Have the job set ->terminate when runtime is exceeded
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "hash.h"
39
40unsigned long page_mask;
41unsigned long page_size;
42#define ALIGN(buf) \
43 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
44
45int groupid = 0;
46int thread_number = 0;
47int nr_process = 0;
48int nr_thread = 0;
49int shm_id = 0;
50int temp_stall_ts;
51
52static struct fio_sem *startup_sem;
53static volatile int fio_abort;
54static int exit_value;
55
56struct io_log *agg_io_log[2];
57
58#define TERMINATE_ALL (-1)
59#define JOB_START_TIMEOUT (5 * 1000)
60
61static inline void td_set_runstate(struct thread_data *td, int runstate)
62{
63 td->runstate = runstate;
64}
65
66static void terminate_threads(int group_id)
67{
68 struct thread_data *td;
69 int i;
70
71 for_each_td(td, i) {
72 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
73 if (td->runstate <= TD_RUNNING)
74 kill(td->pid, SIGQUIT);
75 td->terminate = 1;
76 td->o.start_delay = 0;
77 }
78 }
79}
80
81static void sig_handler(int sig)
82{
83 switch (sig) {
84 case SIGALRM:
85 update_io_ticks();
86 disk_util_timer_arm();
87 print_thread_status();
88 break;
89 default:
90 printf("\nfio: terminating on signal %d\n", sig);
91 fflush(stdout);
92 terminate_threads(TERMINATE_ALL);
93 break;
94 }
95}
96
97/*
98 * Check if we are above the minimum rate given.
99 */
100static int check_min_rate(struct thread_data *td, struct timeval *now)
101{
102 unsigned long long bytes = 0;
103 unsigned long iops = 0;
104 unsigned long spent;
105 unsigned long rate;
106
107 /*
108 * No minimum rate set, always ok
109 */
110 if (!td->o.ratemin && !td->o.rate_iops_min)
111 return 0;
112
113 /*
114 * allow a 2 second settle period in the beginning
115 */
116 if (mtime_since(&td->start, now) < 2000)
117 return 0;
118
119 if (td_read(td)) {
120 iops += td->io_blocks[DDIR_READ];
121 bytes += td->this_io_bytes[DDIR_READ];
122 }
123 if (td_write(td)) {
124 iops += td->io_blocks[DDIR_WRITE];
125 bytes += td->this_io_bytes[DDIR_WRITE];
126 }
127
128 /*
129 * if rate blocks is set, sample is running
130 */
131 if (td->rate_bytes || td->rate_blocks) {
132 spent = mtime_since(&td->lastrate, now);
133 if (spent < td->o.ratecycle)
134 return 0;
135
136 if (td->o.rate) {
137 /*
138 * check bandwidth specified rate
139 */
140 if (bytes < td->rate_bytes) {
141 log_err("%s: min rate %u not met\n", td->o.name, td->o.ratemin);
142 return 1;
143 } else {
144 rate = (bytes - td->rate_bytes) / spent;
145 if (rate < td->o.ratemin || bytes < td->rate_bytes) {
146 log_err("%s: min rate %u not met, got %luKiB/sec\n", td->o.name, td->o.ratemin, rate);
147 return 1;
148 }
149 }
150 } else {
151 /*
152 * checks iops specified rate
153 */
154 if (iops < td->o.rate_iops) {
155 log_err("%s: min iops rate %u not met\n", td->o.name, td->o.rate_iops);
156 return 1;
157 } else {
158 rate = (iops - td->rate_blocks) / spent;
159 if (rate < td->o.rate_iops_min || iops < td->rate_blocks) {
160 log_err("%s: min iops rate %u not met, got %lu\n", td->o.name, td->o.rate_iops_min, rate);
161 }
162 }
163 }
164 }
165
166 td->rate_bytes = bytes;
167 td->rate_blocks = iops;
168 memcpy(&td->lastrate, now, sizeof(*now));
169 return 0;
170}
171
172static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
173{
174 if (!td->o.timeout)
175 return 0;
176 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
177 return 1;
178
179 return 0;
180}
181
182/*
183 * When job exits, we can cancel the in-flight IO if we are using async
184 * io. Attempt to do so.
