Add missing types to io_u_log_error()
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "hash.h"
39#include "smalloc.h"
40#include "verify.h"
41#include "diskutil.h"
42#include "cgroup.h"
43#include "profile.h"
44#include "lib/rand.h"
45
46unsigned long page_mask;
47unsigned long page_size;
48
49#define PAGE_ALIGN(buf) \
50 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
51
52int groupid = 0;
53int thread_number = 0;
54int nr_process = 0;
55int nr_thread = 0;
56int shm_id = 0;
57int temp_stall_ts;
58unsigned long done_secs = 0;
59
60static struct fio_mutex *startup_mutex;
61static struct fio_mutex *writeout_mutex;
62static volatile int fio_abort;
63static int exit_value;
64static struct itimerval itimer;
65static pthread_t gtod_thread;
66static struct flist_head *cgroup_list;
67static char *cgroup_mnt;
68
69struct io_log *agg_io_log[2];
70
71#define TERMINATE_ALL (-1)
72#define JOB_START_TIMEOUT (5 * 1000)
73
74void td_set_runstate(struct thread_data *td, int runstate)
75{
76 if (td->runstate == runstate)
77 return;
78
79 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
80 td->runstate, runstate);
81 td->runstate = runstate;
82}
83
84static void terminate_threads(int group_id)
85{
86 struct thread_data *td;
87 int i;
88
89 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
90
91 for_each_td(td, i) {
92 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
93 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
94 td->o.name, (int) td->pid);
95 td->terminate = 1;
96 td->o.start_delay = 0;
97
98 /*
99 * if the thread is running, just let it exit
100 */
101 if (td->runstate < TD_RUNNING)
102 kill(td->pid, SIGQUIT);
103 else {
104 struct ioengine_ops *ops = td->io_ops;
105
106 if (ops && (ops->flags & FIO_SIGQUIT))
107 kill(td->pid, SIGQUIT);
108 }
109 }
110 }
111}
112
113static void status_timer_arm(void)
114{
115 itimer.it_value.tv_sec = 0;
116 itimer.it_value.tv_usec = DISK_UTIL_MSEC * 1000;
117 setitimer(ITIMER_REAL, &itimer, NULL);
118}
119
120static void sig_alrm(int fio_unused sig)
121{
122 if (threads) {
123 update_io_ticks();
124 print_thread_status();
125 status_timer_arm();
126 }
127}
128
129/*
130 * Happens on thread runs with ctrl-c, ignore our own SIGQUIT
131 */
132static void sig_quit(int sig)
133{
134}
135
136static void sig_int(int sig)
137{
138 if (threads) {
139 log_info("\nfio: terminating on signal %d\n", sig);
140 fflush(stdout);
141 terminate_threads(TERMINATE_ALL);
142 }
143}
144
145static void set_sig_handlers(void)
146{
147 struct sigaction act;
148
149 memset(&act, 0, sizeof(act));
150 act.sa_handler = sig_alrm;
151 act.sa_flags = SA_RESTART;
152 sigaction(SIGALRM, &act, NULL);
153
154 memset(&act, 0, sizeof(act));
155 act.sa_handler = sig_int;
156 act.sa_flags = SA_RESTART;
157 sigaction(SIGINT, &act, NULL);
158
159 memset(&act, 0, sizeof(act));
160 act.sa_handler = sig_quit;
161 act.sa_flags = SA_RESTART;
162 sigaction(SIGQUIT, &act, NULL);
163}
164
165/*
166 * Check if we are above the minimum rate given.
167 */
168static int __check_min_rate(struct thread_data *td, struct timeval *now,
169 enum td_ddir ddir)
170{
171 unsigned long long bytes = 0;
172 unsigned long iops = 0;
173 unsigned long spent;
174 unsigned long rate;
175 unsigned int ratemin = 0;
176 unsigned int rate_iops = 0;
177 unsigned int rate_iops_min = 0;
178
179 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
180 return 0;
181
182 /*
183 * allow a 2 second settle period in the beginning
184 */
185 if (mtime_since(&td->start, now) < 2000)
186 return 0;
187
188 iops += td->io_blocks[ddir];
189 bytes += td->this_io_bytes[ddir];
190 ratemin += td->o.ratemin[ddir];
191 rate_iops += td->o.rate_iops[ddir];
192 rate_iops_min += td->o.rate_iops_min[ddir];
193
194 /*
195 * if rate blocks is set, sample is running
196 */
197 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
198 spent = mtime_since(&td->lastrate[ddir], now);
199 if (spent < td->o.ratecycle)
200 return 0;
201
202 if (td->o.rate[ddir]) {
203 /*
204 * check bandwidth specified rate
205 */
206 if (bytes < td->rate_bytes[ddir]) {
207 log_err("%s: min rate %u not met\n", td->o.name,
208 ratemin);
209 return 1;
210 } else {
211 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
212 if (rate < ratemin ||
213 bytes < td->rate_bytes[ddir]) {
214 log_err("%s: min rate %u not met, got"
215 " %luKB/sec\n", td->o.name,
216 ratemin, rate);
217 return 1;
218 }
219 }
220 } else {
221 /*
222 * checks iops specified rate
223 */
224 if (iops < rate_iops) {
225 log_err("%s: min iops rate %u not met\n",
226 td->o.name, rate_iops);
227 return 1;
228 } else {
229 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
230 if (rate < rate_iops_min ||
231 iops < td->rate_blocks[ddir]) {
232 log_err("%s: min iops rate %u not met,"
233 " got %lu\n", td->o.name,
234 rate_iops_min, rate);
235 }
236 }
237 }
238 }
239
240 td->rate_bytes[ddir] = bytes;
241 td->rate_blocks[ddir] = iops;
242 memcpy(&td->lastrate[ddir], now, sizeof(*now));
243 return 0;
244}
245
246static int check_min_rate(struct thread_data *td, struct timeval *now,
247 unsigned long *bytes_done)
248{
249 int ret = 0;
250
251 if (bytes_done[0])
252 ret |= __check_min_rate(td, now, 0);
253 if (bytes_done[1])
254 ret |= __check_min_rate(td, now, 1);
255
256 return ret;
257}
258
259static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
260{
261 if (!td->o.timeout)
262 return 0;
263 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
264 return 1;
265
266 return 0;
267}
268
269/*
270 * When job exits, we can cancel the in-flight IO if we are using async
271 * io. Attempt to do so.
