_verify ||
1159 td->o.verify == VERIFY_NONE ||
1160 (td->io_ops->flags & FIO_UNIDIR))
1161 continue;
1162
1163 clear_io_state(td);
1164
1165 fio_gettime(&td->start, NULL);
1166
1167 do_verify(td);
1168
1169 runtime[DDIR_READ] += utime_since_now(&td->start);
1170
1171 if (td->error || td->terminate)
1172 break;
1173 }
1174
1175 update_rusage_stat(td);
1176 td->ts.runtime[0] = (runtime[0] + 999) / 1000;
1177 td->ts.runtime[1] = (runtime[1] + 999) / 1000;
1178 td->ts.total_run_time = mtime_since_now(&td->epoch);
1179 td->ts.io_bytes[0] = td->io_bytes[0];
1180 td->ts.io_bytes[1] = td->io_bytes[1];
1181
1182 fio_mutex_down(writeout_mutex);
1183 if (td->ts.bw_log) {
1184 if (td->o.bw_log_file) {
1185 finish_log_named(td, td->ts.bw_log,
1186 td->o.bw_log_file, "bw");
1187 } else
1188 finish_log(td, td->ts.bw_log, "bw");
1189 }
1190 if (td->ts.slat_log) {
1191 if (td->o.lat_log_file) {
1192 finish_log_named(td, td->ts.slat_log,
1193 td->o.lat_log_file, "slat");
1194 } else
1195 finish_log(td, td->ts.slat_log, "slat");
1196 }
1197 if (td->ts.clat_log) {
1198 if (td->o.lat_log_file) {
1199 finish_log_named(td, td->ts.clat_log,
1200 td->o.lat_log_file, "clat");
1201 } else
1202 finish_log(td, td->ts.clat_log, "clat");
1203 }
1204 fio_mutex_up(writeout_mutex);
1205 if (td->o.exec_postrun)
1206 exec_string(td->o.exec_postrun);
1207
1208 if (exitall_on_terminate)
1209 terminate_threads(td->groupid);
1210
1211err:
1212 if (td->error)
1213 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1214 td->verror);
1215
1216 if (td->o.verify_async)
1217 verify_async_exit(td);
1218
1219 close_and_free_files(td);
1220 close_ioengine(td);
1221 cleanup_io_u(td);
1222 cgroup_shutdown(td, &cgroup_mnt);
1223
1224 if (td->o.cpumask_set) {
1225 int ret = fio_cpuset_exit(&td->o.cpumask);
1226
1227 td_verror(td, ret, "fio_cpuset_exit");
1228 }
1229
1230 /*
1231 * do this very late, it will log file closing as well
1232 */
1233 if (td->o.write_iolog_file)
1234 write_iolog_close(td);
1235
1236 options_mem_free(td);
1237 td_set_runstate(td, TD_EXITED);
1238 return (void *) (unsigned long) td->error;
1239}
1240
1241/*
1242 * We cannot pass the td data into a forked process, so attach the td and
1243 * pass it to the thread worker.
1244 */
1245static int fork_main(int shmid, int offset)
1246{
1247 struct thread_data *td;
1248 void *data, *ret;
1249
1250 data = shmat(shmid, NULL, 0);
1251 if (data == (void *) -1) {
1252 int __err = errno;
1253
1254 perror("shmat");
1255 return __err;
1256 }
1257
1258 td = data + offset * sizeof(struct thread_data);
1259 ret = thread_main(td);
1260 shmdt(data);
1261 return (int) (unsigned long) ret;
1262}
1263
1264/*
1265 * Run over the job map and reap the threads that have exited, if any.