185 */
186static void cleanup_pending_aio(struct thread_data *td)
187{
188 struct list_head *entry, *n;
189 struct io_u *io_u;
190 int r;
191
192 /*
193 * get immediately available events, if any
194 */
195 r = io_u_queued_complete(td, 0);
196 if (r < 0)
197 return;
198
199 /*
200 * now cancel remaining active events
201 */
202 if (td->io_ops->cancel) {
203 list_for_each_safe(entry, n, &td->io_u_busylist) {
204 io_u = list_entry(entry, struct io_u, list);
205
206 /*
207 * if the io_u isn't in flight, then that generally
208 * means someone leaked an io_u. complain but fix
209 * it up, so we don't stall here.
210 */
211 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
212 log_err("fio: non-busy IO on busy list\n");
213 put_io_u(td, io_u);
214 } else {
215 r = td->io_ops->cancel(td, io_u);
216 if (!r)
217 put_io_u(td, io_u);
218 }
219 }
220 }
221
222 if (td->cur_depth)
223 r = io_u_queued_complete(td, td->cur_depth);
224}
225
226/*
227 * Helper to handle the final sync of a file. Works just like the normal
228 * io path, just does everything sync.
229 */
230static int fio_io_sync(struct thread_data *td, struct fio_file *f)
231{
232 struct io_u *io_u = __get_io_u(td);
233 int ret;
234
235 if (!io_u)
236 return 1;
237
238 io_u->ddir = DDIR_SYNC;
239 io_u->file = f;
240
241 if (td_io_prep(td, io_u)) {
242 put_io_u(td, io_u);
243 return 1;
244 }
245
246requeue:
247 ret = td_io_queue(td, io_u);
248 if (ret < 0) {
249 td_verror(td, io_u->error, "td_io_queue");
250 put_io_u(td, io_u);
251 return 1;
252 } else if (ret == FIO_Q_QUEUED) {
253 if (io_u_queued_complete(td, 1) < 0)
254 return 1;
255 } else if (ret == FIO_Q_COMPLETED) {
256 if (io_u->error) {
257 td_verror(td, io_u->error, "td_io_queue");
258 return 1;
259 }
260
261 if (io_u_sync_complete(td, io_u) < 0)
262 return 1;
263 } else if (ret == FIO_Q_BUSY) {
264 if (td_io_commit(td))
265 return 1;
266 goto requeue;
267 }
268
269 return 0;
270}
271
272/*
273 * The main verify engine. Runs over the writes we previously submitted,
274 * reads the blocks back in, and checks the crc/md5 of the data.
275 */
276static void do_verify(struct thread_data *td)
277{
278 struct fio_file *f;
279 struct io_u *io_u;
280 int ret, min_events;
281 unsigned int i;
282
283 /*
284 * sync io first and invalidate cache, to make sure we really
285 * read from disk.
286 */
287 for_each_file(td, f, i) {
288 if (!(f->flags & FIO_FILE_OPEN))
289 continue;
290 if (fio_io_sync(td, f))
291 break;
292 if (file_invalidate_cache(td, f))
293 break;
294 }
295
296 if (td->error)
297 return;
298
299 td_set_runstate(td, TD_VERIFYING);
300
301 io_u = NULL;
302 while (!td->terminate) {
303 int ret2;
304
305 io_u = __get_io_u(td);
306 if (!io_u)
307 break;
308
309 if (runtime_exceeded(td, &io_u->start_time)) {
310 put_io_u(td, io_u);
311 td->terminate = 1;
312 break;
313 }
314
315 if (get_next_verify(td, io_u)) {
316 put_io_u(td, io_u);
317 break;
318 }
319
320 if (td_io_prep(td, io_u)) {
321 put_io_u(td, io_u);
322 break;
323 }
324
325 io_u->end_io = verify_io_u;
326
327 ret = td_io_queue(td, io_u);
328 switch (ret) {
329 case FIO_Q_COMPLETED:
330 if (io_u->error)
331 ret = -io_u->error;
332 else if (io_u->resid) {
333 int bytes = io_u->xfer_buflen - io_u->resid;
334 struct fio_file *f = io_u->file;
335
336 /*
337 * zero read, fail
338 */
339 if (!bytes) {
340 td_verror(td, ENODATA, "full resid");
341 put_io_u(td, io_u);
342 break;
343 }
344
345 io_u->xfer_buflen = io_u->resid;
346 io_u->xfer_buf += bytes;
347 io_u->offset += bytes;
348 f->last_completed_pos = io_u->offset;
349
350 td->ts.short_io_u[io_u->ddir]++;
351
352 if (io_u->offset == f->real_file_size)
353 goto sync_done;
354
355 requeue_io_u(td, &io_u);
356 } else {
357sync_done:
358 ret = io_u_sync_complete(td, io_u);
359 if (ret < 0)
360 break;
361 }
362 continue;
363 case FIO_Q_QUEUED:
364 break;
365 case FIO_Q_BUSY:
366 requeue_io_u(td, &io_u);
367 ret2 = td_io_commit(td);
368 if (ret2 < 0)
369 ret = ret2;
370 break;
371 default:
372 assert(ret < 0);
373 td_verror(td, -ret, "td_io_queue");
374 break;
375 }
376
377 if (ret < 0 || td->error)
378 break;
379
380 /*
381 * if we can queue more, do so. but check if there are
382 * completed io_u's first.