272 */
273static void cleanup_pending_aio(struct thread_data *td)
274{
275 struct flist_head *entry, *n;
276 struct io_u *io_u;
277 int r;
278
279 /*
280 * get immediately available events, if any
281 */
282 r = io_u_queued_complete(td, 0, NULL);
283 if (r < 0)
284 return;
285
286 /*
287 * now cancel remaining active events
288 */
289 if (td->io_ops->cancel) {
290 flist_for_each_safe(entry, n, &td->io_u_busylist) {
291 io_u = flist_entry(entry, struct io_u, list);
292
293 /*
294 * if the io_u isn't in flight, then that generally
295 * means someone leaked an io_u. complain but fix
296 * it up, so we don't stall here.
297 */
298 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
299 log_err("fio: non-busy IO on busy list\n");
300 put_io_u(td, io_u);
301 } else {
302 r = td->io_ops->cancel(td, io_u);
303 if (!r)
304 put_io_u(td, io_u);
305 }
306 }
307 }
308
309 if (td->cur_depth)
310 r = io_u_queued_complete(td, td->cur_depth, NULL);
311}
312
313/*
314 * Helper to handle the final sync of a file. Works just like the normal
315 * io path, just does everything sync.
316 */
317static int fio_io_sync(struct thread_data *td, struct fio_file *f)
318{
319 struct io_u *io_u = __get_io_u(td);
320 int ret;
321
322 if (!io_u)
323 return 1;
324
325 io_u->ddir = DDIR_SYNC;
326 io_u->file = f;
327
328 if (td_io_prep(td, io_u)) {
329 put_io_u(td, io_u);
330 return 1;
331 }
332
333requeue:
334 ret = td_io_queue(td, io_u);
335 if (ret < 0) {
336 td_verror(td, io_u->error, "td_io_queue");
337 put_io_u(td, io_u);
338 return 1;
339 } else if (ret == FIO_Q_QUEUED) {
340 if (io_u_queued_complete(td, 1, NULL) < 0)
341 return 1;
342 } else if (ret == FIO_Q_COMPLETED) {
343 if (io_u->error) {
344 td_verror(td, io_u->error, "td_io_queue");
345 return 1;
346 }
347
348 if (io_u_sync_complete(td, io_u, NULL) < 0)
349 return 1;
350 } else if (ret == FIO_Q_BUSY) {
351 if (td_io_commit(td))
352 return 1;
353 goto requeue;
354 }
355
356 return 0;
357}
358
359static inline void update_tv_cache(struct thread_data *td)
360{
361 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
362 fio_gettime(&td->tv_cache, NULL);
363}
364
365static int break_on_this_error(struct thread_data *td, int *retptr)
366{
367 int ret = *retptr;
368
369 if (ret < 0 || td->error) {
370 int err;
371
372 if (!td->o.continue_on_error)
373 return 1;
374
375 if (ret < 0)
376 err = -ret;
377 else
378 err = td->error;
379
380 if (td_non_fatal_error(err)) {
381 /*
382 * Continue with the I/Os in case of
383 * a non fatal error.
384 */
385 update_error_count(td, err);
386 td_clear_error(td);
387 *retptr = 0;
388 return 0;
389 } else if (td->o.fill_device && err == ENOSPC) {
390 /*
391 * We expect to hit this error if
392 * fill_device option is set.
393 */
394 td_clear_error(td);
395 td->terminate = 1;
396 return 1;
397 } else {
398 /*
399 * Stop the I/O in case of a fatal
400 * error.
401 */
402 update_error_count(td, err);
403 return 1;
404 }
405 }
406
407 return 0;
408}
409
410/*
411 * The main verify engine. Runs over the writes we previously submitted,
412 * reads the blocks back in, and checks the crc/md5 of the data.
413 */
414static void do_verify(struct thread_data *td)
415{
416 struct fio_file *f;
417 struct io_u *io_u;
418 int ret, min_events;
419 unsigned int i;
420
421 dprint(FD_VERIFY, "starting loop\n");
422
423 /*
424 * sync io first and invalidate cache, to make sure we really
425 * read from disk.
426 */
427 for_each_file(td, f, i) {
428 if (!fio_file_open(f))
429 continue;
430 if (fio_io_sync(td, f))
431 break;
432 if (file_invalidate_cache(td, f))
433 break;
434 }
435
436 if (td->error)
437 return;
438
439 td_set_runstate(td, TD_VERIFYING);
440
441 io_u = NULL;
442 while (!td->terminate) {
443 int ret2, full;
444
445 update_tv_cache(td);
446
447 if (runtime_exceeded(td, &td->tv_cache)) {
448 td->terminate = 1;
449 break;
450 }
451
452 io_u = __get_io_u(td);
453 if (!io_u)
454 break;
455
456 if (get_next_verify(td, io_u)) {
457 put_io_u(td, io_u);
458 break;
459 }
460
461 if (td_io_prep(td, io_u)) {
462 put_io_u(td, io_u);
463 break;
464 }
465
466 if (td->o.verify_async)
467 io_u->end_io = verify_io_u_async;
468 else
469 io_u->end_io = verify_io_u;
470
471 ret = td_io_queue(td, io_u);
472 switch (ret) {
473 case FIO_Q_COMPLETED:
474 if (io_u->error) {
475 ret = -io_u->error;
476 clear_io_u(td, io_u);
477 } else if (io_u->resid) {
478 int bytes = io_u->xfer_buflen - io_u->resid;
479 struct fio_file *f = io_u->file;
480
481 /*
482 * zero read, fail
483 */
484 if (!bytes) {
485 td_verror(td, EIO, "full resid");
486 put_io_u(td, io_u);
487 break;
488 }
489
490 io_u->xfer_buflen = io_u->resid;
491 io_u->xfer_buf += bytes;
492 io_u->offset += bytes;
493
494 td->ts.short_io_u[io_u->ddir]++;
495
496 if (io_u->offset == f->real_file_size)
497 goto sync_done;
498
499 requeue_io_u(td, &io_u);
500 } else {
501sync_done:
502 ret = io_u_sync_complete(td, io_u, NULL);
503 if (ret < 0)
504 break;
505 }
506 continue;
507 case FIO_Q_QUEUED:
508 break;
509 case FIO_Q_BUSY:
510 requeue_io_u(td, &io_u);
511 ret2 = td_io_commit(td);
512 if (ret2 < 0)
513 ret = ret2;
514 break;
515 default:
516 assert(ret < 0);
517 td_verror(td, -ret, "td_io_queue");
518 break;
519 }
520
521 if (break_on_this_error(td, &ret))
522 break;
523
524 /*
525 * if we can queue more, do so. but check if there are
526 * completed io_u's first.
