Add list_del_init() to list.h
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "hash.h"
39
40unsigned long page_mask;
41unsigned long page_size;
42#define ALIGN(buf) \
43 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
44
45int groupid = 0;
46int thread_number = 0;
47int nr_process = 0;
48int nr_thread = 0;
49int shm_id = 0;
50int temp_stall_ts;
51
52static struct fio_mutex *startup_mutex;
53static volatile int fio_abort;
54static int exit_value;
55
56struct io_log *agg_io_log[2];
57
58#define TERMINATE_ALL (-1)
59#define JOB_START_TIMEOUT (5 * 1000)
60
61static inline void td_set_runstate(struct thread_data *td, int runstate)
62{
63 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", td->pid, td->runstate,
64 runstate);
65 td->runstate = runstate;
66}
67
68static void terminate_threads(int group_id)
69{
70 struct thread_data *td;
71 int i;
72
73 for_each_td(td, i) {
74 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
75 dprint(FD_PROCESS, "setting terminate on %d\n",td->pid);
76
77 td->terminate = 1;
78 td->o.start_delay = 0;
79
80 /*
81 * if the thread is running, just let it exit
82 */
83 if (td->runstate < TD_RUNNING)
84 kill(td->pid, SIGQUIT);
85 else {
86 struct ioengine_ops *ops = td->io_ops;
87
88 if (ops && (ops->flags & FIO_SIGQUIT))
89 kill(td->pid, SIGQUIT);
90 }
91 }
92 }
93}
94
95static void sig_handler(int sig)
96{
97 switch (sig) {
98 case SIGALRM:
99 update_io_ticks();
100 disk_util_timer_arm();
101 print_thread_status();
102 break;
103 default:
104 printf("\nfio: terminating on signal %d\n", sig);
105 fflush(stdout);
106 terminate_threads(TERMINATE_ALL);
107 break;
108 }
109}
110
111/*
112 * Check if we are above the minimum rate given.
113 */
114static int check_min_rate(struct thread_data *td, struct timeval *now)
115{
116 unsigned long long bytes = 0;
117 unsigned long iops = 0;
118 unsigned long spent;
119 unsigned long rate;
120
121 /*
122 * No minimum rate set, always ok
123 */
124 if (!td->o.ratemin && !td->o.rate_iops_min)
125 return 0;
126
127 /*
128 * allow a 2 second settle period in the beginning
129 */
130 if (mtime_since(&td->start, now) < 2000)
131 return 0;
132
133 if (td_read(td)) {
134 iops += td->io_blocks[DDIR_READ];
135 bytes += td->this_io_bytes[DDIR_READ];
136 }
137 if (td_write(td)) {
138 iops += td->io_blocks[DDIR_WRITE];
139 bytes += td->this_io_bytes[DDIR_WRITE];
140 }
141
142 /*
143 * if rate blocks is set, sample is running
144 */
145 if (td->rate_bytes || td->rate_blocks) {
146 spent = mtime_since(&td->lastrate, now);
147 if (spent < td->o.ratecycle)
148 return 0;
149
150 if (td->o.rate) {
151 /*
152 * check bandwidth specified rate
153 */
154 if (bytes < td->rate_bytes) {
155 log_err("%s: min rate %u not met\n", td->o.name, td->o.ratemin);
156 return 1;
157 } else {
158 rate = (bytes - td->rate_bytes) / spent;
159 if (rate < td->o.ratemin || bytes < td->rate_bytes) {
160 log_err("%s: min rate %u not met, got %luKiB/sec\n", td->o.name, td->o.ratemin, rate);
161 return 1;
162 }
163 }
164 } else {
165 /*
166 * checks iops specified rate
167 */
168 if (iops < td->o.rate_iops) {
169 log_err("%s: min iops rate %u not met\n", td->o.name, td->o.rate_iops);
170 return 1;
171 } else {
172 rate = (iops - td->rate_blocks) / spent;
173 if (rate < td->o.rate_iops_min || iops < td->rate_blocks) {
174 log_err("%s: min iops rate %u not met, got %lu\n", td->o.name, td->o.rate_iops_min, rate);
175 }
176 }
177 }
178 }
179
180 td->rate_bytes = bytes;
181 td->rate_blocks = iops;
182 memcpy(&td->lastrate, now, sizeof(*now));
183 return 0;
184}
185
186static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
187{
188 if (!td->o.timeout)
189 return 0;
190 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
191 return 1;
192
193 return 0;
194}
195
196/*
197 * When job exits, we can cancel the in-flight IO if we are using async
198 * io. Attempt to do so.
