Remove comment wrt sigaction() usage, it's deprecated
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "hash.h"
39#include "smalloc.h"
40
41unsigned long page_mask;
42unsigned long page_size;
43#define ALIGN(buf) \
44 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
45
46int groupid = 0;
47int thread_number = 0;
48int nr_process = 0;
49int nr_thread = 0;
50int shm_id = 0;
51int temp_stall_ts;
52unsigned long done_secs = 0;
53
54static struct fio_mutex *startup_mutex;
55static volatile int fio_abort;
56static int exit_value;
57static struct itimerval itimer;
58
59struct io_log *agg_io_log[2];
60
61#define TERMINATE_ALL (-1)
62#define JOB_START_TIMEOUT (5 * 1000)
63
64static inline void td_set_runstate(struct thread_data *td, int runstate)
65{
66 if (td->runstate == runstate)
67 return;
68
69 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
70 td->runstate, runstate);
71 td->runstate = runstate;
72}
73
74static void terminate_threads(int group_id)
75{
76 struct thread_data *td;
77 int i;
78
79 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
80
81 for_each_td(td, i) {
82 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
83 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
84 td->o.name, (int) td->pid);
85 td->terminate = 1;
86 td->o.start_delay = 0;
87
88 /*
89 * if the thread is running, just let it exit
90 */
91 if (td->runstate < TD_RUNNING)
92 kill(td->pid, SIGQUIT);
93 else {
94 struct ioengine_ops *ops = td->io_ops;
95
96 if (ops && (ops->flags & FIO_SIGQUIT))
97 kill(td->pid, SIGQUIT);
98 }
99 }
100 }
101}
102
103static void status_timer_arm(void)
104{
105 itimer.it_value.tv_sec = 0;
106 itimer.it_value.tv_usec = DISK_UTIL_MSEC * 1000;
107 setitimer(ITIMER_REAL, &itimer, NULL);
108}
109
110static void sig_alrm(int sig)
111{
112 if (threads) {
113 update_io_ticks();
114 print_thread_status();
115 status_timer_arm();
116 }
117}
118
119static void sig_int(int sig)
120{
121 if (threads) {
122 printf("\nfio: terminating on signal %d\n", sig);
123 fflush(stdout);
124 terminate_threads(TERMINATE_ALL);
125 }
126}
127
128static void set_sig_handlers(void)
129{
130 struct sigaction act;
131
132 memset(&act, 0, sizeof(act));
133 act.sa_handler = sig_alrm;
134 act.sa_flags = SA_RESTART;
135 sigaction(SIGALRM, &act, NULL);
136
137 memset(&act, 0, sizeof(act));
138 act.sa_handler = sig_int;
139 act.sa_flags = SA_RESTART;
140 sigaction(SIGINT, &act, NULL);
141}
142
143/*
144 * Check if we are above the minimum rate given.
145 */
146static int check_min_rate(struct thread_data *td, struct timeval *now)
147{
148 unsigned long long bytes = 0;
149 unsigned long iops = 0;
150 unsigned long spent;
151 unsigned long rate;
152
153 /*
154 * No minimum rate set, always ok
155 */
156 if (!td->o.ratemin && !td->o.rate_iops_min)
157 return 0;
158
159 /*
160 * allow a 2 second settle period in the beginning
161 */
162 if (mtime_since(&td->start, now) < 2000)
163 return 0;
164
165 if (td_read(td)) {
166 iops += td->io_blocks[DDIR_READ];
167 bytes += td->this_io_bytes[DDIR_READ];
168 }
169 if (td_write(td)) {
170 iops += td->io_blocks[DDIR_WRITE];
171 bytes += td->this_io_bytes[DDIR_WRITE];
172 }
173
174 /*
175 * if rate blocks is set, sample is running
176 */
177 if (td->rate_bytes || td->rate_blocks) {
178 spent = mtime_since(&td->lastrate, now);
179 if (spent < td->o.ratecycle)
180 return 0;
181
182 if (td->o.rate) {
183 /*
184 * check bandwidth specified rate
185 */
186 if (bytes < td->rate_bytes) {
187 log_err("%s: min rate %u not met\n", td->o.name,
188 td->o.ratemin);
189 return 1;
190 } else {
191 rate = (bytes - td->rate_bytes) / spent;
192 if (rate < td->o.ratemin ||
193 bytes < td->rate_bytes) {
194 log_err("%s: min rate %u not met, got"
195 " %luKiB/sec\n", td->o.name,
196 td->o.ratemin, rate);
197 return 1;
198 }
199 }
200 } else {
201 /*
202 * checks iops specified rate
203 */
204 if (iops < td->o.rate_iops) {
205 log_err("%s: min iops rate %u not met\n",
206 td->o.name, td->o.rate_iops);
207 return 1;
208 } else {
209 rate = (iops - td->rate_blocks) / spent;
210 if (rate < td->o.rate_iops_min ||
211 iops < td->rate_blocks) {
212 log_err("%s: min iops rate %u not met,"
213 " got %lu\n", td->o.name,
214 td->o.rate_iops_min,
215 rate);
216 }
217 }
218 }
219 }
220
221 td->rate_bytes = bytes;
222 td->rate_blocks = iops;
223 memcpy(&td->lastrate, now, sizeof(*now));
224 return 0;
225}
226
227static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
228{
229 if (!td->o.timeout)
230 return 0;
231 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
232 return 1;
233
234 return 0;
235}
236
237/*
238 * When job exits, we can cancel the in-flight IO if we are using async
239 * io. Attempt to do so.