527 */
528 full = queue_full(td) || ret == FIO_Q_BUSY;
529 if (full || !td->o.iodepth_batch_complete) {
530 min_events = min(td->o.iodepth_batch_complete,
531 td->cur_depth);
532 if (full && !min_events)
533 min_events = 1;
534
535 do {
536 /*
537 * Reap required number of io units, if any,
538 * and do the verification on them through
539 * the callback handler
540 */
541 if (io_u_queued_complete(td, min_events, NULL) < 0) {
542 ret = -1;
543 break;
544 }
545 } while (full && (td->cur_depth > td->o.iodepth_low));
546 }
547 if (ret < 0)
548 break;
549 }
550
551 if (!td->error) {
552 min_events = td->cur_depth;
553
554 if (min_events)
555 ret = io_u_queued_complete(td, min_events, NULL);
556 } else
557 cleanup_pending_aio(td);
558
559 td_set_runstate(td, TD_RUNNING);
560
561 dprint(FD_VERIFY, "exiting loop\n");
562}
563
564/*
565 * Main IO worker function. It retrieves io_u's to process and queues
566 * and reaps them, checking for rate and errors along the way.
567 */
568static void do_io(struct thread_data *td)
569{
570 unsigned int i;
571 int ret = 0;
572
573 if (in_ramp_time(td))
574 td_set_runstate(td, TD_RAMP);
575 else
576 td_set_runstate(td, TD_RUNNING);
577
578 while ( (td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
579 ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) ) {
580 struct timeval comp_time;
581 unsigned long bytes_done[2] = { 0, 0 };
582 int min_evts = 0;
583 struct io_u *io_u;
584 int ret2, full;
585
586 if (td->terminate)
587 break;
588
589 update_tv_cache(td);
590
591 if (runtime_exceeded(td, &td->tv_cache)) {
592 td->terminate = 1;
593 break;
594 }
595
596 io_u = get_io_u(td);
597 if (!io_u)
598 break;
599
600 /*
601 * Add verification end_io handler, if asked to verify
602 * a previously written file.
603 */
604 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
605 !td_rw(td)) {
606 if (td->o.verify_async)
607 io_u->end_io = verify_io_u_async;
608 else
609 io_u->end_io = verify_io_u;
610 td_set_runstate(td, TD_VERIFYING);
611 } else if (in_ramp_time(td))
612 td_set_runstate(td, TD_RAMP);
613 else
614 td_set_runstate(td, TD_RUNNING);
615
616 ret = td_io_queue(td, io_u);
617 switch (ret) {
618 case FIO_Q_COMPLETED:
619 if (io_u->error) {
620 ret = -io_u->error;
621 clear_io_u(td, io_u);
622 } else if (io_u->resid) {
623 int bytes = io_u->xfer_buflen - io_u->resid;
624 struct fio_file *f = io_u->file;
625
626 /*
627 * zero read, fail
628 */
629 if (!bytes) {
630 td_verror(td, EIO, "full resid");
631 put_io_u(td, io_u);
632 break;
633 }
634
635 io_u->xfer_buflen = io_u->resid;
636 io_u->xfer_buf += bytes;
637 io_u->offset += bytes;
638
639 td->ts.short_io_u[io_u->ddir]++;
640
641 if (io_u->offset == f->real_file_size)
642 goto sync_done;
643
644 requeue_io_u(td, &io_u);
645 } else {
646sync_done:
647 if (__should_check_rate(td, 0) ||
648 __should_check_rate(td, 1))
649 fio_gettime(&comp_time, NULL);
650
651 ret = io_u_sync_complete(td, io_u, bytes_done);
652 if (ret < 0)
653 break;
654 }
655 break;
656 case FIO_Q_QUEUED:
657 /*
658 * if the engine doesn't have a commit hook,
659 * the io_u is really queued. if it does have such
660 * a hook, it has to call io_u_queued() itself.