199 */
200static void cleanup_pending_aio(struct thread_data *td)
201{
202 struct list_head *entry, *n;
203 struct io_u *io_u;
204 int r;
205
206 /*
207 * get immediately available events, if any
208 */
209 r = io_u_queued_complete(td, 0);
210 if (r < 0)
211 return;
212
213 /*
214 * now cancel remaining active events
215 */
216 if (td->io_ops->cancel) {
217 list_for_each_safe(entry, n, &td->io_u_busylist) {
218 io_u = list_entry(entry, struct io_u, list);
219
220 /*
221 * if the io_u isn't in flight, then that generally
222 * means someone leaked an io_u. complain but fix
223 * it up, so we don't stall here.
224 */
225 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
226 log_err("fio: non-busy IO on busy list\n");
227 put_io_u(td, io_u);
228 } else {
229 r = td->io_ops->cancel(td, io_u);
230 if (!r)
231 put_io_u(td, io_u);
232 }
233 }
234 }
235
236 if (td->cur_depth)
237 r = io_u_queued_complete(td, td->cur_depth);
238}
239
240/*
241 * Helper to handle the final sync of a file. Works just like the normal
242 * io path, just does everything sync.
243 */
244static int fio_io_sync(struct thread_data *td, struct fio_file *f)
245{
246 struct io_u *io_u = __get_io_u(td);
247 int ret;
248
249 if (!io_u)
250 return 1;
251
252 io_u->ddir = DDIR_SYNC;
253 io_u->file = f;
254
255 if (td_io_prep(td, io_u)) {
256 put_io_u(td, io_u);
257 return 1;
258 }
259
260requeue:
261 ret = td_io_queue(td, io_u);
262 if (ret < 0) {
263 td_verror(td, io_u->error, "td_io_queue");
264 put_io_u(td, io_u);
265 return 1;
266 } else if (ret == FIO_Q_QUEUED) {
267 if (io_u_queued_complete(td, 1) < 0)
268 return 1;
269 } else if (ret == FIO_Q_COMPLETED) {
270 if (io_u->error) {
271 td_verror(td, io_u->error, "td_io_queue");
272 return 1;
273 }
274
275 if (io_u_sync_complete(td, io_u) < 0)
276 return 1;
277 } else if (ret == FIO_Q_BUSY) {
278 if (td_io_commit(td))
279 return 1;
280 goto requeue;
281 }
282
283 return 0;
284}
285
286/*
287 * The main verify engine. Runs over the writes we previously submitted,
288 * reads the blocks back in, and checks the crc/md5 of the data.
289 */
290static void do_verify(struct thread_data *td)
291{
292 struct fio_file *f;
293 struct io_u *io_u;
294 int ret, min_events;
295 unsigned int i;
296
297 /*
298 * sync io first and invalidate cache, to make sure we really
299 * read from disk.
300 */
301 for_each_file(td, f, i) {
302 if (!(f->flags & FIO_FILE_OPEN))
303 continue;
304 if (fio_io_sync(td, f))
305 break;
306 if (file_invalidate_cache(td, f))
307 break;
308 }
309
310 if (td->error)
311 return;
312
313 td_set_runstate(td, TD_VERIFYING);
314
315 io_u = NULL;
316 while (!td->terminate) {
317 int ret2;
318
319 io_u = __get_io_u(td);
320 if (!io_u)
321 break;
322
323 if (runtime_exceeded(td, &io_u->start_time)) {
324 put_io_u(td, io_u);
325 td->terminate = 1;
326 break;
327 }
328
329 if (get_next_verify(td, io_u)) {
330 put_io_u(td, io_u);
331 break;
332 }
333
334 if (td_io_prep(td, io_u)) {
335 put_io_u(td, io_u);
336 break;
337 }
338
339 io_u->end_io = verify_io_u;
340
341 ret = td_io_queue(td, io_u);
342 switch (ret) {
343 case FIO_Q_COMPLETED:
344 if (io_u->error)
345 ret = -io_u->error;
346 else if (io_u->resid) {
347 int bytes = io_u->xfer_buflen - io_u->resid;
348 struct fio_file *f = io_u->file;
349
350 /*
351 * zero read, fail
352 */
353 if (!bytes) {
354 td_verror(td, ENODATA, "full resid");
355 put_io_u(td, io_u);
356 break;
357 }
358
359 io_u->xfer_buflen = io_u->resid;
360 io_u->xfer_buf += bytes;
361 io_u->offset += bytes;
362
363 td->ts.short_io_u[io_u->ddir]++;
364
365 if (io_u->offset == f->real_file_size)
366 goto sync_done;
367
368 requeue_io_u(td, &io_u);
369 } else {
370sync_done:
371 ret = io_u_sync_complete(td, io_u);
372 if (ret < 0)
373 break;
374 }
375 continue;
376 case FIO_Q_QUEUED:
377 break;
378 case FIO_Q_BUSY:
379 requeue_io_u(td, &io_u);
380 ret2 = td_io_commit(td);
381 if (ret2 < 0)
382 ret = ret2;
383 break;
384 default:
385 assert(ret < 0);
386 td_verror(td, -ret, "td_io_queue");
387 break;
388 }
389
390 if (ret < 0 || td->error)
391 break;
392
393 /*
394 * if we can queue more, do so. but check if there are
395 * completed io_u's first.