1266 */
1267static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1268{
1269 struct thread_data *td;
1270 int i, cputhreads, realthreads, pending, status, ret;
1271
1272 /*
1273 * reap exited threads (TD_EXITED -> TD_REAPED)
1274 */
1275 realthreads = pending = cputhreads = 0;
1276 for_each_td(td, i) {
1277 int flags = 0;
1278
1279 /*
1280 * ->io_ops is NULL for a thread that has closed its
1281 * io engine
1282 */
1283 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1284 cputhreads++;
1285 else
1286 realthreads++;
1287
1288 if (!td->pid) {
1289 pending++;
1290 continue;
1291 }
1292 if (td->runstate == TD_REAPED)
1293 continue;
1294 if (td->o.use_thread) {
1295 if (td->runstate == TD_EXITED) {
1296 td_set_runstate(td, TD_REAPED);
1297 goto reaped;
1298 }
1299 continue;
1300 }
1301
1302 flags = WNOHANG;
1303 if (td->runstate == TD_EXITED)
1304 flags = 0;
1305
1306 /*
1307 * check if someone quit or got killed in an unusual way
1308 */
1309 ret = waitpid(td->pid, &status, flags);
1310 if (ret < 0) {
1311 if (errno == ECHILD) {
1312 log_err("fio: pid=%d disappeared %d\n",
1313 (int) td->pid, td->runstate);
1314 td_set_runstate(td, TD_REAPED);
1315 goto reaped;
1316 }
1317 perror("waitpid");
1318 } else if (ret == td->pid) {
1319 if (WIFSIGNALED(status)) {
1320 int sig = WTERMSIG(status);
1321
1322 if (sig != SIGQUIT)
1323 log_err("fio: pid=%d, got signal=%d\n",
1324 (int) td->pid, sig);
1325 td_set_runstate(td, TD_REAPED);
1326 goto reaped;
1327 }
1328 if (WIFEXITED(status)) {
1329 if (WEXITSTATUS(status) && !td->error)
1330 td->error = WEXITSTATUS(status);
1331
1332 td_set_runstate(td, TD_REAPED);
1333 goto reaped;
1334 }
1335 }
1336
1337 /*
1338 * thread is not dead, continue
1339 */
1340 pending++;
1341 continue;
1342reaped:
1343 (*nr_running)--;
1344 (*m_rate) -= (td->o.ratemin[0] + td->o.ratemin[1]);
1345 (*t_rate) -= (td->o.rate[0] + td->o.rate[1]);
1346 if (!td->pid)
1347 pending--;
1348
1349 if (td->error)
1350 exit_value++;
1351
1352 done_secs += mtime_since_now(&td->epoch) / 1000;
1353 }
1354
1355 if (*nr_running == cputhreads && !pending && realthreads)
1356 terminate_threads(TERMINATE_ALL);
1357}
1358
1359static void *gtod_thread_main(void *data)
1360{
1361 fio_mutex_up(startup_mutex);
1362
1363 /*
1364 * As long as we have jobs around, update the clock. It would be nice
1365 * to have some way of NOT hammering that CPU with gettimeofday(),
1366 * but I'm not sure what to use outside of a simple CPU nop to relax
1367 * it - we don't want to lose precision.
1368 */
1369 while (threads) {
1370 fio_gtod_update();
1371 nop;
1372 }
1373
1374 return NULL;
1375}
1376
1377static int fio_start_gtod_thread(void)
1378{
1379 int ret;
1380
1381 ret = pthread_create(&gtod_thread, NULL, gtod_thread_main, NULL);
1382 if (ret) {
1383 log_err("Can't create gtod thread: %s\n", strerror(ret));
1384 return 1;
1385 }
1386
1387 ret = pthread_detach(gtod_thread);
1388 if (ret) {
1389 log_err("Can't detatch gtod thread: %s\n", strerror(ret));
1390 return 1;
1391 }
1392
1393 dprint(FD_MUTEX, "wait on startup_mutex\n");
1394 fio_mutex_down(startup_mutex);
1395 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1396 return 0;
1397}
1398
1399/*
1400 * Main function for kicking off and reaping jobs, as needed.