240 */
241static void cleanup_pending_aio(struct thread_data *td)
242{
243 struct flist_head *entry, *n;
244 struct io_u *io_u;
245 int r;
246
247 /*
248 * get immediately available events, if any
249 */
250 r = io_u_queued_complete(td, 0);
251 if (r < 0)
252 return;
253
254 /*
255 * now cancel remaining active events
256 */
257 if (td->io_ops->cancel) {
258 flist_for_each_safe(entry, n, &td->io_u_busylist) {
259 io_u = flist_entry(entry, struct io_u, list);
260
261 /*
262 * if the io_u isn't in flight, then that generally
263 * means someone leaked an io_u. complain but fix
264 * it up, so we don't stall here.
265 */
266 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
267 log_err("fio: non-busy IO on busy list\n");
268 put_io_u(td, io_u);
269 } else {
270 r = td->io_ops->cancel(td, io_u);
271 if (!r)
272 put_io_u(td, io_u);
273 }
274 }
275 }
276
277 if (td->cur_depth)
278 r = io_u_queued_complete(td, td->cur_depth);
279}
280
281/*
282 * Helper to handle the final sync of a file. Works just like the normal
283 * io path, just does everything sync.
284 */
285static int fio_io_sync(struct thread_data *td, struct fio_file *f)
286{
287 struct io_u *io_u = __get_io_u(td);
288 int ret;
289
290 if (!io_u)
291 return 1;
292
293 io_u->ddir = DDIR_SYNC;
294 io_u->file = f;
295
296 if (td_io_prep(td, io_u)) {
297 put_io_u(td, io_u);
298 return 1;
299 }
300
301requeue:
302 ret = td_io_queue(td, io_u);
303 if (ret < 0) {
304 td_verror(td, io_u->error, "td_io_queue");
305 put_io_u(td, io_u);
306 return 1;
307 } else if (ret == FIO_Q_QUEUED) {
308 if (io_u_queued_complete(td, 1) < 0)
309 return 1;
310 } else if (ret == FIO_Q_COMPLETED) {
311 if (io_u->error) {
312 td_verror(td, io_u->error, "td_io_queue");
313 return 1;
314 }
315
316 if (io_u_sync_complete(td, io_u) < 0)
317 return 1;
318 } else if (ret == FIO_Q_BUSY) {
319 if (td_io_commit(td))
320 return 1;
321 goto requeue;
322 }
323
324 return 0;
325}
326
327/*
328 * The main verify engine. Runs over the writes we previously submitted,
329 * reads the blocks back in, and checks the crc/md5 of the data.
330 */
331static void do_verify(struct thread_data *td)
332{
333 struct fio_file *f;
334 struct io_u *io_u;
335 int ret, min_events;
336 unsigned int i;
337
338 /*
339 * sync io first and invalidate cache, to make sure we really
340 * read from disk.