396 */
397 min_events = 0;
398 if (queue_full(td) || ret == FIO_Q_BUSY) {
399 min_events = 1;
400
401 if (td->cur_depth > td->o.iodepth_low)
402 min_events = td->cur_depth - td->o.iodepth_low;
403 }
404
405 /*
406 * Reap required number of io units, if any, and do the
407 * verification on them through the callback handler
408 */
409 if (io_u_queued_complete(td, min_events) < 0)
410 break;
411 }
412
413 if (!td->error) {
414 min_events = td->cur_depth;
415
416 if (min_events)
417 ret = io_u_queued_complete(td, min_events);
418 } else
419 cleanup_pending_aio(td);
420
421 td_set_runstate(td, TD_RUNNING);
422}
423
424/*
425 * Main IO worker function. It retrieves io_u's to process and queues
426 * and reaps them, checking for rate and errors along the way.
427 */
428static void do_io(struct thread_data *td)
429{
430 struct timeval s;
431 unsigned long usec;
432 unsigned int i;
433 int ret = 0;
434
435 td_set_runstate(td, TD_RUNNING);
436
437 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) {
438 struct timeval comp_time;
439 long bytes_done = 0;
440 int min_evts = 0;
441 struct io_u *io_u;
442 int ret2;
443
444 if (td->terminate)
445 break;
446
447 io_u = get_io_u(td);
448 if (!io_u)
449 break;
450
451 memcpy(&s, &io_u->start_time, sizeof(s));
452
453 if (runtime_exceeded(td, &s)) {
454 put_io_u(td, io_u);
455 td->terminate = 1;
456 break;
457 }
458
459 /*
460 * Add verification end_io handler, if asked to verify
461 * a previously written file.
462 */
463 if (td->o.verify != VERIFY_NONE)
464 io_u->end_io = verify_io_u;
465
466 ret = td_io_queue(td, io_u);
467 switch (ret) {
468 case FIO_Q_COMPLETED:
469 if (io_u->error)
470 ret = -io_u->error;
471 else if (io_u->resid) {
472 int bytes = io_u->xfer_buflen - io_u->resid;
473 struct fio_file *f = io_u->file;
474
475 /*
476 * zero read, fail
477 */
478 if (!bytes) {
479 td_verror(td, ENODATA, "full resid");
480 put_io_u(td, io_u);
481 break;
482 }
483
484 io_u->xfer_buflen = io_u->resid;
485 io_u->xfer_buf += bytes;
486 io_u->offset += bytes;
487
488 td->ts.short_io_u[io_u->ddir]++;
489
490 if (io_u->offset == f->real_file_size)
491 goto sync_done;
492
493 requeue_io_u(td, &io_u);
494 } else {
495sync_done:
496 fio_gettime(&comp_time, NULL);
497 bytes_done = io_u_sync_complete(td, io_u);
498 if (bytes_done < 0)
499 ret = bytes_done;
500 }
501 break;
502 case FIO_Q_QUEUED:
503 /*
504 * if the engine doesn't have a commit hook,
505 * the io_u is really queued. if it does have such
506 * a hook, it has to call io_u_queued() itself.