1401 */
1402static void run_threads(void)
1403{
1404 struct thread_data *td;
1405 unsigned long spent;
1406 int i, todo, nr_running, m_rate, t_rate, nr_started;
1407
1408 if (fio_pin_memory())
1409 return;
1410
1411 if (fio_gtod_offload && fio_start_gtod_thread())
1412 return;
1413
1414 if (!terse_output) {
1415 log_info("Starting ");
1416 if (nr_thread)
1417 log_info("%d thread%s", nr_thread,
1418 nr_thread > 1 ? "s" : "");
1419 if (nr_process) {
1420 if (nr_thread)
1421 printf(" and ");
1422 log_info("%d process%s", nr_process,
1423 nr_process > 1 ? "es" : "");
1424 }
1425 log_info("\n");
1426 fflush(stdout);
1427 }
1428
1429 set_sig_handlers();
1430
1431 todo = thread_number;
1432 nr_running = 0;
1433 nr_started = 0;
1434 m_rate = t_rate = 0;
1435
1436 for_each_td(td, i) {
1437 print_status_init(td->thread_number - 1);
1438
1439 if (!td->o.create_serialize) {
1440 init_disk_util(td);
1441 continue;
1442 }
1443
1444 /*
1445 * do file setup here so it happens sequentially,
1446 * we don't want X number of threads getting their
1447 * client data interspersed on disk
1448 */
1449 if (setup_files(td)) {
1450 exit_value++;
1451 if (td->error)
1452 log_err("fio: pid=%d, err=%d/%s\n",
1453 (int) td->pid, td->error, td->verror);
1454 td_set_runstate(td, TD_REAPED);
1455 todo--;
1456 } else {
1457 struct fio_file *f;
1458 unsigned int i;
1459
1460 /*
1461 * for sharing to work, each job must always open
1462 * its own files. so close them, if we opened them
1463 * for creation
1464 */
1465 for_each_file(td, f, i) {
1466 if (fio_file_open(f))
1467 td_io_close_file(td, f);
1468 }
1469 }
1470
1471 init_disk_util(td);
1472 }
1473
1474 set_genesis_time();
1475
1476 while (todo) {
1477 struct thread_data *map[MAX_JOBS];
1478 struct timeval this_start;
1479 int this_jobs = 0, left;
1480
1481 /*
1482 * create threads (TD_NOT_CREATED -> TD_CREATED)
1483 */
1484 for_each_td(td, i) {
1485 if (td->runstate != TD_NOT_CREATED)
1486 continue;
1487
1488 /*
1489 * never got a chance to start, killed by other
1490 * thread for some reason
1491 */
1492 if (td->terminate) {
1493 todo--;
1494 continue;
1495 }
1496
1497 if (td->o.start_delay) {
1498 spent = mtime_since_genesis();
1499
1500 if (td->o.start_delay * 1000 > spent)
1501 continue;
1502 }
1503
1504 if (td->o.stonewall && (nr_started || nr_running)) {
1505 dprint(FD_PROCESS, "%s: stonewall wait\n",
1506 td->o.name);
1507 break;
1508 }
1509
1510 /*
1511 * Set state to created. Thread will transition
1512 * to TD_INITIALIZED when it's done setting up.
1513 */
1514 td_set_runstate(td, TD_CREATED);
1515 map[this_jobs++] = td;
1516 nr_started++;
1517
1518 if (td->o.use_thread) {
1519 int ret;
1520
1521 dprint(FD_PROCESS, "will pthread_create\n");
1522 ret = pthread_create(&td->thread, NULL,
1523 thread_main, td);
1524 if (ret) {
1525 log_err("pthread_create: %s\n",
1526 strerror(ret));
1527 nr_started--;
1528 break;
1529 }
1530 ret = pthread_detach(td->thread);
1531 if (ret)
1532 log_err("pthread_detach: %s",
1533 strerror(ret));
1534 } else {
1535 pid_t pid;
1536 dprint(FD_PROCESS, "will fork\n");
1537 pid = fork();
1538 if (!pid) {
1539 int ret = fork_main(shm_id, i);
1540
1541 _exit(ret);
1542 } else if (i == fio_debug_jobno)
1543 *fio_debug_jobp = pid;
1544 }
1545 dprint(FD_MUTEX, "wait on startup_mutex\n");
1546 if (fio_mutex_down_timeout(startup_mutex, 10)) {
1547 log_err("fio: job startup hung? exiting.\n");
1548 terminate_threads(TERMINATE_ALL);
1549 fio_abort = 1;
1550 nr_started--;
1551 break;
1552 }
1553 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1554 }
1555
1556 /*
1557 * Wait for the started threads to transition to
1558 * TD_INITIALIZED.