383 */
384 min_events = 0;
385 if (queue_full(td) || ret == FIO_Q_BUSY) {
386 min_events = 1;
387
388 if (td->cur_depth > td->o.iodepth_low)
389 min_events = td->cur_depth - td->o.iodepth_low;
390 }
391
392 /*
393 * Reap required number of io units, if any, and do the
394 * verification on them through the callback handler
395 */
396 if (io_u_queued_complete(td, min_events) < 0)
397 break;
398 }
399
400 if (!td->error) {
401 min_events = td->cur_depth;
402
403 if (min_events)
404 ret = io_u_queued_complete(td, min_events);
405 } else
406 cleanup_pending_aio(td);
407
408 td_set_runstate(td, TD_RUNNING);
409}
410
411/*
412 * Main IO worker function. It retrieves io_u's to process and queues
413 * and reaps them, checking for rate and errors along the way.
414 */
415static void do_io(struct thread_data *td)
416{
417 struct timeval s;
418 unsigned long usec;
419 unsigned int i;
420 int ret = 0;
421
422 td_set_runstate(td, TD_RUNNING);
423
424 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) {
425 struct timeval comp_time;
426 long bytes_done = 0;
427 int min_evts = 0;
428 struct io_u *io_u;
429 int ret2;
430
431 if (td->terminate)
432 break;
433
434 io_u = get_io_u(td);
435 if (!io_u)
436 break;
437
438 memcpy(&s, &io_u->start_time, sizeof(s));
439
440 if (runtime_exceeded(td, &s)) {
441 put_io_u(td, io_u);
442 td->terminate = 1;
443 break;
444 }
445
446 ret = td_io_queue(td, io_u);
447 switch (ret) {
448 case FIO_Q_COMPLETED:
449 if (io_u->error)
450 ret = -io_u->error;
451 else if (io_u->resid) {
452 int bytes = io_u->xfer_buflen - io_u->resid;
453 struct fio_file *f = io_u->file;
454
455 /*
456 * zero read, fail
457 */
458 if (!bytes) {
459 td_verror(td, ENODATA, "full resid");
460 put_io_u(td, io_u);
461 break;
462 }
463
464 io_u->xfer_buflen = io_u->resid;
465 io_u->xfer_buf += bytes;
466 io_u->offset += bytes;
467 f->last_completed_pos = io_u->offset;
468
469 td->ts.short_io_u[io_u->ddir]++;
470
471 if (io_u->offset == f->real_file_size)
472 goto sync_done;
473
474 requeue_io_u(td, &io_u);
475 } else {
476sync_done:
477 fio_gettime(&comp_time, NULL);
478 bytes_done = io_u_sync_complete(td, io_u);
479 if (bytes_done < 0)
480 ret = bytes_done;
481 }
482 break;
483 case FIO_Q_QUEUED:
484 /*
485 * if the engine doesn't have a commit hook,
486 * the io_u is really queued. if it does have such
487 * a hook, it has to call io_u_queued() itself.