507 */
508 if (td->io_ops->commit == NULL)
509 io_u_queued(td, io_u);
510 break;
511 case FIO_Q_BUSY:
512 requeue_io_u(td, &io_u);
513 ret2 = td_io_commit(td);
514 if (ret2 < 0)
515 ret = ret2;
516 break;
517 default:
518 assert(ret < 0);
519 put_io_u(td, io_u);
520 break;
521 }
522
523 if (ret < 0 || td->error)
524 break;
525
526 /*
527 * See if we need to complete some commands
528 */
529 if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) {
530 min_evts = 0;
531 if (queue_full(td) || ret == FIO_Q_BUSY) {
532 min_evts = 1;
533
534 if (td->cur_depth > td->o.iodepth_low)
535 min_evts = td->cur_depth - td->o.iodepth_low;
536 }
537
538 fio_gettime(&comp_time, NULL);
539 bytes_done = io_u_queued_complete(td, min_evts);
540 if (bytes_done < 0)
541 break;
542 }
543
544 if (!bytes_done)
545 continue;
546
547 /*
548 * the rate is batched for now, it should work for batches
549 * of completions except the very first one which may look
550 * a little bursty
551 */
552 usec = utime_since(&s, &comp_time);
553
554 rate_throttle(td, usec, bytes_done);
555
556 if (check_min_rate(td, &comp_time)) {
557 if (exitall_on_terminate)
558 terminate_threads(td->groupid);
559 td_verror(td, ENODATA, "check_min_rate");
560 break;
561 }
562
563 if (td->o.thinktime) {
564 unsigned long long b;
565
566 b = td->io_blocks[0] + td->io_blocks[1];
567 if (!(b % td->o.thinktime_blocks)) {
568 int left;
569
570 if (td->o.thinktime_spin)
571 __usec_sleep(td->o.thinktime_spin);
572
573 left = td->o.thinktime - td->o.thinktime_spin;
574 if (left)
575 usec_sleep(td, left);
576 }
577 }
578 }
579
580 if (td->o.fill_device && td->error == ENOSPC) {
581 td->error = 0;
582 td->terminate = 1;
583 }
584 if (!td->error) {
585 struct fio_file *f;
586
587 i = td->cur_depth;
588 if (i)
589 ret = io_u_queued_complete(td, i);
590
591 if (should_fsync(td) && td->o.end_fsync) {
592 td_set_runstate(td, TD_FSYNCING);
593
594 for_each_file(td, f, i) {
595 if (!(f->flags & FIO_FILE_OPEN))
596 continue;
597 fio_io_sync(td, f);
598 }
599 }
600 } else
601 cleanup_pending_aio(td);
602
603 /*
604 * stop job if we failed doing any IO
605 */
606 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
607 td->done = 1;
608}
609
610static void cleanup_io_u(struct thread_data *td)
611{
612 struct list_head *entry, *n;
613 struct io_u *io_u;
614
615 list_for_each_safe(entry, n, &td->io_u_freelist) {
616 io_u = list_entry(entry, struct io_u, list);
617
618 list_del(&io_u->list);
619 free(io_u);
620 }
621
622 free_io_mem(td);
623}
624
625/*
626 * "randomly" fill the buffer contents
627 */
628static void fill_io_buf(struct thread_data *td, struct io_u *io_u, int max_bs)
629{
630 long *ptr = io_u->buf;
631
632 if (!td->o.zero_buffers) {
633 while ((void *) ptr - io_u->buf < max_bs) {
634 *ptr = rand() * GOLDEN_RATIO_PRIME;
635 ptr++;
636 }
637 } else
638 memset(ptr, 0, max_bs);
639}
640
641static int init_io_u(struct thread_data *td)
642{
643 struct io_u *io_u;
644 unsigned int max_bs;
645 int i, max_units;
646 char *p;
647
648 max_units = td->o.iodepth;
649 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
650 td->orig_buffer_size = (unsigned long long) max_bs * (unsigned long long) max_units;
651
652 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE)
653 td->orig_buffer_size = (td->orig_buffer_size + td->o.hugepage_size - 1) & ~(td->o.hugepage_size - 1);
654
655 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
656 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
657 return 1;
658 }
659
660 if (allocate_io_mem(td))
661 return 1;
662
663 if (td->o.odirect)
664 p = ALIGN(td->orig_buffer);
665 else
666 p = td->orig_buffer;
667
668 for (i = 0; i < max_units; i++) {
669 if (td->terminate)
670 return 1;
671 io_u = malloc(sizeof(*io_u));
672 memset(io_u, 0, sizeof(*io_u));
673 INIT_LIST_HEAD(&io_u->list);
674
675 if (!(td->io_ops->flags & FIO_NOIO)) {
676 io_u->buf = p + max_bs * i;
677
678 if (td_write(td))
679 fill_io_buf(td, io_u, max_bs);
680 }
681
682 io_u->index = i;
683 io_u->flags = IO_U_F_FREE;
684 list_add(&io_u->list, &td->io_u_freelist);
685 }
686
687 io_u_init_timeout();
688
689 return 0;
690}
691
692static int switch_ioscheduler(struct thread_data *td)
693{
694 char tmp[256], tmp2[128];
695 FILE *f;
696 int ret;
697
698 if (td->io_ops->flags & FIO_DISKLESSIO)
699 return 0;
700
701 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
702
703 f = fopen(tmp, "r+");
704 if (!f) {
705 if (errno == ENOENT) {
706 log_err("fio: os or kernel doesn't support IO scheduler switching\n");
707 return 0;
708 }
709 td_verror(td, errno, "fopen iosched");
710 return 1;
711 }
712
713 /*
714 * Set io scheduler.