341 */
342 for_each_file(td, f, i) {
343 if (!(f->flags & FIO_FILE_OPEN))
344 continue;
345 if (fio_io_sync(td, f))
346 break;
347 if (file_invalidate_cache(td, f))
348 break;
349 }
350
351 if (td->error)
352 return;
353
354 td_set_runstate(td, TD_VERIFYING);
355
356 io_u = NULL;
357 while (!td->terminate) {
358 int ret2;
359
360 io_u = __get_io_u(td);
361 if (!io_u)
362 break;
363
364 if (runtime_exceeded(td, &io_u->start_time)) {
365 put_io_u(td, io_u);
366 td->terminate = 1;
367 break;
368 }
369
370 if (get_next_verify(td, io_u)) {
371 put_io_u(td, io_u);
372 break;
373 }
374
375 if (td_io_prep(td, io_u)) {
376 put_io_u(td, io_u);
377 break;
378 }
379
380 io_u->end_io = verify_io_u;
381
382 ret = td_io_queue(td, io_u);
383 switch (ret) {
384 case FIO_Q_COMPLETED:
385 if (io_u->error)
386 ret = -io_u->error;
387 else if (io_u->resid) {
388 int bytes = io_u->xfer_buflen - io_u->resid;
389 struct fio_file *f = io_u->file;
390
391 /*
392 * zero read, fail
393 */
394 if (!bytes) {
395 td_verror(td, EIO, "full resid");
396 put_io_u(td, io_u);
397 break;
398 }
399
400 io_u->xfer_buflen = io_u->resid;
401 io_u->xfer_buf += bytes;
402 io_u->offset += bytes;
403
404 td->ts.short_io_u[io_u->ddir]++;
405
406 if (io_u->offset == f->real_file_size)
407 goto sync_done;
408
409 requeue_io_u(td, &io_u);
410 } else {
411sync_done:
412 ret = io_u_sync_complete(td, io_u);
413 if (ret < 0)
414 break;
415 }
416 continue;
417 case FIO_Q_QUEUED:
418 break;
419 case FIO_Q_BUSY:
420 requeue_io_u(td, &io_u);
421 ret2 = td_io_commit(td);
422 if (ret2 < 0)
423 ret = ret2;
424 break;
425 default:
426 assert(ret < 0);
427 td_verror(td, -ret, "td_io_queue");
428 break;
429 }
430
431 if (ret < 0 || td->error)
432 break;
433
434 /*
435 * if we can queue more, do so. but check if there are
436 * completed io_u's first.
437 */
438 min_events = 0;
439 if (queue_full(td) || ret == FIO_Q_BUSY) {
440 if (td->cur_depth >= td->o.iodepth_low)
441 min_events = td->cur_depth - td->o.iodepth_low;
442 if (!min_events)
443 min_events = 1;
444 }
445
446 /*
447 * Reap required number of io units, if any, and do the
448 * verification on them through the callback handler
449 */
450 if (io_u_queued_complete(td, min_events) < 0)
451 break;
452 }
453
454 if (!td->error) {
455 min_events = td->cur_depth;
456
457 if (min_events)
458 ret = io_u_queued_complete(td, min_events);
459 } else
460 cleanup_pending_aio(td);
461
462 td_set_runstate(td, TD_RUNNING);
463}
464
465/*
466 * Main IO worker function. It retrieves io_u's to process and queues
467 * and reaps them, checking for rate and errors along the way.
468 */
469static void do_io(struct thread_data *td)
470{
471 struct timeval s;
472 unsigned long usec;
473 unsigned int i;
474 int ret = 0;
475
476 td_set_runstate(td, TD_RUNNING);
477
478 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) {
479 struct timeval comp_time;
480 long bytes_done = 0;
481 int min_evts = 0;
482 struct io_u *io_u;
483 int ret2;
484
485 if (td->terminate)
486 break;
487
488 io_u = get_io_u(td);
489 if (!io_u)
490 break;
491
492 memcpy(&s, &io_u->start_time, sizeof(s));
493
494 if (runtime_exceeded(td, &s)) {
495 put_io_u(td, io_u);
496 td->terminate = 1;
497 break;
498 }
499
500 /*
501 * Add verification end_io handler, if asked to verify
502 * a previously written file.
503 */
504 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ) {
505 io_u->end_io = verify_io_u;
506 td_set_runstate(td, TD_VERIFYING);
507 } else
508 td_set_runstate(td, TD_RUNNING);
509
510 ret = td_io_queue(td, io_u);
511 switch (ret) {
512 case FIO_Q_COMPLETED:
513 if (io_u->error)
514 ret = -io_u->error;
515 else if (io_u->resid) {
516 int bytes = io_u->xfer_buflen - io_u->resid;
517 struct fio_file *f = io_u->file;
518
519 /*
520 * zero read, fail
521 */
522 if (!bytes) {
523 td_verror(td, EIO, "full resid");
524 put_io_u(td, io_u);
525 break;
526 }
527
528 io_u->xfer_buflen = io_u->resid;
529 io_u->xfer_buf += bytes;
530 io_u->offset += bytes;
531
532 td->ts.short_io_u[io_u->ddir]++;
533
534 if (io_u->offset == f->real_file_size)
535 goto sync_done;
536
537 requeue_io_u(td, &io_u);
538 } else {
539sync_done:
540 fio_gettime(&comp_time, NULL);
541 bytes_done = io_u_sync_complete(td, io_u);
542 if (bytes_done < 0)
543 ret = bytes_done;
544 }
545 break;
546 case FIO_Q_QUEUED:
547 /*
548 * if the engine doesn't have a commit hook,
549 * the io_u is really queued. if it does have such
550 * a hook, it has to call io_u_queued() itself.