661 */
662 if (td->io_ops->commit == NULL)
663 io_u_queued(td, io_u);
664 break;
665 case FIO_Q_BUSY:
666 requeue_io_u(td, &io_u);
667 ret2 = td_io_commit(td);
668 if (ret2 < 0)
669 ret = ret2;
670 break;
671 default:
672 assert(ret < 0);
673 put_io_u(td, io_u);
674 break;
675 }
676
677 if (break_on_this_error(td, &ret))
678 break;
679
680 /*
681 * See if we need to complete some commands
682 */
683 full = queue_full(td) || ret == FIO_Q_BUSY;
684 if (full || !td->o.iodepth_batch_complete) {
685 min_evts = min(td->o.iodepth_batch_complete,
686 td->cur_depth);
687 if (full && !min_evts)
688 min_evts = 1;
689
690 if (__should_check_rate(td, 0) ||
691 __should_check_rate(td, 1))
692 fio_gettime(&comp_time, NULL);
693
694 do {
695 ret = io_u_queued_complete(td, min_evts, bytes_done);
696 if (ret < 0)
697 break;
698
699 } while (full && (td->cur_depth > td->o.iodepth_low));
700 }
701
702 if (ret < 0)
703 break;
704 if (!(bytes_done[0] + bytes_done[1]))
705 continue;
706
707 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
708 if (check_min_rate(td, &comp_time, bytes_done)) {
709 if (exitall_on_terminate)
710 terminate_threads(td->groupid);
711 td_verror(td, EIO, "check_min_rate");
712 break;
713 }
714 }
715
716 if (td->o.thinktime) {
717 unsigned long long b;
718
719 b = td->io_blocks[0] + td->io_blocks[1];
720 if (!(b % td->o.thinktime_blocks)) {
721 int left;
722
723 if (td->o.thinktime_spin)
724 usec_spin(td->o.thinktime_spin);
725
726 left = td->o.thinktime - td->o.thinktime_spin;
727 if (left)
728 usec_sleep(td, left);
729 }
730 }
731 }
732
733 if (td->o.fill_device && td->error == ENOSPC) {
734 td->error = 0;
735 td->terminate = 1;
736 }
737 if (!td->error) {
738 struct fio_file *f;
739
740 i = td->cur_depth;
741 if (i)
742 ret = io_u_queued_complete(td, i, NULL);
743
744 if (should_fsync(td) && td->o.end_fsync) {
745 td_set_runstate(td, TD_FSYNCING);
746
747 for_each_file(td, f, i) {
748 if (!fio_file_open(f))
749 continue;
750 fio_io_sync(td, f);
751 }
752 }
753 } else
754 cleanup_pending_aio(td);
755
756 /*
757 * stop job if we failed doing any IO
758 */
759 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
760 td->done = 1;
761}
762
763static void cleanup_io_u(struct thread_data *td)
764{
765 struct flist_head *entry, *n;
766 struct io_u *io_u;
767
768 flist_for_each_safe(entry, n, &td->io_u_freelist) {
769 io_u = flist_entry(entry, struct io_u, list);
770
771 flist_del(&io_u->list);
772 free(io_u);
773 }
774
775 free_io_mem(td);
776}
777
778static int init_io_u(struct thread_data *td)
779{
780 struct io_u *io_u;
781 unsigned int max_bs;
782 int cl_align, i, max_units;
783 char *p;
784
785 max_units = td->o.iodepth;
786 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
787 td->orig_buffer_size = (unsigned long long) max_bs
788 * (unsigned long long) max_units;
789
790 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
791 unsigned long bs;
792
793 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
794 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
795 }
796
797 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
798 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
799 return 1;
800 }
801
802 if (allocate_io_mem(td))
803 return 1;
804
805 if (td->o.odirect || td->o.mem_align)
806 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
807 else
808 p = td->orig_buffer;
809
810 cl_align = os_cache_line_size();
811
812 for (i = 0; i < max_units; i++) {
813 void *ptr;
814
815 if (td->terminate)
816 return 1;
817
818 if (posix_memalign(&ptr, cl_align, sizeof(*io_u))) {
819 log_err("fio: posix_memalign=%s\n", strerror(errno));
820 break;
821 }
822
823 io_u = ptr;
824 memset(io_u, 0, sizeof(*io_u));
825 INIT_FLIST_HEAD(&io_u->list);
826 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
827
828 if (!(td->io_ops->flags & FIO_NOIO)) {
829 io_u->buf = p + max_bs * i;
830 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
831
832 if (td_write(td) && !td->o.refill_buffers)
833 io_u_fill_buffer(td, io_u, max_bs);
834 else if (td_write(td) && td->o.verify_pattern_bytes) {
835 /*
836 * Fill the buffer with the pattern if we are
837 * going to be doing writes.
838 */
839 fill_pattern(td, io_u->buf, max_bs, io_u);
840 }
841 }
842
843 io_u->index = i;
844 io_u->flags = IO_U_F_FREE;
845 flist_add(&io_u->list, &td->io_u_freelist);
846 }
847
848 return 0;
849}
850
851static int switch_ioscheduler(struct thread_data *td)
852{
853 char tmp[256], tmp2[128];
854 FILE *f;
855 int ret;
856
857 if (td->io_ops->flags & FIO_DISKLESSIO)
858 return 0;
859
860 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
861
862 f = fopen(tmp, "r+");
863 if (!f) {
864 if (errno == ENOENT) {
865 log_err("fio: os or kernel doesn't support IO scheduler"
866 " switching\n");
867 return 0;
868 }
869 td_verror(td, errno, "fopen iosched");
870 return 1;
871 }
872
873 /*
874 * Set io scheduler.
875 */
876 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
877 if (ferror(f) || ret != 1) {
878 td_verror(td, errno, "fwrite");
879 fclose(f);
880 return 1;
881 }
882
883 rewind(f);
884
885 /*
886 * Read back and check that the selected scheduler is now the default.