488 */
489 if (td->io_ops->commit == NULL)
490 io_u_queued(td, io_u);
491 break;
492 case FIO_Q_BUSY:
493 requeue_io_u(td, &io_u);
494 ret2 = td_io_commit(td);
495 if (ret2 < 0)
496 ret = ret2;
497 break;
498 default:
499 assert(ret < 0);
500 put_io_u(td, io_u);
501 break;
502 }
503
504 if (ret < 0 || td->error)
505 break;
506
507 /*
508 * See if we need to complete some commands
509 */
510 if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) {
511 min_evts = 0;
512 if (queue_full(td) || ret == FIO_Q_BUSY) {
513 min_evts = 1;
514
515 if (td->cur_depth > td->o.iodepth_low)
516 min_evts = td->cur_depth - td->o.iodepth_low;
517 }
518
519 fio_gettime(&comp_time, NULL);
520 bytes_done = io_u_queued_complete(td, min_evts);
521 if (bytes_done < 0)
522 break;
523 }
524
525 if (!bytes_done)
526 continue;
527
528 /*
529 * the rate is batched for now, it should work for batches
530 * of completions except the very first one which may look
531 * a little bursty
532 */
533 usec = utime_since(&s, &comp_time);
534
535 rate_throttle(td, usec, bytes_done);
536
537 if (check_min_rate(td, &comp_time)) {
538 if (exitall_on_terminate)
539 terminate_threads(td->groupid);
540 td_verror(td, ENODATA, "check_min_rate");
541 break;
542 }
543
544 if (td->o.thinktime) {
545 unsigned long long b;
546
547 b = td->io_blocks[0] + td->io_blocks[1];
548 if (!(b % td->o.thinktime_blocks)) {
549 int left;
550
551 if (td->o.thinktime_spin)
552 __usec_sleep(td->o.thinktime_spin);
553
554 left = td->o.thinktime - td->o.thinktime_spin;
555 if (left)
556 usec_sleep(td, left);
557 }
558 }
559 }
560
561 if (!td->error) {
562 struct fio_file *f;
563
564 i = td->cur_depth;
565 if (i)
566 ret = io_u_queued_complete(td, i);
567
568 if (should_fsync(td) && td->o.end_fsync) {
569 td_set_runstate(td, TD_FSYNCING);
570
571 for_each_file(td, f, i) {
572 if (!(f->flags & FIO_FILE_OPEN))
573 continue;
574 fio_io_sync(td, f);
575 }
576 }
577 } else
578 cleanup_pending_aio(td);
579}
580
581static void cleanup_io_u(struct thread_data *td)
582{
583 struct list_head *entry, *n;
584 struct io_u *io_u;
585
586 list_for_each_safe(entry, n, &td->io_u_freelist) {
587 io_u = list_entry(entry, struct io_u, list);
588
589 list_del(&io_u->list);
590 free(io_u);
591 }
592
593 free_io_mem(td);
594}
595
596/*
597 * "randomly" fill the buffer contents
598 */
599static void fill_io_buf(struct thread_data *td, struct io_u *io_u, int max_bs)
600{
601 long *ptr = io_u->buf;
602
603 if (!td->o.zero_buffers) {
604 while ((void *) ptr - io_u->buf < max_bs) {
605 *ptr = rand() * GOLDEN_RATIO_PRIME;
606 ptr++;
607 }
608 } else
609 memset(ptr, 0, max_bs);
610}
611
612static int init_io_u(struct thread_data *td)
613{
614 unsigned long long buf_size;
615 struct io_u *io_u;
616 unsigned int max_bs;
617 int i, max_units;
618 char *p;
619
620 if (td->io_ops->flags & FIO_SYNCIO)
621 max_units = 1;
622 else
623 max_units = td->o.iodepth;
624
625 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
626 buf_size = (unsigned long long) max_bs * (unsigned long long) max_units;
627 buf_size += page_mask;
628 if (buf_size != (size_t) buf_size) {
629 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
630 return 1;
631 }
632
633 td->orig_buffer_size = buf_size;
634
635 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE)
636 td->orig_buffer_size = (td->orig_buffer_size + td->o.hugepage_size - 1) & ~(td->o.hugepage_size - 1);
637 else if (td->orig_buffer_size & page_mask)
638 td->orig_buffer_size = (td->orig_buffer_size + page_mask) & ~page_mask;
639
640 if (allocate_io_mem(td))
641 return 1;
642
643 p = ALIGN(td->orig_buffer);
644 for (i = 0; i < max_units; i++) {
645 io_u = malloc(sizeof(*io_u));
646 memset(io_u, 0, sizeof(*io_u));
647 INIT_LIST_HEAD(&io_u->list);
648
649 io_u->buf = p + max_bs * i;
650
651 if (td_write(td))
652 fill_io_buf(td, io_u, max_bs);
653
654 io_u->index = i;
655 io_u->flags = IO_U_F_FREE;
656 list_add(&io_u->list, &td->io_u_freelist);
657 }
658
659 io_u_init_timeout();
660
661 return 0;
662}
663
664static int switch_ioscheduler(struct thread_data *td)
665{
666 char tmp[256], tmp2[128];
667 FILE *f;
668 int ret;
669
670 if (td->io_ops->flags & FIO_DISKLESSIO)
671 return 0;
672
673 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
674
675 f = fopen(tmp, "r+");
676 if (!f) {
677 if (errno == ENOENT) {
678 log_err("fio: os or kernel doesn't support IO scheduler switching\n");
679 return 0;
680 }
681 td_verror(td, errno, "fopen iosched");
682 return 1;
683 }
684
685 /*
686 * Set io scheduler.