551 */
552 if (td->io_ops->commit == NULL)
553 io_u_queued(td, io_u);
554 break;
555 case FIO_Q_BUSY:
556 requeue_io_u(td, &io_u);
557 ret2 = td_io_commit(td);
558 if (ret2 < 0)
559 ret = ret2;
560 break;
561 default:
562 assert(ret < 0);
563 put_io_u(td, io_u);
564 break;
565 }
566
567 if (ret < 0 || td->error)
568 break;
569
570 /*
571 * See if we need to complete some commands
572 */
573 if (queue_full(td) || ret == FIO_Q_BUSY) {
574 min_evts = 0;
575 if (td->cur_depth >= td->o.iodepth_low)
576 min_evts = td->cur_depth - td->o.iodepth_low;
577 if (!min_evts)
578 min_evts = 1;
579 fio_gettime(&comp_time, NULL);
580 bytes_done = io_u_queued_complete(td, min_evts);
581 if (bytes_done < 0)
582 break;
583 }
584
585 if (!bytes_done)
586 continue;
587
588 /*
589 * the rate is batched for now, it should work for batches
590 * of completions except the very first one which may look
591 * a little bursty
592 */
593 usec = utime_since(&s, &comp_time);
594
595 rate_throttle(td, usec, bytes_done);
596
597 if (check_min_rate(td, &comp_time)) {
598 if (exitall_on_terminate)
599 terminate_threads(td->groupid);
600 td_verror(td, EIO, "check_min_rate");
601 break;
602 }
603
604 if (td->o.thinktime) {
605 unsigned long long b;
606
607 b = td->io_blocks[0] + td->io_blocks[1];
608 if (!(b % td->o.thinktime_blocks)) {
609 int left;
610
611 if (td->o.thinktime_spin)
612 __usec_sleep(td->o.thinktime_spin);
613
614 left = td->o.thinktime - td->o.thinktime_spin;
615 if (left)
616 usec_sleep(td, left);
617 }
618 }
619 }
620
621 if (td->o.fill_device && td->error == ENOSPC) {
622 td->error = 0;
623 td->terminate = 1;
624 }
625 if (!td->error) {
626 struct fio_file *f;
627
628 i = td->cur_depth;
629 if (i)
630 ret = io_u_queued_complete(td, i);
631
632 if (should_fsync(td) && td->o.end_fsync) {
633 td_set_runstate(td, TD_FSYNCING);
634
635 for_each_file(td, f, i) {
636 if (!(f->flags & FIO_FILE_OPEN))
637 continue;
638 fio_io_sync(td, f);
639 }
640 }
641 } else
642 cleanup_pending_aio(td);
643
644 /*
645 * stop job if we failed doing any IO
646 */
647 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
648 td->done = 1;
649}
650
651static void cleanup_io_u(struct thread_data *td)
652{
653 struct flist_head *entry, *n;
654 struct io_u *io_u;
655
656 flist_for_each_safe(entry, n, &td->io_u_freelist) {
657 io_u = flist_entry(entry, struct io_u, list);
658
659 flist_del(&io_u->list);
660 free(io_u);
661 }
662
663 free_io_mem(td);
664}
665
666static int init_io_u(struct thread_data *td)
667{
668 struct io_u *io_u;
669 unsigned int max_bs;
670 int i, max_units;
671 char *p;
672
673 max_units = td->o.iodepth;
674 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
675 td->orig_buffer_size = (unsigned long long) max_bs
676 * (unsigned long long) max_units;
677
678 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
679 unsigned long bs;
680
681 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
682 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
683 }
684
685 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
686 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
687 return 1;
688 }
689
690 if (allocate_io_mem(td))
691 return 1;
692
693 if (td->o.odirect)
694 p = ALIGN(td->orig_buffer);
695 else
696 p = td->orig_buffer;
697
698 for (i = 0; i < max_units; i++) {
699 if (td->terminate)
700 return 1;
701 io_u = malloc(sizeof(*io_u));
702 memset(io_u, 0, sizeof(*io_u));
703 INIT_FLIST_HEAD(&io_u->list);
704
705 if (!(td->io_ops->flags & FIO_NOIO)) {
706 io_u->buf = p + max_bs * i;
707
708 if (td_write(td) && !td->o.refill_buffers)
709 io_u_fill_buffer(td, io_u, max_bs);
710 }
711
712 io_u->index = i;
713 io_u->flags = IO_U_F_FREE;
714 flist_add(&io_u->list, &td->io_u_freelist);
715 }
716
717 io_u_init_timeout();
718
719 return 0;
720}
721
722static int switch_ioscheduler(struct thread_data *td)
723{
724 char tmp[256], tmp2[128];
725 FILE *f;
726 int ret;
727
728 if (td->io_ops->flags & FIO_DISKLESSIO)
729 return 0;
730
731 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
732
733 f = fopen(tmp, "r+");
734 if (!f) {
735 if (errno == ENOENT) {
736 log_err("fio: os or kernel doesn't support IO scheduler"
737 " switching\n");
738 return 0;
739 }
740 td_verror(td, errno, "fopen iosched");
741 return 1;
742 }
743
744 /*
745 * Set io scheduler.