715 */
716 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
717 if (ferror(f) || ret != 1) {
718 td_verror(td, errno, "fwrite");
719 fclose(f);
720 return 1;
721 }
722
723 rewind(f);
724
725 /*
726 * Read back and check that the selected scheduler is now the default.
727 */
728 ret = fread(tmp, 1, sizeof(tmp), f);
729 if (ferror(f) || ret < 0) {
730 td_verror(td, errno, "fread");
731 fclose(f);
732 return 1;
733 }
734
735 sprintf(tmp2, "[%s]", td->o.ioscheduler);
736 if (!strstr(tmp, tmp2)) {
737 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
738 td_verror(td, EINVAL, "iosched_switch");
739 fclose(f);
740 return 1;
741 }
742
743 fclose(f);
744 return 0;
745}
746
747static int keep_running(struct thread_data *td)
748{
749 unsigned long long io_done;
750
751 if (td->done)
752 return 0;
753 if (td->o.time_based)
754 return 1;
755 if (td->o.loops) {
756 td->o.loops--;
757 return 1;
758 }
759
760 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE] + td->io_skip_bytes;
761 if (io_done < td->o.size)
762 return 1;
763
764 return 0;
765}
766
767static int clear_io_state(struct thread_data *td)
768{
769 struct fio_file *f;
770 unsigned int i;
771 int ret;
772
773 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
774 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
775 td->zone_bytes = 0;
776 td->rate_bytes = 0;
777 td->rate_blocks = 0;
778 td->rw_end_set[0] = td->rw_end_set[1] = 0;
779
780 td->last_was_sync = 0;
781
782 /*
783 * reset file done count if we are to start over
784 */
785 if (td->o.time_based || td->o.loops)
786 td->nr_done_files = 0;
787
788 close_files(td);
789
790 ret = 0;
791 for_each_file(td, f, i) {
792 f->flags &= ~FIO_FILE_DONE;
793 ret = td_io_open_file(td, f);
794 if (ret)
795 break;
796 }
797
798 return ret;
799}
800
801/*
802 * Entry point for the thread based jobs. The process based jobs end up
803 * here as well, after a little setup.
804 */
805static void *thread_main(void *data)
806{
807 unsigned long long runtime[2], elapsed;
808 struct thread_data *td = data;
809 int clear_state;
810
811 if (!td->o.use_thread)
812 setsid();
813
814 td->pid = getpid();
815
816 dprint(FD_PROCESS, "jobs pid=%d started\n", td->pid);
817
818 INIT_LIST_HEAD(&td->io_u_freelist);
819 INIT_LIST_HEAD(&td->io_u_busylist);
820 INIT_LIST_HEAD(&td->io_u_requeues);
821 INIT_LIST_HEAD(&td->io_log_list);
822 INIT_LIST_HEAD(&td->io_hist_list);
823 td->io_hist_tree = RB_ROOT;
824
825 td_set_runstate(td, TD_INITIALIZED);
826 fio_mutex_up(startup_mutex);
827 fio_mutex_down(td->mutex);
828
829 /*
830 * the ->mutex mutex is now no longer used, close it to avoid
831 * eating a file descriptor
832 */
833 fio_mutex_remove(td->mutex);
834
835 /*
836 * May alter parameters that init_io_u() will use, so we need to
837 * do this first.