687 */
688 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
689 if (ferror(f) || ret != 1) {
690 td_verror(td, errno, "fwrite");
691 fclose(f);
692 return 1;
693 }
694
695 rewind(f);
696
697 /*
698 * Read back and check that the selected scheduler is now the default.
699 */
700 ret = fread(tmp, 1, sizeof(tmp), f);
701 if (ferror(f) || ret < 0) {
702 td_verror(td, errno, "fread");
703 fclose(f);
704 return 1;
705 }
706
707 sprintf(tmp2, "[%s]", td->o.ioscheduler);
708 if (!strstr(tmp, tmp2)) {
709 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
710 td_verror(td, EINVAL, "iosched_switch");
711 fclose(f);
712 return 1;
713 }
714
715 fclose(f);
716 return 0;
717}
718
719static int clear_io_state(struct thread_data *td)
720{
721 struct fio_file *f;
722 unsigned int i;
723 int ret;
724
725 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
726 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
727 td->zone_bytes = 0;
728 td->rate_bytes = 0;
729 td->rate_blocks = 0;
730 td->rw_end_set[0] = td->rw_end_set[1] = 0;
731
732 td->last_was_sync = 0;
733
734 for_each_file(td, f, i)
735 td_io_close_file(td, f);
736
737 ret = 0;
738 for_each_file(td, f, i) {
739 ret = td_io_open_file(td, f);
740 if (ret)
741 break;
742 }
743
744 return ret;
745}
746
747/*
748 * Entry point for the thread based jobs. The process based jobs end up
749 * here as well, after a little setup.
750 */
751static void *thread_main(void *data)
752{
753 unsigned long long runtime[2];
754 struct thread_data *td = data;
755 unsigned long elapsed;
756 int clear_state;
757
758 if (!td->o.use_thread)
759 setsid();
760
761 td->pid = getpid();
762
763 INIT_LIST_HEAD(&td->io_u_freelist);
764 INIT_LIST_HEAD(&td->io_u_busylist);
765 INIT_LIST_HEAD(&td->io_u_requeues);
766 INIT_LIST_HEAD(&td->io_log_list);
767 INIT_LIST_HEAD(&td->io_hist_list);
768 td->io_hist_tree = RB_ROOT;
769
770 if (init_io_u(td))
771 goto err_sem;
772
773 if (fio_setaffinity(td) == -1) {
774 td_verror(td, errno, "cpu_set_affinity");
775 goto err_sem;
776 }
777
778 if (init_iolog(td))
779 goto err_sem;
780
781 if (td->ioprio) {
782 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
783 td_verror(td, errno, "ioprio_set");
784 goto err_sem;
785 }
786 }
787
788 if (nice(td->o.nice) == -1) {
789 td_verror(td, errno, "nice");
790 goto err_sem;
791 }
792
793 if (td->o.ioscheduler && switch_ioscheduler(td))
794 goto err_sem;
795
796 td_set_runstate(td, TD_INITIALIZED);
797 fio_sem_up(startup_sem);
798 fio_sem_down(td->mutex);
799
800 /*
801 * the ->mutex semaphore is now no longer used, close it to avoid
802 * eating a file descriptor
803 */
804 fio_sem_remove(td->mutex);
805
806 if (!td->o.create_serialize && setup_files(td))
807 goto err;
808
809 if (td_io_init(td))
810 goto err;
811
812 if (open_files(td))
813 goto err;
814
815 if (init_random_map(td))
816 goto err;
817
818 if (td->o.exec_prerun) {
819 if (system(td->o.exec_prerun) < 0)
820 goto err;
821 }
822
823 fio_gettime(&td->epoch, NULL);