746 */
747 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
748 if (ferror(f) || ret != 1) {
749 td_verror(td, errno, "fwrite");
750 fclose(f);
751 return 1;
752 }
753
754 rewind(f);
755
756 /*
757 * Read back and check that the selected scheduler is now the default.
758 */
759 ret = fread(tmp, 1, sizeof(tmp), f);
760 if (ferror(f) || ret < 0) {
761 td_verror(td, errno, "fread");
762 fclose(f);
763 return 1;
764 }
765
766 sprintf(tmp2, "[%s]", td->o.ioscheduler);
767 if (!strstr(tmp, tmp2)) {
768 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
769 td_verror(td, EINVAL, "iosched_switch");
770 fclose(f);
771 return 1;
772 }
773
774 fclose(f);
775 return 0;
776}
777
778static int keep_running(struct thread_data *td)
779{
780 unsigned long long io_done;
781
782 if (td->done)
783 return 0;
784 if (td->o.time_based)
785 return 1;
786 if (td->o.loops) {
787 td->o.loops--;
788 return 1;
789 }
790
791 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
792 + td->io_skip_bytes;
793 if (io_done < td->o.size)
794 return 1;
795
796 return 0;
797}
798
799static int clear_io_state(struct thread_data *td)
800{
801 struct fio_file *f;
802 unsigned int i;
803 int ret;
804
805 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
806 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
807 td->zone_bytes = 0;
808 td->rate_bytes = 0;
809 td->rate_blocks = 0;
810 td->rw_end_set[0] = td->rw_end_set[1] = 0;
811
812 td->last_was_sync = 0;
813
814 /*
815 * reset file done count if we are to start over
816 */
817 if (td->o.time_based || td->o.loops)
818 td->nr_done_files = 0;
819
820 close_files(td);
821
822 ret = 0;
823 for_each_file(td, f, i) {
824 f->flags &= ~FIO_FILE_DONE;
825 ret = td_io_open_file(td, f);
826 if (ret)
827 break;
828 }
829
830 return ret;
831}
832
833/*
834 * Entry point for the thread based jobs. The process based jobs end up
835 * here as well, after a little setup.
836 */
837static void *thread_main(void *data)
838{
839 unsigned long long runtime[2], elapsed;
840 struct thread_data *td = data;
841 int clear_state;
842
843 if (!td->o.use_thread)
844 setsid();
845
846 td->pid = getpid();
847
848 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
849
850 INIT_FLIST_HEAD(&td->io_u_freelist);
851 INIT_FLIST_HEAD(&td->io_u_busylist);
852 INIT_FLIST_HEAD(&td->io_u_requeues);
853 INIT_FLIST_HEAD(&td->io_log_list);
854 INIT_FLIST_HEAD(&td->io_hist_list);
855 td->io_hist_tree = RB_ROOT;
856
857 td_set_runstate(td, TD_INITIALIZED);
858 fio_mutex_up(startup_mutex);
859 fio_mutex_down(td->mutex);
860
861 /*
862 * the ->mutex mutex is now no longer used, close it to avoid
863 * eating a file descriptor
864 */
865 fio_mutex_remove(td->mutex);
866
867 /*
868 * May alter parameters that init_io_u() will use, so we need to
869 * do this first.