1559 */
1560 fio_gettime(&this_start, NULL);
1561 left = this_jobs;
1562 while (left && !fio_abort) {
1563 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1564 break;
1565
1566 usleep(100000);
1567
1568 for (i = 0; i < this_jobs; i++) {
1569 td = map[i];
1570 if (!td)
1571 continue;
1572 if (td->runstate == TD_INITIALIZED) {
1573 map[i] = NULL;
1574 left--;
1575 } else if (td->runstate >= TD_EXITED) {
1576 map[i] = NULL;
1577 left--;
1578 todo--;
1579 nr_running++; /* work-around... */
1580 }
1581 }
1582 }
1583
1584 if (left) {
1585 log_err("fio: %d jobs failed to start\n", left);
1586 for (i = 0; i < this_jobs; i++) {
1587 td = map[i];
1588 if (!td)
1589 continue;
1590 kill(td->pid, SIGTERM);
1591 }
1592 break;
1593 }
1594
1595 /*
1596 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1597 */
1598 for_each_td(td, i) {
1599 if (td->runstate != TD_INITIALIZED)
1600 continue;
1601
1602 if (in_ramp_time(td))
1603 td_set_runstate(td, TD_RAMP);
1604 else
1605 td_set_runstate(td, TD_RUNNING);
1606 nr_running++;
1607 nr_started--;
1608 m_rate += td->o.ratemin[0] + td->o.ratemin[1];
1609 t_rate += td->o.rate[0] + td->o.rate[1];
1610 todo--;
1611 fio_mutex_up(td->mutex);
1612 }
1613
1614 reap_threads(&nr_running, &t_rate, &m_rate);
1615
1616 if (todo)
1617 usleep(100000);
1618 }
1619
1620 while (nr_running) {
1621 reap_threads(&nr_running, &t_rate, &m_rate);
1622 usleep(10000);
1623 }
1624
1625 update_io_ticks();
1626 fio_unpin_memory();
1627}
1628
1629int main(int argc, char *argv[])
1630{
1631 long ps;
1632
1633 sinit();
1634
1635 /*
1636 * We need locale for number printing, if it isn't set then just
1637 * go with the US format.
1638 */
1639 if (!getenv("LC_NUMERIC"))
1640 setlocale(LC_NUMERIC, "en_US");
1641
1642 ps = sysconf(_SC_PAGESIZE);
1643 if (ps < 0) {
1644 log_err("Failed to get page size\n");
1645 return 1;
1646 }
1647
1648 page_size = ps;
1649 page_mask = ps - 1;
1650
1651 fio_keywords_init();
1652
1653 if (parse_options(argc, argv))
1654 return 1;
1655
1656 if (!thread_number)
1657 return 0;
1658
1659 if (write_bw_log) {
1660 setup_log(&agg_io_log[DDIR_READ]);
1661 setup_log(&agg_io_log[DDIR_WRITE]);
1662 }
1663
1664 startup_mutex = fio_mutex_init(0);
1665 writeout_mutex = fio_mutex_init(1);
1666
1667 set_genesis_time();
1668
1669 status_timer_arm();
1670
1671 cgroup_list = smalloc(sizeof(*cgroup_list));
1672 INIT_FLIST_HEAD(cgroup_list);
1673
1674 run_threads();
1675
1676 if (!fio_abort) {
1677 show_run_stats();
1678 if (write_bw_log) {
1679 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1680 __finish_log(agg_io_log[DDIR_WRITE],
1681 "agg-write_bw.log");
1682 }
1683 }
1684
1685 cgroup_kill(cgroup_list);
1686 sfree(cgroup_list);
1687 if (cgroup_mnt)
1688 sfree(cgroup_mnt);
1689
1690 fio_mutex_remove(startup_mutex);
1691 fio_mutex_remove(writeout_mutex);
1692 return exit_value;
1693}