887 */
888 ret = fread(tmp, 1, sizeof(tmp), f);
889 if (ferror(f) || ret < 0) {
890 td_verror(td, errno, "fread");
891 fclose(f);
892 return 1;
893 }
894
895 sprintf(tmp2, "[%s]", td->o.ioscheduler);
896 if (!strstr(tmp, tmp2)) {
897 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
898 td_verror(td, EINVAL, "iosched_switch");
899 fclose(f);
900 return 1;
901 }
902
903 fclose(f);
904 return 0;
905}
906
907static int keep_running(struct thread_data *td)
908{
909 unsigned long long io_done;
910
911 if (td->done)
912 return 0;
913 if (td->o.time_based)
914 return 1;
915 if (td->o.loops) {
916 td->o.loops--;
917 return 1;
918 }
919
920 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
921 + td->io_skip_bytes;
922 if (io_done < td->o.size)
923 return 1;
924
925 return 0;
926}
927
928static void reset_io_counters(struct thread_data *td)
929{
930 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
931 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
932 td->zone_bytes = 0;
933 td->rate_bytes[0] = td->rate_bytes[1] = 0;
934 td->rate_blocks[0] = td->rate_blocks[1] = 0;
935
936 td->last_was_sync = 0;
937
938 /*
939 * reset file done count if we are to start over
940 */
941 if (td->o.time_based || td->o.loops)
942 td->nr_done_files = 0;
943
944 /*
945 * Set the same seed to get repeatable runs
946 */
947 td_fill_rand_seeds(td);
948}
949
950void reset_all_stats(struct thread_data *td)
951{
952 struct timeval tv;
953 int i;
954
955 reset_io_counters(td);
956
957 for (i = 0; i < 2; i++) {
958 td->io_bytes[i] = 0;
959 td->io_blocks[i] = 0;
960 td->io_issues[i] = 0;
961 td->ts.total_io_u[i] = 0;
962 }
963
964 fio_gettime(&tv, NULL);
965 memcpy(&td->epoch, &tv, sizeof(tv));
966 memcpy(&td->start, &tv, sizeof(tv));
967}
968
969static void clear_io_state(struct thread_data *td)
970{
971 struct fio_file *f;
972 unsigned int i;
973
974 reset_io_counters(td);
975
976 close_files(td);
977 for_each_file(td, f, i)
978 fio_file_clear_done(f);
979}
980
981static int exec_string(const char *string)
982{
983 int ret, newlen = strlen(string) + 1 + 8;
984 char *str;
985
986 str = malloc(newlen);
987 sprintf(str, "sh -c %s", string);
988
989 ret = system(str);
990 if (ret == -1)
991 log_err("fio: exec of cmd <%s> failed\n", str);
992
993 free(str);
994 return ret;
995}
996
997/*
998 * Entry point for the thread based jobs. The process based jobs end up
999 * here as well, after a little setup.
1000 */
1001static void *thread_main(void *data)
1002{
1003 unsigned long long runtime[2], elapsed;
1004 struct thread_data *td = data;
1005 pthread_condattr_t attr;
1006 int clear_state;
1007
1008 if (!td->o.use_thread)
1009 setsid();
1010
1011 td->pid = getpid();
1012
1013 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1014
1015 INIT_FLIST_HEAD(&td->io_u_freelist);
1016 INIT_FLIST_HEAD(&td->io_u_busylist);
1017 INIT_FLIST_HEAD(&td->io_u_requeues);
1018 INIT_FLIST_HEAD(&td->io_log_list);
1019 INIT_FLIST_HEAD(&td->io_hist_list);
1020 INIT_FLIST_HEAD(&td->verify_list);
1021 pthread_mutex_init(&td->io_u_lock, NULL);
1022 td->io_hist_tree = RB_ROOT;
1023
1024 pthread_condattr_init(&attr);
1025 pthread_cond_init(&td->verify_cond, &attr);
1026 pthread_cond_init(&td->free_cond, &attr);
1027
1028 td_set_runstate(td, TD_INITIALIZED);
1029 dprint(FD_MUTEX, "up startup_mutex\n");
1030 fio_mutex_up(startup_mutex);
1031 dprint(FD_MUTEX, "wait on td->mutex\n");
1032 fio_mutex_down(td->mutex);
1033 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1034
1035 /*
1036 * the ->mutex mutex is now no longer used, close it to avoid
1037 * eating a file descriptor
1038 */
1039 fio_mutex_remove(td->mutex);
1040
1041 if (td->o.uid != -1U && setuid(td->o.uid)) {
1042 td_verror(td, errno, "setuid");
1043 goto err;
1044 }
1045 if (td->o.gid != -1U && setgid(td->o.gid)) {
1046 td_verror(td, errno, "setgid");
1047 goto err;
1048 }
1049
1050 /*
1051 * May alter parameters that init_io_u() will use, so we need to
1052 * do this first.
1053 */
1054 if (init_iolog(td))
1055 goto err;
1056
1057 if (init_io_u(td))
1058 goto err;
1059
1060 if (td->o.verify_async && verify_async_init(td))
1061 goto err;
1062
1063 if (td->o.cpumask_set && fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1064 td_verror(td, errno, "cpu_set_affinity");
1065 goto err;
1066 }
1067
1068 /*
1069 * If we have a gettimeofday() thread, make sure we exclude that
1070 * thread from this job
1071 */
1072 if (td->o.gtod_cpu) {
1073 fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
1074 if (fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1075 td_verror(td, errno, "cpu_set_affinity");
1076 goto err;
1077 }
1078 }
1079
1080 if (td->ioprio_set) {