870 */
871 if (init_iolog(td))
872 goto err;
873
874 if (init_io_u(td))
875 goto err;
876
877 if (td->o.cpumask_set && fio_setaffinity(td) == -1) {
878 td_verror(td, errno, "cpu_set_affinity");
879 goto err;
880 }
881
882 if (td->ioprio_set) {
883 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
884 td_verror(td, errno, "ioprio_set");
885 goto err;
886 }
887 }
888
889 if (nice(td->o.nice) == -1) {
890 td_verror(td, errno, "nice");
891 goto err;
892 }
893
894 if (td->o.ioscheduler && switch_ioscheduler(td))
895 goto err;
896
897 if (!td->o.create_serialize && setup_files(td))
898 goto err;
899
900 if (td_io_init(td))
901 goto err;
902
903 if (open_files(td))
904 goto err;
905
906 if (init_random_map(td))
907 goto err;
908
909 if (td->o.exec_prerun) {
910 if (system(td->o.exec_prerun) < 0)
911 goto err;
912 }
913
914 fio_gettime(&td->epoch, NULL);
915 memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch));
916 getrusage(RUSAGE_SELF, &td->ts.ru_start);
917
918 runtime[0] = runtime[1] = 0;
919 clear_state = 0;
920 while (keep_running(td)) {
921 fio_gettime(&td->start, NULL);
922 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
923
924 if (td->o.ratemin)
925 memcpy(&td->lastrate, &td->ts.stat_sample_time,
926 sizeof(td->lastrate));
927
928 if (clear_state && clear_io_state(td))
929 break;
930
931 prune_io_piece_log(td);
932
933 do_io(td);
934
935 clear_state = 1;
936
937 if (td_read(td) && td->io_bytes[DDIR_READ]) {
938 if (td->rw_end_set[DDIR_READ])
939 elapsed = utime_since(&td->start,
940 &td->rw_end[DDIR_READ]);
941 else
942 elapsed = utime_since_now(&td->start);
943
944 runtime[DDIR_READ] += elapsed;
945 }
946 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
947 if (td->rw_end_set[DDIR_WRITE])
948 elapsed = utime_since(&td->start,
949 &td->rw_end[DDIR_WRITE]);
950 else
951 elapsed = utime_since_now(&td->start);
952
953 runtime[DDIR_WRITE] += elapsed;
954 }
955
956 if (td->error || td->terminate)
957 break;
958
959 if (!td->o.do_verify ||
960 td->o.verify == VERIFY_NONE ||
961 (td->io_ops->flags & FIO_UNIDIR))
962 continue;
963
964 if (clear_io_state(td))
965 break;
966
967 fio_gettime(&td->start, NULL);
968
969 do_verify(td);
970
971 runtime[DDIR_READ] += utime_since_now(&td->start);
972
973 if (td->error || td->terminate)
974 break;
975 }
976
977 update_rusage_stat(td);
978 td->ts.runtime[0] = (runtime[0] + 999) / 1000;
979 td->ts.runtime[1] = (runtime[1] + 999) / 1000;
980 td->ts.total_run_time = mtime_since_now(&td->epoch);
981 td->ts.io_bytes[0] = td->io_bytes[0];
982 td->ts.io_bytes[1] = td->io_bytes[1];
983
984 if (td->ts.bw_log)
985 finish_log(td, td->ts.bw_log, "bw");
986 if (td->ts.slat_log)
987 finish_log(td, td->ts.slat_log, "slat");
988 if (td->ts.clat_log)
989 finish_log(td, td->ts.clat_log, "clat");
990 if (td->o.exec_postrun) {
991 if (system(td->o.exec_postrun) < 0)
992 log_err("fio: postrun %s failed\n", td->o.exec_postrun);
993 }
994
995 if (exitall_on_terminate)
996 terminate_threads(td->groupid);
997
998err:
999 if (td->error)
1000 printf("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1001 td->verror);
1002 close_and_free_files(td);
1003 close_ioengine(td);
1004 cleanup_io_u(td);
1005
1006 /*
1007 * do this very late, it will log file closing as well
1008 */
1009 if (td->o.write_iolog_file)
1010 write_iolog_close(td);
1011
1012 options_mem_free(td);
1013 td_set_runstate(td, TD_EXITED);
1014 return (void *) (unsigned long) td->error;
1015}
1016
1017/*
1018 * We cannot pass the td data into a forked process, so attach the td and
1019 * pass it to the thread worker.
1020 */
1021static int fork_main(int shmid, int offset)
1022{
1023 struct thread_data *td;
1024 void *data, *ret;
1025
1026 data = shmat(shmid, NULL, 0);
1027 if (data == (void *) -1) {
1028 int __err = errno;
1029
1030 perror("shmat");
1031 return __err;
1032 }
1033
1034 td = data + offset * sizeof(struct thread_data);
1035 ret = thread_main(td);
1036 shmdt(data);
1037 return (int) (unsigned long) ret;
1038}
1039
1040/*
1041 * Run over the job map and reap the threads that have exited, if any.