838 */
839 if (init_iolog(td))
840 goto err;
841
842 if (init_io_u(td))
843 goto err;
844
845 if (td->o.cpumask_set && fio_setaffinity(td) == -1) {
846 td_verror(td, errno, "cpu_set_affinity");
847 goto err;
848 }
849
850 if (td->ioprio_set) {
851 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
852 td_verror(td, errno, "ioprio_set");
853 goto err;
854 }
855 }
856
857 if (nice(td->o.nice) == -1) {
858 td_verror(td, errno, "nice");
859 goto err;
860 }
861
862 if (td->o.ioscheduler && switch_ioscheduler(td))
863 goto err;
864
865 if (!td->o.create_serialize && setup_files(td))
866 goto err;
867
868 if (td_io_init(td))
869 goto err;
870
871 if (open_files(td))
872 goto err;
873
874 if (init_random_map(td))
875 goto err;
876
877 if (td->o.exec_prerun) {
878 if (system(td->o.exec_prerun) < 0)
879 goto err;
880 }
881
882 fio_gettime(&td->epoch, NULL);
883 memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch));
884 getrusage(RUSAGE_SELF, &td->ts.ru_start);
885
886 runtime[0] = runtime[1] = 0;
887 clear_state = 0;
888 while (keep_running(td)) {
889 fio_gettime(&td->start, NULL);
890 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
891
892 if (td->o.ratemin)
893 memcpy(&td->lastrate, &td->ts.stat_sample_time, sizeof(td->lastrate));
894
895 if (clear_state && clear_io_state(td))
896 break;
897
898 prune_io_piece_log(td);
899
900 do_io(td);
901
902 clear_state = 1;
903
904 if (td_read(td) && td->io_bytes[DDIR_READ]) {
905 if (td->rw_end_set[DDIR_READ])
906 elapsed = utime_since(&td->start, &td->rw_end[DDIR_READ]);
907 else
908 elapsed = utime_since_now(&td->start);
909
910 runtime[DDIR_READ] += elapsed;
911 }
912 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
913 if (td->rw_end_set[DDIR_WRITE])
914 elapsed = utime_since(&td->start, &td->rw_end[DDIR_WRITE]);
915 else
916 elapsed = utime_since_now(&td->start);
917
918 runtime[DDIR_WRITE] += elapsed;
919 }
920
921 if (td->error || td->terminate)
922 break;
923
924 if (!td->o.do_verify ||
925 td->o.verify == VERIFY_NONE ||
926 (td->io_ops->flags & FIO_UNIDIR))
927 continue;
928
929 if (clear_io_state(td))
930 break;
931
932 fio_gettime(&td->start, NULL);
933
934 do_verify(td);
935
936 runtime[DDIR_READ] += utime_since_now(&td->start);
937
938 if (td->error || td->terminate)
939 break;
940 }
941
942 update_rusage_stat(td);
943 td->ts.runtime[0] = (runtime[0] + 999) / 1000;
944 td->ts.runtime[1] = (runtime[1] + 999) / 1000;
945 td->ts.total_run_time = mtime_since_now(&td->epoch);
946 td->ts.io_bytes[0] = td->io_bytes[0];
947 td->ts.io_bytes[1] = td->io_bytes[1];
948
949 if (td->ts.bw_log)
950 finish_log(td, td->ts.bw_log, "bw");
951 if (td->ts.slat_log)
952 finish_log(td, td->ts.slat_log, "slat");
953 if (td->ts.clat_log)
954 finish_log(td, td->ts.clat_log, "clat");
955 if (td->o.exec_postrun) {
956 if (system(td->o.exec_postrun) < 0)
957 log_err("fio: postrun %s failed\n", td->o.exec_postrun);
958 }
959
960 if (exitall_on_terminate)
961 terminate_threads(td->groupid);
962
963err:
964 if (td->error)
965 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
966 close_and_free_files(td);
967 close_ioengine(td);
968 cleanup_io_u(td);
969
970 /*
971 * do this very late, it will log file closing as well
972 */
973 if (td->o.write_iolog_file)
974 write_iolog_close(td);
975
976 options_mem_free(td);
977 td_set_runstate(td, TD_EXITED);
978 return (void *) (unsigned long) td->error;
979}
980
981/*
982 * We cannot pass the td data into a forked process, so attach the td and
983 * pass it to the thread worker.
984 */
985static int fork_main(int shmid, int offset)
986{
987 struct thread_data *td;
988 void *data, *ret;
989
990 data = shmat(shmid, NULL, 0);
991 if (data == (void *) -1) {
992 int __err = errno;
993
994 perror("shmat");
995 return __err;
996 }
997
998 td = data + offset * sizeof(struct thread_data);
999 ret = thread_main(td);
1000 shmdt(data);
1001 return (int) (unsigned long) ret;
1002}
1003
1004/*
1005 * Run over the job map and reap the threads that have exited, if any.