1081 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1082 td_verror(td, errno, "ioprio_set");
1083 goto err;
1084 }
1085 }
1086
1087 if (td->o.cgroup_weight && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1088 goto err;
1089
1090 if (nice(td->o.nice) == -1) {
1091 td_verror(td, errno, "nice");
1092 goto err;
1093 }
1094
1095 if (td->o.ioscheduler && switch_ioscheduler(td))
1096 goto err;
1097
1098 if (!td->o.create_serialize && setup_files(td))
1099 goto err;
1100
1101 if (td_io_init(td))
1102 goto err;
1103
1104 if (init_random_map(td))
1105 goto err;
1106
1107 if (td->o.exec_prerun) {
1108 if (exec_string(td->o.exec_prerun))
1109 goto err;
1110 }
1111
1112 if (td->o.pre_read) {
1113 if (pre_read_files(td) < 0)
1114 goto err;
1115 }
1116
1117 fio_gettime(&td->epoch, NULL);
1118 getrusage(RUSAGE_SELF, &td->ts.ru_start);
1119
1120 runtime[0] = runtime[1] = 0;
1121 clear_state = 0;
1122 while (keep_running(td)) {
1123 fio_gettime(&td->start, NULL);
1124 memcpy(&td->ts.stat_sample_time[0], &td->start,
1125 sizeof(td->start));
1126 memcpy(&td->ts.stat_sample_time[1], &td->start,
1127 sizeof(td->start));
1128 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1129
1130 if (td->o.ratemin[0] || td->o.ratemin[1])
1131 memcpy(&td->lastrate, &td->ts.stat_sample_time,
1132 sizeof(td->lastrate));
1133
1134 if (clear_state)
1135 clear_io_state(td);
1136
1137 prune_io_piece_log(td);
1138
1139 do_io(td);
1140
1141 clear_state = 1;
1142
1143 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1144 elapsed = utime_since_now(&td->start);
1145 runtime[DDIR_READ] += elapsed;
1146 }
1147 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1148 elapsed = utime_since_now(&td->start);
1149 runtime[DDIR_WRITE] += elapsed;
1150 }
1151
1152 if (td->error || td->terminate)
1153 break;
1154
1155 if (!td->o.do_verify ||
1156 td->o.verify == VERIFY_NONE ||
1157 (td->io_ops->flags & FIO_UNIDIR))
1158 continue;
1159
1160 clear_io_state(td);
1161
1162 fio_gettime(&td->start, NULL);
1163
1164 do_verify(td);
1165
1166 runtime[DDIR_READ] += utime_since_now(&td->start);
1167
1168 if (td->error || td->terminate)
1169 break;
1170 }
1171
1172 update_rusage_stat(td);
1173 td->ts.runtime[0] = (runtime[0] + 999) / 1000;
1174 td->ts.runtime[1] = (runtime[1] + 999) / 1000;
1175 td->ts.total_run_time = mtime_since_now(&td->epoch);
1176 td->ts.io_bytes[0] = td->io_bytes[0];
1177 td->ts.io_bytes[1] = td->io_bytes[1];
1178
1179 fio_mutex_down(writeout_mutex);
1180 if (td->ts.bw_log) {
1181 if (td->o.bw_log_file) {
1182 finish_log_named(td, td->ts.bw_log,
1183 td->o.bw_log_file, "bw");
1184 } else
1185 finish_log(td, td->ts.bw_log, "bw");
1186 }
1187 if (td->ts.lat_log) {
1188 if (td->o.lat_log_file) {
1189 finish_log_named(td, td->ts.lat_log,
1190 td->o.lat_log_file, "lat");
1191 } else
1192 finish_log(td, td->ts.lat_log, "lat");
1193 }
1194 if (td->ts.slat_log) {
1195 if (td->o.lat_log_file) {
1196 finish_log_named(td, td->ts.slat_log,
1197 td->o.lat_log_file, "slat");
1198 } else
1199 finish_log(td, td->ts.slat_log, "slat");
1200 }
1201 if (td->ts.clat_log) {
1202 if (td->o.lat_log_file) {
1203 finish_log_named(td, td->ts.clat_log,
1204 td->o.lat_log_file, "clat");
1205 } else
1206 finish_log(td, td->ts.clat_log, "clat");
1207 }
1208 fio_mutex_up(writeout_mutex);
1209 if (td->o.exec_postrun)
1210 exec_string(td->o.exec_postrun);
1211
1212 if (exitall_on_terminate)
1213 terminate_threads(td->groupid);
1214
1215err:
1216 if (td->error)
1217 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1218 td->verror);
1219
1220 if (td->o.verify_async)
1221 verify_async_exit(td);
1222
1223 close_and_free_files(td);
1224 close_ioengine(td);
1225 cleanup_io_u(td);
1226 cgroup_shutdown(td, &cgroup_mnt);
1227
1228 if (td->o.cpumask_set) {
1229 int ret = fio_cpuset_exit(&td->o.cpumask);
1230
1231 td_verror(td, ret, "fio_cpuset_exit");
1232 }
1233
1234 /*
1235 * do this very late, it will log file closing as well
1236 */
1237 if (td->o.write_iolog_file)
1238 write_iolog_close(td);
1239
1240 options_mem_free(td);
1241 td_set_runstate(td, TD_EXITED);
1242 return (void *) (unsigned long) td->error;
1243}
1244
1245/*
1246 * We cannot pass the td data into a forked process, so attach the td and
1247 * pass it to the thread worker.
1248 */
1249static int fork_main(int shmid, int offset)
1250{
1251 struct thread_data *td;
1252 void *data, *ret;
1253
1254 data = shmat(shmid, NULL, 0);
1255 if (data == (void *) -1) {
1256 int __err = errno;
1257
1258 perror("shmat");
1259 return __err;
1260 }
1261
1262 td = data + offset * sizeof(struct thread_data);
1263 ret = thread_main(td);
1264 shmdt(data);
1265 return (int) (unsigned long) ret;
1266}
1267
1268/*
1269 * Run over the job map and reap the threads that have exited, if any.