1042 */
1043static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1044{
1045 struct thread_data *td;
1046 int i, cputhreads, realthreads, pending, status, ret;
1047
1048 /*
1049 * reap exited threads (TD_EXITED -> TD_REAPED)
1050 */
1051 realthreads = pending = cputhreads = 0;
1052 for_each_td(td, i) {
1053 int flags = 0;
1054
1055 /*
1056 * ->io_ops is NULL for a thread that has closed its
1057 * io engine
1058 */
1059 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1060 cputhreads++;
1061 else
1062 realthreads++;
1063
1064 if (!td->pid) {
1065 pending++;
1066 continue;
1067 }
1068 if (td->runstate == TD_REAPED)
1069 continue;
1070 if (td->o.use_thread) {
1071 if (td->runstate == TD_EXITED) {
1072 td_set_runstate(td, TD_REAPED);
1073 goto reaped;
1074 }
1075 continue;
1076 }
1077
1078 flags = WNOHANG;
1079 if (td->runstate == TD_EXITED)
1080 flags = 0;
1081
1082 /*
1083 * check if someone quit or got killed in an unusual way
1084 */
1085 ret = waitpid(td->pid, &status, flags);
1086 if (ret < 0) {
1087 if (errno == ECHILD) {
1088 log_err("fio: pid=%d disappeared %d\n",
1089 (int) td->pid, td->runstate);
1090 td_set_runstate(td, TD_REAPED);
1091 goto reaped;
1092 }
1093 perror("waitpid");
1094 } else if (ret == td->pid) {
1095 if (WIFSIGNALED(status)) {
1096 int sig = WTERMSIG(status);
1097
1098 if (sig != SIGQUIT)
1099 log_err("fio: pid=%d, got signal=%d\n",
1100 (int) td->pid, sig);
1101 td_set_runstate(td, TD_REAPED);
1102 goto reaped;
1103 }
1104 if (WIFEXITED(status)) {
1105 if (WEXITSTATUS(status) && !td->error)
1106 td->error = WEXITSTATUS(status);
1107
1108 td_set_runstate(td, TD_REAPED);
1109 goto reaped;
1110 }
1111 }
1112
1113 /*
1114 * thread is not dead, continue
1115 */
1116 pending++;
1117 continue;
1118reaped:
1119 (*nr_running)--;
1120 (*m_rate) -= td->o.ratemin;
1121 (*t_rate) -= td->o.rate;
1122 if (!td->pid)
1123 pending--;
1124
1125 if (td->error)
1126 exit_value++;
1127
1128 done_secs += mtime_since_now(&td->epoch) / 1000;
1129 }
1130
1131 if (*nr_running == cputhreads && !pending && realthreads)
1132 terminate_threads(TERMINATE_ALL);
1133}
1134
1135/*
1136 * Main function for kicking off and reaping jobs, as needed.
1137 */
1138static void run_threads(void)
1139{
1140 struct thread_data *td;
1141 unsigned long spent;
1142 int i, todo, nr_running, m_rate, t_rate, nr_started;
1143
1144 if (fio_pin_memory())
1145 return;
1146
1147 if (!terse_output) {
1148 printf("Starting ");
1149 if (nr_thread)
1150 printf("%d thread%s", nr_thread,
1151 nr_thread > 1 ? "s" : "");
1152 if (nr_process) {
1153 if (nr_thread)
1154 printf(" and ");
1155 printf("%d process%s", nr_process,
1156 nr_process > 1 ? "es" : "");
1157 }
1158 printf("\n");
1159 fflush(stdout);
1160 }
1161
1162 set_sig_handlers();
1163
1164 todo = thread_number;
1165 nr_running = 0;
1166 nr_started = 0;
1167 m_rate = t_rate = 0;
1168
1169 for_each_td(td, i) {
1170 print_status_init(td->thread_number - 1);
1171
1172 if (!td->o.create_serialize) {
1173 init_disk_util(td);
1174 continue;
1175 }
1176
1177 /*
1178 * do file setup here so it happens sequentially,
1179 * we don't want X number of threads getting their
1180 * client data interspersed on disk
1181 */
1182 if (setup_files(td)) {
1183 exit_value++;
1184 if (td->error)
1185 log_err("fio: pid=%d, err=%d/%s\n",
1186 (int) td->pid, td->error, td->verror);
1187 td_set_runstate(td, TD_REAPED);
1188 todo--;
1189 } else {
1190 struct fio_file *f;
1191 unsigned int i;
1192
1193 /*
1194 * for sharing to work, each job must always open
1195 * its own files. so close them, if we opened them
1196 * for creation
1197 */
1198 for_each_file(td, f, i)
1199 td_io_close_file(td, f);
1200 }
1201
1202 init_disk_util(td);
1203 }
1204
1205 set_genesis_time();
1206
1207 while (todo) {
1208 struct thread_data *map[MAX_JOBS];
1209 struct timeval this_start;
1210 int this_jobs = 0, left;
1211
1212 /*
1213 * create threads (TD_NOT_CREATED -> TD_CREATED)
1214 */
1215 for_each_td(td, i) {
1216 if (td->runstate != TD_NOT_CREATED)
1217 continue;
1218
1219 /*
1220 * never got a chance to start, killed by other
1221 * thread for some reason
1222 */
1223 if (td->terminate) {
1224 todo--;
1225 continue;
1226 }
1227
1228 if (td->o.start_delay) {
1229 spent = mtime_since_genesis();
1230
1231 if (td->o.start_delay * 1000 > spent)
1232 continue;
1233 }
1234
1235 if (td->o.stonewall && (nr_started || nr_running)) {
1236 dprint(FD_PROCESS, "%s: stonewall wait\n",
1237 td->o.name);
1238 break;
1239 }
1240
1241 /*
1242 * Set state to created. Thread will transition
1243 * to TD_INITIALIZED when it's done setting up.