1006 */
1007static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1008{
1009 struct thread_data *td;
1010 int i, cputhreads, realthreads, pending, status, ret;
1011
1012 /*
1013 * reap exited threads (TD_EXITED -> TD_REAPED)
1014 */
1015 realthreads = pending = cputhreads = 0;
1016 for_each_td(td, i) {
1017 int flags = 0;
1018
1019 /*
1020 * ->io_ops is NULL for a thread that has closed its
1021 * io engine
1022 */
1023 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1024 cputhreads++;
1025 else
1026 realthreads++;
1027
1028 if (!td->pid) {
1029 pending++;
1030 continue;
1031 }
1032 if (td->runstate == TD_REAPED)
1033 continue;
1034 if (td->o.use_thread) {
1035 if (td->runstate == TD_EXITED) {
1036 td_set_runstate(td, TD_REAPED);
1037 goto reaped;
1038 }
1039 continue;
1040 }
1041
1042 flags = WNOHANG;
1043 if (td->runstate == TD_EXITED)
1044 flags = 0;
1045
1046 /*
1047 * check if someone quit or got killed in an unusual way
1048 */
1049 ret = waitpid(td->pid, &status, flags);
1050 if (ret < 0) {
1051 if (errno == ECHILD) {
1052 log_err("fio: pid=%d disappeared %d\n", td->pid, td->runstate);
1053 td_set_runstate(td, TD_REAPED);
1054 goto reaped;
1055 }
1056 perror("waitpid");
1057 } else if (ret == td->pid) {
1058 if (WIFSIGNALED(status)) {
1059 int sig = WTERMSIG(status);
1060
1061 if (sig != SIGQUIT)
1062 log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
1063 td_set_runstate(td, TD_REAPED);
1064 goto reaped;
1065 }
1066 if (WIFEXITED(status)) {
1067 if (WEXITSTATUS(status) && !td->error)
1068 td->error = WEXITSTATUS(status);
1069
1070 td_set_runstate(td, TD_REAPED);
1071 goto reaped;
1072 }
1073 }
1074
1075 /*
1076 * thread is not dead, continue
1077 */
1078 pending++;
1079 continue;
1080reaped:
1081 if (td->o.use_thread) {
1082 long ret;
1083
1084 dprint(FD_PROCESS, "joining tread %d\n", td->pid);
1085 if (pthread_join(td->thread, (void *) &ret)) {
1086 dprint(FD_PROCESS, "join failed %ld\n", ret);
1087 perror("pthread_join");
1088 }
1089 }
1090
1091 (*nr_running)--;
1092 (*m_rate) -= td->o.ratemin;
1093 (*t_rate) -= td->o.rate;
1094 pending--;
1095
1096 if (td->error)
1097 exit_value++;
1098 }
1099
1100 if (*nr_running == cputhreads && !pending && realthreads)
1101 terminate_threads(TERMINATE_ALL);
1102}
1103
1104/*
1105 * Main function for kicking off and reaping jobs, as needed.
1106 */
1107static void run_threads(void)
1108{
1109 struct thread_data *td;
1110 unsigned long spent;
1111 int i, todo, nr_running, m_rate, t_rate, nr_started;
1112
1113 if (fio_pin_memory())
1114 return;
1115
1116 if (!terse_output) {
1117 printf("Starting ");
1118 if (nr_thread)
1119 printf("%d thread%s", nr_thread, nr_thread > 1 ? "s" : "");
1120 if (nr_process) {
1121 if (nr_thread)
1122 printf(" and ");
1123 printf("%d process%s", nr_process, nr_process > 1 ? "es" : "");
1124 }
1125 printf("\n");
1126 fflush(stdout);
1127 }
1128
1129 signal(SIGINT, sig_handler);
1130 signal(SIGALRM, sig_handler);
1131
1132 todo = thread_number;
1133 nr_running = 0;
1134 nr_started = 0;
1135 m_rate = t_rate = 0;
1136
1137 for_each_td(td, i) {
1138 print_status_init(td->thread_number - 1);
1139
1140 if (!td->o.create_serialize) {
1141 init_disk_util(td);
1142 continue;
1143 }
1144
1145 /*
1146 * do file setup here so it happens sequentially,
1147 * we don't want X number of threads getting their
1148 * client data interspersed on disk
1149 */
1150 if (setup_files(td)) {
1151 exit_value++;
1152 if (td->error)
1153 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
1154 td_set_runstate(td, TD_REAPED);
1155 todo--;
1156 }
1157
1158 init_disk_util(td);
1159 }
1160
1161 set_genesis_time();
1162
1163 while (todo) {
1164 struct thread_data *map[MAX_JOBS];
1165 struct timeval this_start;
1166 int this_jobs = 0, left;
1167
1168 /*
1169 * create threads (TD_NOT_CREATED -> TD_CREATED)
1170 */
1171 for_each_td(td, i) {
1172 if (td->runstate != TD_NOT_CREATED)
1173 continue;
1174
1175 /*
1176 * never got a chance to start, killed by other
1177 * thread for some reason
1178 */
1179 if (td->terminate) {
1180 todo--;
1181 continue;
1182 }
1183
1184 if (td->o.start_delay) {
1185 spent = mtime_since_genesis();
1186
1187 if (td->o.start_delay * 1000 > spent)
1188 continue;
1189 }
1190
1191 if (td->o.stonewall && (nr_started || nr_running))
1192 break;
1193
1194 /*
1195 * Set state to created. Thread will transition
1196 * to TD_INITIALIZED when it's done setting up.
