Reduntant write bit checks
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38
39unsigned long page_mask;
40unsigned long page_size;
41#define ALIGN(buf) \
42 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
43
44int groupid = 0;
45int thread_number = 0;
46int nr_process = 0;
47int nr_thread = 0;
48int shm_id = 0;
49int temp_stall_ts;
50
51static struct fio_sem *startup_sem;
52static volatile int fio_abort;
53static int exit_value;
54
55struct io_log *agg_io_log[2];
56
57#define TERMINATE_ALL (-1)
58#define JOB_START_TIMEOUT (5 * 1000)
59
60static inline void td_set_runstate(struct thread_data *td, int runstate)
61{
62 td->runstate = runstate;
63}
64
65static void terminate_threads(int group_id)
66{
67 struct thread_data *td;
68 int i;
69
70 for_each_td(td, i) {
71 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
72 if (td->runstate <= TD_RUNNING)
73 kill(td->pid, SIGQUIT);
74 td->terminate = 1;
75 td->o.start_delay = 0;
76 }
77 }
78}
79
80static void sig_handler(int sig)
81{
82 switch (sig) {
83 case SIGALRM:
84 update_io_ticks();
85 disk_util_timer_arm();
86 print_thread_status();
87 break;
88 default:
89 printf("\nfio: terminating on signal %d\n", sig);
90 fflush(stdout);
91 terminate_threads(TERMINATE_ALL);
92 break;
93 }
94}
95
96/*
97 * Check if we are above the minimum rate given.
98 */
99static int check_min_rate(struct thread_data *td, struct timeval *now)
100{
101 unsigned long long bytes = 0;
102 unsigned long iops = 0;
103 unsigned long spent;
104 unsigned long rate;
105
106 /*
107 * No minimum rate set, always ok
108 */
109 if (!td->o.ratemin && !td->o.rate_iops_min)
110 return 0;
111
112 /*
113 * allow a 2 second settle period in the beginning
114 */
115 if (mtime_since(&td->start, now) < 2000)
116 return 0;
117
118 if (td_read(td)) {
119 iops += td->io_blocks[DDIR_READ];
120 bytes += td->this_io_bytes[DDIR_READ];
121 }
122 if (td_write(td)) {
123 iops += td->io_blocks[DDIR_WRITE];
124 bytes += td->this_io_bytes[DDIR_WRITE];
125 }
126
127 /*
128 * if rate blocks is set, sample is running
129 */
130 if (td->rate_bytes || td->rate_blocks) {
131 spent = mtime_since(&td->lastrate, now);
132 if (spent < td->o.ratecycle)
133 return 0;
134
135 if (td->o.rate) {
136 /*
137 * check bandwidth specified rate
138 */
139 if (bytes < td->rate_bytes) {
140 log_err("%s: min rate %u not met\n", td->o.name, td->o.ratemin);
141 return 1;
142 } else {
143 rate = (bytes - td->rate_bytes) / spent;
144 if (rate < td->o.ratemin || bytes < td->rate_bytes) {
145 log_err("%s: min rate %u not met, got %luKiB/sec\n", td->o.name, td->o.ratemin, rate);
146 return 1;
147 }
148 }
149 } else {
150 /*
151 * checks iops specified rate
152 */
153 if (iops < td->o.rate_iops) {
154 log_err("%s: min iops rate %u not met\n", td->o.name, td->o.rate_iops);
155 return 1;
156 } else {
157 rate = (iops - td->rate_blocks) / spent;
158 if (rate < td->o.rate_iops_min || iops < td->rate_blocks) {
159 log_err("%s: min iops rate %u not met, got %lu\n", td->o.name, td->o.rate_iops_min, rate);
160 }
161 }
162 }
163 }
164
165 td->rate_bytes = bytes;
166 td->rate_blocks = iops;
167 memcpy(&td->lastrate, now, sizeof(*now));
168 return 0;
169}
170
171static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
172{
173 if (!td->o.timeout)
174 return 0;
175 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
176 return 1;
177
178 return 0;
179}
180
181/*
182 * When job exits, we can cancel the in-flight IO if we are using async
183 * io. Attempt to do so.