1244 */
1245 td_set_runstate(td, TD_CREATED);
1246 map[this_jobs++] = td;
1247 nr_started++;
1248
1249 if (td->o.use_thread) {
1250 dprint(FD_PROCESS, "will pthread_create\n");
1251 if (pthread_create(&td->thread, NULL,
1252 thread_main, td)) {
1253 perror("pthread_create");
1254 nr_started--;
1255 break;
1256 }
1257 if (pthread_detach(td->thread) < 0)
1258 perror("pthread_detach");
1259 } else {
1260 pid_t pid;
1261 dprint(FD_PROCESS, "will fork\n");
1262 pid = fork();
1263 if (!pid) {
1264 int ret = fork_main(shm_id, i);
1265
1266 _exit(ret);
1267 } else if (i == fio_debug_jobno)
1268 *fio_debug_jobp = pid;
1269 }
1270 fio_mutex_down(startup_mutex);
1271 }
1272
1273 /*
1274 * Wait for the started threads to transition to
1275 * TD_INITIALIZED.
1276 */
1277 fio_gettime(&this_start, NULL);
1278 left = this_jobs;
1279 while (left && !fio_abort) {
1280 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1281 break;
1282
1283 usleep(100000);
1284
1285 for (i = 0; i < this_jobs; i++) {
1286 td = map[i];
1287 if (!td)
1288 continue;
1289 if (td->runstate == TD_INITIALIZED) {
1290 map[i] = NULL;
1291 left--;
1292 } else if (td->runstate >= TD_EXITED) {
1293 map[i] = NULL;
1294 left--;
1295 todo--;
1296 nr_running++; /* work-around... */
1297 }
1298 }
1299 }
1300
1301 if (left) {
1302 log_err("fio: %d jobs failed to start\n", left);
1303 for (i = 0; i < this_jobs; i++) {
1304 td = map[i];
1305 if (!td)
1306 continue;
1307 kill(td->pid, SIGTERM);
1308 }
1309 break;
1310 }
1311
1312 /*
1313 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1314 */
1315 for_each_td(td, i) {
1316 if (td->runstate != TD_INITIALIZED)
1317 continue;
1318
1319 td_set_runstate(td, TD_RUNNING);
1320 nr_running++;
1321 nr_started--;
1322 m_rate += td->o.ratemin;
1323 t_rate += td->o.rate;
1324 todo--;
1325 fio_mutex_up(td->mutex);
1326 }
1327
1328 reap_threads(&nr_running, &t_rate, &m_rate);
1329
1330 if (todo)
1331 usleep(100000);
1332 }
1333
1334 while (nr_running) {
1335 reap_threads(&nr_running, &t_rate, &m_rate);
1336 usleep(10000);
1337 }
1338
1339 update_io_ticks();
1340 fio_unpin_memory();
1341}
1342
1343int main(int argc, char *argv[])
1344{
1345 long ps;
1346
1347 sinit();
1348
1349 /*
1350 * We need locale for number printing, if it isn't set then just
1351 * go with the US format.
1352 */
1353 if (!getenv("LC_NUMERIC"))
1354 setlocale(LC_NUMERIC, "en_US");
1355
1356 if (parse_options(argc, argv))
1357 return 1;
1358
1359 if (!thread_number)
1360 return 0;
1361
1362 ps = sysconf(_SC_PAGESIZE);
1363 if (ps < 0) {
1364 log_err("Failed to get page size\n");
1365 return 1;
1366 }
1367
1368 page_size = ps;
1369 page_mask = ps - 1;
1370
1371 if (write_bw_log) {
1372 setup_log(&agg_io_log[DDIR_READ]);
1373 setup_log(&agg_io_log[DDIR_WRITE]);
1374 }
1375
1376 startup_mutex = fio_mutex_init(0);
1377
1378 set_genesis_time();
1379
1380 status_timer_arm();
1381
1382 run_threads();
1383
1384 if (!fio_abort) {
1385 show_run_stats();
1386 if (write_bw_log) {
1387 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1388 __finish_log(agg_io_log[DDIR_WRITE],
1389 "agg-write_bw.log");
1390 }
1391 }
1392
1393 fio_mutex_remove(startup_mutex);
1394 return exit_value;
1395}