1197 */
1198 td_set_runstate(td, TD_CREATED);
1199 map[this_jobs++] = td;
1200 nr_started++;
1201
1202 if (td->o.use_thread) {
1203 dprint(FD_PROCESS, "will pthread_create\n");
1204 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1205 perror("thread_create");
1206 nr_started--;
1207 break;
1208 }
1209 } else {
1210 dprint(FD_PROCESS, "will fork\n");
1211 if (!fork()) {
1212 int ret = fork_main(shm_id, i);
1213
1214 exit(ret);
1215 }
1216 }
1217 fio_mutex_down(startup_mutex);
1218 }
1219
1220 /*
1221 * Wait for the started threads to transition to
1222 * TD_INITIALIZED.
1223 */
1224 fio_gettime(&this_start, NULL);
1225 left = this_jobs;
1226 while (left && !fio_abort) {
1227 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1228 break;
1229
1230 usleep(100000);
1231
1232 for (i = 0; i < this_jobs; i++) {
1233 td = map[i];
1234 if (!td)
1235 continue;
1236 if (td->runstate == TD_INITIALIZED) {
1237 map[i] = NULL;
1238 left--;
1239 } else if (td->runstate >= TD_EXITED) {
1240 map[i] = NULL;
1241 left--;
1242 todo--;
1243 nr_running++; /* work-around... */
1244 }
1245 }
1246 }
1247
1248 if (left) {
1249 log_err("fio: %d jobs failed to start\n", left);
1250 for (i = 0; i < this_jobs; i++) {
1251 td = map[i];
1252 if (!td)
1253 continue;
1254 kill(td->pid, SIGTERM);
1255 }
1256 break;
1257 }
1258
1259 /*
1260 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1261 */
1262 for_each_td(td, i) {
1263 if (td->runstate != TD_INITIALIZED)
1264 continue;
1265
1266 td_set_runstate(td, TD_RUNNING);
1267 nr_running++;
1268 nr_started--;
1269 m_rate += td->o.ratemin;
1270 t_rate += td->o.rate;
1271 todo--;
1272 fio_mutex_up(td->mutex);
1273 }
1274
1275 reap_threads(&nr_running, &t_rate, &m_rate);
1276
1277 if (todo)
1278 usleep(100000);
1279 }
1280
1281 while (nr_running) {
1282 reap_threads(&nr_running, &t_rate, &m_rate);
1283 usleep(10000);
1284 }
1285
1286 update_io_ticks();
1287 fio_unpin_memory();
1288}
1289
1290int main(int argc, char *argv[])
1291{
1292 long ps;
1293
1294 /*
1295 * We need locale for number printing, if it isn't set then just
1296 * go with the US format.
1297 */
1298 if (!getenv("LC_NUMERIC"))
1299 setlocale(LC_NUMERIC, "en_US");
1300
1301 if (parse_options(argc, argv))
1302 return 1;
1303
1304 if (!thread_number)
1305 return 0;
1306
1307 ps = sysconf(_SC_PAGESIZE);
1308 if (ps < 0) {
1309 log_err("Failed to get page size\n");
1310 return 1;
1311 }
1312
1313 page_size = ps;
1314 page_mask = ps - 1;
1315
1316 if (write_bw_log) {
1317 setup_log(&agg_io_log[DDIR_READ]);
1318 setup_log(&agg_io_log[DDIR_WRITE]);
1319 }
1320
1321 startup_mutex = fio_mutex_init(0);
1322
1323 set_genesis_time();
1324
1325 disk_util_timer_arm();
1326
1327 run_threads();
1328
1329 if (!fio_abort) {
1330 show_run_stats();
1331 if (write_bw_log) {
1332 __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1333 __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1334 }
1335 }
1336
1337 fio_mutex_remove(startup_mutex);
1338 return exit_value;
1339}