824 memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch));
825 getrusage(RUSAGE_SELF, &td->ts.ru_start);
826
827 runtime[0] = runtime[1] = 0;
828 clear_state = 0;
829 while (td->o.time_based || td->o.loops--) {
830 fio_gettime(&td->start, NULL);
831 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
832
833 if (td->o.ratemin)
834 memcpy(&td->lastrate, &td->ts.stat_sample_time, sizeof(td->lastrate));
835
836 if (clear_state && clear_io_state(td))
837 break;
838
839 prune_io_piece_log(td);
840
841 do_io(td);
842
843 clear_state = 1;
844
845 if (td_read(td) && td->io_bytes[DDIR_READ]) {
846 if (td->rw_end_set[DDIR_READ])
847 elapsed = utime_since(&td->start, &td->rw_end[DDIR_READ]);
848 else
849 elapsed = utime_since_now(&td->start);
850
851 runtime[DDIR_READ] += elapsed;
852 }
853 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
854 if (td->rw_end_set[DDIR_WRITE])
855 elapsed = utime_since(&td->start, &td->rw_end[DDIR_WRITE]);
856 else
857 elapsed = utime_since_now(&td->start);
858
859 runtime[DDIR_WRITE] += elapsed;
860 }
861
862 if (td->error || td->terminate)
863 break;
864
865 if (td->o.verify == VERIFY_NONE)
866 continue;
867
868 if (clear_io_state(td))
869 break;
870
871 fio_gettime(&td->start, NULL);
872
873 do_verify(td);
874
875 runtime[DDIR_READ] += utime_since_now(&td->start);
876
877 if (td->error || td->terminate)
878 break;
879 }
880
881 update_rusage_stat(td);
882 td->ts.runtime[0] = runtime[0] / 1000;
883 td->ts.runtime[1] = runtime[1] / 1000;
884 td->ts.total_run_time = mtime_since_now(&td->epoch);
885 td->ts.io_bytes[0] = td->io_bytes[0];
886 td->ts.io_bytes[1] = td->io_bytes[1];
887
888 if (td->ts.bw_log)
889 finish_log(td, td->ts.bw_log, "bw");
890 if (td->ts.slat_log)
891 finish_log(td, td->ts.slat_log, "slat");
892 if (td->ts.clat_log)
893 finish_log(td, td->ts.clat_log, "clat");
894 if (td->o.write_iolog_file)
895 write_iolog_close(td);
896 if (td->o.exec_postrun) {
897 if (system(td->o.exec_postrun) < 0)
898 log_err("fio: postrun %s failed\n", td->o.exec_postrun);
899 }
900
901 if (exitall_on_terminate)
902 terminate_threads(td->groupid);
903
904err:
905 if (td->error)
906 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
907 close_files(td);
908 close_ioengine(td);
909 cleanup_io_u(td);
910 options_mem_free(td);
911 td_set_runstate(td, TD_EXITED);
912 return (void *) (unsigned long) td->error;
913err_sem:
914 fio_sem_up(startup_sem);
915 goto err;
916}
917
918/*
919 * We cannot pass the td data into a forked process, so attach the td and
920 * pass it to the thread worker.
921 */
922static int fork_main(int shmid, int offset)
923{
924 struct thread_data *td;
925 void *data, *ret;
926
927 data = shmat(shmid, NULL, 0);
928 if (data == (void *) -1) {
929 int __err = errno;
930
931 perror("shmat");
932 return __err;
933 }
934
935 td = data + offset * sizeof(struct thread_data);
936 ret = thread_main(td);
937 shmdt(data);
938 return (int) (unsigned long) ret;
939}
940
941/*
942 * Run over the job map and reap the threads that have exited, if any.