1270 */
1271static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1272{
1273 struct thread_data *td;
1274 int i, cputhreads, realthreads, pending, status, ret;
1275
1276 /*
1277 * reap exited threads (TD_EXITED -> TD_REAPED)
1278 */
1279 realthreads = pending = cputhreads = 0;
1280 for_each_td(td, i) {
1281 int flags = 0;
1282
1283 /*
1284 * ->io_ops is NULL for a thread that has closed its
1285 * io engine
1286 */
1287 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1288 cputhreads++;
1289 else
1290 realthreads++;
1291
1292 if (!td->pid) {
1293 pending++;
1294 continue;
1295 }
1296 if (td->runstate == TD_REAPED)
1297 continue;
1298 if (td->o.use_thread) {
1299 if (td->runstate == TD_EXITED) {
1300 td_set_runstate(td, TD_REAPED);
1301 goto reaped;
1302 }
1303 continue;
1304 }
1305
1306 flags = WNOHANG;
1307 if (td->runstate == TD_EXITED)
1308 flags = 0;
1309
1310 /*
1311 * check if someone quit or got killed in an unusual way
1312 */
1313 ret = waitpid(td->pid, &status, flags);
1314 if (ret < 0) {
1315 if (errno == ECHILD) {
1316 log_err("fio: pid=%d disappeared %d\n",
1317 (int) td->pid, td->runstate);
1318 td_set_runstate(td, TD_REAPED);
1319 goto reaped;
1320 }
1321 perror("waitpid");
1322 } else if (ret == td->pid) {
1323 if (WIFSIGNALED(status)) {
1324 int sig = WTERMSIG(status);
1325
1326 if (sig != SIGQUIT)
1327 log_err("fio: pid=%d, got signal=%d\n",
1328 (int) td->pid, sig);
1329 td_set_runstate(td, TD_REAPED);
1330 goto reaped;
1331 }
1332 if (WIFEXITED(status)) {
1333 if (WEXITSTATUS(status) && !td->error)
1334 td->error = WEXITSTATUS(status);
1335
1336 td_set_runstate(td, TD_REAPED);
1337 goto reaped;
1338 }
1339 }
1340
1341 /*
1342 * thread is not dead, continue
1343 */
1344 pending++;
1345 continue;
1346reaped:
1347 (*nr_running)--;
1348 (*m_rate) -= (td->o.ratemin[0] + td->o.ratemin[1]);
1349 (*t_rate) -= (td->o.rate[0] + td->o.rate[1]);
1350 if (!td->pid)
1351 pending--;
1352
1353 if (td->error)
1354 exit_value++;
1355
1356 done_secs += mtime_since_now(&td->epoch) / 1000;
1357 }
1358
1359 if (*nr_running == cputhreads && !pending && realthreads)
1360 terminate_threads(TERMINATE_ALL);
1361}
1362
1363static void *gtod_thread_main(void *data)
1364{
1365 fio_mutex_up(startup_mutex);
1366
1367 /*
1368 * As long as we have jobs around, update the clock. It would be nice
1369 * to have some way of NOT hammering that CPU with gettimeofday(),
1370 * but I'm not sure what to use outside of a simple CPU nop to relax
1371 * it - we don't want to lose precision.
1372 */
1373 while (threads) {
1374 fio_gtod_update();
1375 nop;
1376 }
1377
1378 return NULL;
1379}
1380
1381static int fio_start_gtod_thread(void)
1382{
1383 pthread_attr_t attr;
1384 int ret;
1385
1386 pthread_attr_init(&attr);
1387 pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN);
1388 ret = pthread_create(&gtod_thread, &attr, gtod_thread_main, NULL);
1389 pthread_attr_destroy(&attr);
1390 if (ret) {
1391 log_err("Can't create gtod thread: %s\n", strerror(ret));
1392 return 1;
1393 }
1394
1395 ret = pthread_detach(gtod_thread);
1396 if (ret) {
1397 log_err("Can't detatch gtod thread: %s\n", strerror(ret));
1398 return 1;
1399 }
1400
1401 dprint(FD_MUTEX, "wait on startup_mutex\n");
1402 fio_mutex_down(startup_mutex);
1403 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1404 return 0;
1405}
1406
1407/*
1408 * Main function for kicking off and reaping jobs, as needed.
1409 */
1410static void run_threads(void)
1411{
1412 struct thread_data *td;
1413 unsigned long spent;
1414 int i, todo, nr_running, m_rate, t_rate, nr_started;
1415
1416 if (fio_pin_memory())
1417 return;
1418
1419 if (fio_gtod_offload && fio_start_gtod_thread())
1420 return;
1421
1422 if (!terse_output) {
1423 log_info("Starting ");
1424 if (nr_thread)
1425 log_info("%d thread%s", nr_thread,
1426 nr_thread > 1 ? "s" : "");
1427 if (nr_process) {
1428 if (nr_thread)
1429 printf(" and ");
1430 log_info("%d process%s", nr_process,
1431 nr_process > 1 ? "es" : "");
1432 }
1433 log_info("\n");
1434 fflush(stdout);
1435 }
1436
1437 set_sig_handlers();
1438
1439 todo = thread_number;
1440 nr_running = 0;
1441 nr_started = 0;
1442 m_rate = t_rate = 0;
1443
1444 for_each_td(td, i) {
1445 print_status_init(td->thread_number - 1);
1446
1447 if (!td->o.create_serialize) {
1448 init_disk_util(td);
1449 continue;
1450 }
1451
1452 /*
1453 * do file setup here so it happens sequentially,
1454 * we don't want X number of threads getting their
1455 * client data interspersed on disk
1456 */
1457 if (setup_files(td)) {
1458 exit_value++;
1459 if (td->error)
1460 log_err("fio: pid=%d, err=%d/%s\n",
1461 (int) td->pid, td->error, td->verror);
1462 td_set_runstate(td, TD_REAPED);
1463 todo--;
1464 } else {
1465 struct fio_file *f;
1466 unsigned int i;
1467
1468 /*
1469 * for sharing to work, each job must always open
1470 * its own files. so close them, if we opened them
1471 * for creation
1472 */
1473 for_each_file(td, f, i) {
1474 if (fio_file_open(f))
1475 td_io_close_file(td, f);
1476 }
1477 }
1478
1479 init_disk_util(td);
1480 }
1481
1482 set_genesis_time();
1483
1484 while (todo) {
1485 struct thread_data *map[MAX_JOBS];
1486 struct timeval this_start;
1487 int this_jobs = 0, left;
1488
1489 /*
1490 * create threads (TD_NOT_CREATED -> TD_CREATED)
1491 */
1492 for_each_td(td, i) {
1493 if (td->runstate != TD_NOT_CREATED)
1494 continue;
1495
1496 /*
1497 * never got a chance to start, killed by other
1498 * thread for some reason
1499 */
1500 if (td->terminate) {
1501 todo--;
1502 continue;
1503 }
1504
1505 if (td->o.start_delay) {
1506 spent = mtime_since_genesis();
1507
1508 if (td->o.start_delay * 1000 > spent)
1509 continue;
1510 }
1511
1512 if (td->o.stonewall && (nr_started || nr_running)) {
1513 dprint(FD_PROCESS, "%s: stonewall wait\n",
1514 td->o.name);
1515 break;
1516 }
1517
1518 /*
1519 * Set state to created. Thread will transition
1520 * to TD_INITIALIZED when it's done setting up.