943 */
944static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
945{
946 struct thread_data *td;
947 int i, cputhreads, pending, status, ret;
948
949 /*
950 * reap exited threads (TD_EXITED -> TD_REAPED)
951 */
952 pending = cputhreads = 0;
953 for_each_td(td, i) {
954 int flags = 0;
955
956 /*
957 * ->io_ops is NULL for a thread that has closed its
958 * io engine
959 */
960 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
961 cputhreads++;
962
963 if (!td->pid || td->runstate == TD_REAPED)
964 continue;
965 if (td->o.use_thread) {
966 if (td->runstate == TD_EXITED) {
967 td_set_runstate(td, TD_REAPED);
968 goto reaped;
969 }
970 continue;
971 }
972
973 flags = WNOHANG;
974 if (td->runstate == TD_EXITED)
975 flags = 0;
976
977 /*
978 * check if someone quit or got killed in an unusual way
979 */
980 ret = waitpid(td->pid, &status, flags);
981 if (ret < 0) {
982 if (errno == ECHILD) {
983 log_err("fio: pid=%d disappeared %d\n", td->pid, td->runstate);
984 td_set_runstate(td, TD_REAPED);
985 goto reaped;
986 }
987 perror("waitpid");
988 } else if (ret == td->pid) {
989 if (WIFSIGNALED(status)) {
990 int sig = WTERMSIG(status);
991
992 if (sig != SIGQUIT)
993 log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
994 td_set_runstate(td, TD_REAPED);
995 goto reaped;
996 }
997 if (WIFEXITED(status)) {
998 if (WEXITSTATUS(status) && !td->error)
999 td->error = WEXITSTATUS(status);
1000
1001 td_set_runstate(td, TD_REAPED);
1002 goto reaped;
1003 }
1004 }
1005
1006 /*
1007 * thread is not dead, continue
1008 */
1009 pending++;
1010 continue;
1011reaped:
1012 if (td->o.use_thread) {
1013 long ret;
1014
1015 if (pthread_join(td->thread, (void *) &ret))
1016 perror("pthread_join");
1017 }
1018
1019 (*nr_running)--;
1020 (*m_rate) -= td->o.ratemin;
1021 (*t_rate) -= td->o.rate;
1022 pending--;
1023
1024 if (td->error)
1025 exit_value++;
1026 }
1027
1028 if (*nr_running == cputhreads && !pending)
1029 terminate_threads(TERMINATE_ALL);
1030}
1031
1032/*
1033 * Main function for kicking off and reaping jobs, as needed.
1034 */
1035static void run_threads(void)
1036{
1037 struct thread_data *td;
1038 unsigned long spent;
1039 int i, todo, nr_running, m_rate, t_rate, nr_started;
1040
1041 if (fio_pin_memory())
1042 return;
1043
1044 if (!terse_output) {
1045 printf("Starting ");
1046 if (nr_thread)
1047 printf("%d thread%s", nr_thread, nr_thread > 1 ? "s" : "");
1048 if (nr_process) {
1049 if (nr_thread)
1050 printf(" and ");
1051 printf("%d process%s", nr_process, nr_process > 1 ? "es" : "");
1052 }
1053 printf("\n");
1054 fflush(stdout);
1055 }
1056
1057 signal(SIGINT, sig_handler);
1058 signal(SIGALRM, sig_handler);
1059
1060 todo = thread_number;
1061 nr_running = 0;
1062 nr_started = 0;
1063 m_rate = t_rate = 0;
1064
1065 for_each_td(td, i) {
1066 print_status_init(td->thread_number - 1);
1067
1068 if (!td->o.create_serialize) {
1069 init_disk_util(td);
1070 continue;
1071 }
1072
1073 /*
1074 * do file setup here so it happens sequentially,
1075 * we don't want X number of threads getting their
1076 * client data interspersed on disk
1077 */
1078 if (setup_files(td)) {
1079 exit_value++;
1080 if (td->error)
1081 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
1082 td_set_runstate(td, TD_REAPED);
1083 todo--;
1084 }
1085
1086 init_disk_util(td);
1087 }
1088
1089 set_genesis_time();
1090
1091 while (todo) {
1092 struct thread_data *map[MAX_JOBS];
1093 struct timeval this_start;
1094 int this_jobs = 0, left;
1095
1096 /*
1097 * create threads (TD_NOT_CREATED -> TD_CREATED)
1098 */
1099 for_each_td(td, i) {
1100 if (td->runstate != TD_NOT_CREATED)
1101 continue;
1102
1103 /*
1104 * never got a chance to start, killed by other
1105 * thread for some reason
1106 */
1107 if (td->terminate) {
1108 todo--;
1109 continue;
1110 }
1111
1112 if (td->o.start_delay) {
1113 spent = mtime_since_genesis();
1114
1115 if (td->o.start_delay * 1000 > spent)
1116 continue;
1117 }
1118
1119 if (td->o.stonewall && (nr_started || nr_running))
1120 break;
1121
1122 /*
1123 * Set state to created. Thread will transition
1124 * to TD_INITIALIZED when it's done setting up.
1125 */
1126 td_set_runstate(td, TD_CREATED);
1127 map[this_jobs++] = td;
1128 nr_started++;
1129
1130 if (td->o.use_thread) {
1131 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1132 perror("thread_create");
1133 nr_started--;
1134 break;
1135 }
1136 } else {
1137 if (!fork()) {
1138 int ret = fork_main(shm_id, i);
1139
1140 exit(ret);
1141 }
1142 }
1143 fio_sem_down(startup_sem);
1144 }
1145
1146 /*
1147 * Wait for the started threads to transition to
1148 * TD_INITIALIZED.
1149 */
1150 fio_gettime(&this_start, NULL);
1151 left = this_jobs;
1152 while (left && !fio_abort) {
1153 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1154 break;
1155
1156 usleep(100000);
1157
1158 for (i = 0; i < this_jobs; i++) {
1159 td = map[i];
1160 if (!td)
1161 continue;
1162 if (td->runstate == TD_INITIALIZED) {
1163 map[i] = NULL;
1164 left--;
1165 } else if (td->runstate >= TD_EXITED) {
1166 map[i] = NULL;
1167 left--;
1168 todo--;
1169 nr_running++; /* work-around... */
1170 }
1171 }
1172 }
1173
1174 if (left) {
1175 log_err("fio: %d jobs failed to start\n", left);
1176 for (i = 0; i < this_jobs; i++) {
1177 td = map[i];
1178 if (!td)
1179 continue;
1180 kill(td->pid, SIGTERM);
1181 }
1182 break;
1183 }
1184
1185 /*
1186 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1187 */
1188 for_each_td(td, i) {
1189 if (td->runstate != TD_INITIALIZED)
1190 continue;
1191
1192 td_set_runstate(td, TD_RUNNING);
1193 nr_running++;
1194 nr_started--;
1195 m_rate += td->o.ratemin;
1196 t_rate += td->o.rate;
1197 todo--;
1198 fio_sem_up(td->mutex);
1199 }
1200
1201 reap_threads(&nr_running, &t_rate, &m_rate);
1202
1203 if (todo)
1204 usleep(100000);
1205 }
1206
1207 while (nr_running) {
1208 reap_threads(&nr_running, &t_rate, &m_rate);
1209 usleep(10000);
1210 }
1211
1212 update_io_ticks();
1213 fio_unpin_memory();
1214}
1215
1216int main(int argc, char *argv[])
1217{
1218 long ps;
1219
1220 /*
1221 * We need locale for number printing, if it isn't set then just
1222 * go with the US format.
1223 */
1224 if (!getenv("LC_NUMERIC"))
1225 setlocale(LC_NUMERIC, "en_US");
1226
1227 if (parse_options(argc, argv))
1228 return 1;
1229
1230 if (!thread_number)
1231 return 0;
1232
1233 ps = sysconf(_SC_PAGESIZE);
1234 if (ps < 0) {
1235 log_err("Failed to get page size\n");
1236 return 1;
1237 }
1238
1239 page_size = ps;
1240 page_mask = ps - 1;
1241
1242 if (write_bw_log) {
1243 setup_log(&agg_io_log[DDIR_READ]);
1244 setup_log(&agg_io_log[DDIR_WRITE]);
1245 }
1246
1247 startup_sem = fio_sem_init(0);
1248
1249 set_genesis_time();
1250
1251 disk_util_timer_arm();
1252
1253 run_threads();
1254
1255 if (!fio_abort) {
1256 show_run_stats();
1257 if (write_bw_log) {
1258 __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1259 __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1260 }
1261 }
1262
1263 fio_sem_remove(startup_sem);
1264 return exit_value;
1265}