1521 */
1522 td_set_runstate(td, TD_CREATED);
1523 map[this_jobs++] = td;
1524 nr_started++;
1525
1526 if (td->o.use_thread) {
1527 int ret;
1528
1529 dprint(FD_PROCESS, "will pthread_create\n");
1530 ret = pthread_create(&td->thread, NULL,
1531 thread_main, td);
1532 if (ret) {
1533 log_err("pthread_create: %s\n",
1534 strerror(ret));
1535 nr_started--;
1536 break;
1537 }
1538 ret = pthread_detach(td->thread);
1539 if (ret)
1540 log_err("pthread_detach: %s",
1541 strerror(ret));
1542 } else {
1543 pid_t pid;
1544 dprint(FD_PROCESS, "will fork\n");
1545 pid = fork();
1546 if (!pid) {
1547 int ret = fork_main(shm_id, i);
1548
1549 _exit(ret);
1550 } else if (i == fio_debug_jobno)
1551 *fio_debug_jobp = pid;
1552 }
1553 dprint(FD_MUTEX, "wait on startup_mutex\n");
1554 if (fio_mutex_down_timeout(startup_mutex, 10)) {
1555 log_err("fio: job startup hung? exiting.\n");
1556 terminate_threads(TERMINATE_ALL);
1557 fio_abort = 1;
1558 nr_started--;
1559 break;
1560 }
1561 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1562 }
1563
1564 /*
1565 * Wait for the started threads to transition to
1566 * TD_INITIALIZED.
1567 */
1568 fio_gettime(&this_start, NULL);
1569 left = this_jobs;
1570 while (left && !fio_abort) {
1571 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1572 break;
1573
1574 usleep(100000);
1575
1576 for (i = 0; i < this_jobs; i++) {
1577 td = map[i];
1578 if (!td)
1579 continue;
1580 if (td->runstate == TD_INITIALIZED) {
1581 map[i] = NULL;
1582 left--;
1583 } else if (td->runstate >= TD_EXITED) {
1584 map[i] = NULL;
1585 left--;
1586 todo--;
1587 nr_running++; /* work-around... */
1588 }
1589 }
1590 }
1591
1592 if (left) {
1593 log_err("fio: %d jobs failed to start\n", left);
1594 for (i = 0; i < this_jobs; i++) {
1595 td = map[i];
1596 if (!td)
1597 continue;
1598 kill(td->pid, SIGTERM);
1599 }
1600 break;
1601 }
1602
1603 /*
1604 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1605 */
1606 for_each_td(td, i) {
1607 if (td->runstate != TD_INITIALIZED)
1608 continue;
1609
1610 if (in_ramp_time(td))
1611 td_set_runstate(td, TD_RAMP);
1612 else
1613 td_set_runstate(td, TD_RUNNING);
1614 nr_running++;
1615 nr_started--;
1616 m_rate += td->o.ratemin[0] + td->o.ratemin[1];
1617 t_rate += td->o.rate[0] + td->o.rate[1];
1618 todo--;
1619 fio_mutex_up(td->mutex);
1620 }
1621
1622 reap_threads(&nr_running, &t_rate, &m_rate);
1623
1624 if (todo)
1625 usleep(100000);
1626 }
1627
1628 while (nr_running) {
1629 reap_threads(&nr_running, &t_rate, &m_rate);
1630 usleep(10000);
1631 }
1632
1633 update_io_ticks();
1634 fio_unpin_memory();
1635}
1636
1637int main(int argc, char *argv[])
1638{
1639 long ps;
1640
1641 sinit();
1642 init_rand(&__fio_rand_state);
1643
1644 /*
1645 * We need locale for number printing, if it isn't set then just
1646 * go with the US format.
1647 */
1648 if (!getenv("LC_NUMERIC"))
1649 setlocale(LC_NUMERIC, "en_US");
1650
1651 ps = sysconf(_SC_PAGESIZE);
1652 if (ps < 0) {
1653 log_err("Failed to get page size\n");
1654 return 1;
1655 }
1656
1657 page_size = ps;
1658 page_mask = ps - 1;
1659
1660 fio_keywords_init();
1661
1662 if (parse_options(argc, argv))
1663 return 1;
1664
1665 if (exec_profile && load_profile(exec_profile))
1666 return 1;
1667
1668 if (!thread_number)
1669 return 0;
1670
1671 if (write_bw_log) {
1672 setup_log(&agg_io_log[DDIR_READ]);
1673 setup_log(&agg_io_log[DDIR_WRITE]);
1674 }
1675
1676 startup_mutex = fio_mutex_init(0);
1677 writeout_mutex = fio_mutex_init(1);
1678
1679 set_genesis_time();
1680
1681 status_timer_arm();
1682
1683 cgroup_list = smalloc(sizeof(*cgroup_list));
1684 INIT_FLIST_HEAD(cgroup_list);
1685
1686 run_threads();
1687
1688 if (!fio_abort) {
1689 show_run_stats();
1690 if (write_bw_log) {
1691 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1692 __finish_log(agg_io_log[DDIR_WRITE],
1693 "agg-write_bw.log");
1694 }
1695 }
1696
1697 cgroup_kill(cgroup_list);
1698 sfree(cgroup_list);
1699 sfree(cgroup_mnt);
1700
1701 fio_mutex_remove(startup_mutex);
1702 fio_mutex_remove(writeout_mutex);
1703 return exit_value;
1704}