184 */
185static void cleanup_pending_aio(struct thread_data *td)
186{
187 struct list_head *entry, *n;
188 struct io_u *io_u;
189 int r;
190
191 /*
192 * get immediately available events, if any
193 */
194 r = io_u_queued_complete(td, 0);
195 if (r < 0)
196 return;
197
198 /*
199 * now cancel remaining active events
200 */
201 if (td->io_ops->cancel) {
202 list_for_each_safe(entry, n, &td->io_u_busylist) {
203 io_u = list_entry(entry, struct io_u, list);
204
205 /*
206 * if the io_u isn't in flight, then that generally
207 * means someone leaked an io_u. complain but fix
208 * it up, so we don't stall here.
209 */
210 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
211 log_err("fio: non-busy IO on busy list\n");
212 put_io_u(td, io_u);
213 } else {
214 r = td->io_ops->cancel(td, io_u);
215 if (!r)
216 put_io_u(td, io_u);
217 }
218 }
219 }
220
221 if (td->cur_depth)
222 r = io_u_queued_complete(td, td->cur_depth);
223}
224
225/*
226 * Helper to handle the final sync of a file. Works just like the normal
227 * io path, just does everything sync.
228 */
229static int fio_io_sync(struct thread_data *td, struct fio_file *f)
230{
231 struct io_u *io_u = __get_io_u(td);
232 int ret;
233
234 if (!io_u)
235 return 1;
236
237 io_u->ddir = DDIR_SYNC;
238 io_u->file = f;
239
240 if (td_io_prep(td, io_u)) {
241 put_io_u(td, io_u);
242 return 1;
243 }
244
245requeue:
246 ret = td_io_queue(td, io_u);
247 if (ret < 0) {
248 td_verror(td, io_u->error, "td_io_queue");
249 put_io_u(td, io_u);
250 return 1;
251 } else if (ret == FIO_Q_QUEUED) {
252 if (io_u_queued_complete(td, 1) < 0)
253 return 1;
254 } else if (ret == FIO_Q_COMPLETED) {
255 if (io_u->error) {
256 td_verror(td, io_u->error, "td_io_queue");
257 return 1;
258 }
259
260 if (io_u_sync_complete(td, io_u) < 0)
261 return 1;
262 } else if (ret == FIO_Q_BUSY) {
263 if (td_io_commit(td))
264 return 1;
265 goto requeue;
266 }
267
268 return 0;
269}
270
271/*
272 * The main verify engine. Runs over the writes we previously submitted,
273 * reads the blocks back in, and checks the crc/md5 of the data.
274 */
275static void do_verify(struct thread_data *td)
276{
277 struct fio_file *f;
278 struct io_u *io_u;
279 int ret, min_events;
280 unsigned int i;
281
282 /*
283 * sync io first and invalidate cache, to make sure we really
284 * read from disk.
285 */
286 for_each_file(td, f, i) {
287 if (!(f->flags & FIO_FILE_OPEN))
288 continue;
289 if (fio_io_sync(td, f))
290 break;
291 if (file_invalidate_cache(td, f))
292 break;
293 }
294
295 if (td->error)
296 return;
297
298 td_set_runstate(td, TD_VERIFYING);
299
300 io_u = NULL;
301 while (!td->terminate) {
302 int ret2;
303
304 io_u = __get_io_u(td);
305 if (!io_u)
306 break;
307
308 if (runtime_exceeded(td, &io_u->start_time)) {
309 put_io_u(td, io_u);
310 break;
311 }
312
313 if (get_next_verify(td, io_u)) {
314 put_io_u(td, io_u);
315 break;
316 }
317
318 if (td_io_prep(td, io_u)) {
319 put_io_u(td, io_u);
320 break;
321 }
322
323 io_u->end_io = verify_io_u;
324
325 ret = td_io_queue(td, io_u);
326 switch (ret) {
327 case FIO_Q_COMPLETED:
328 if (io_u->error)
329 ret = -io_u->error;
330 else if (io_u->resid) {
331 int bytes = io_u->xfer_buflen - io_u->resid;
332 struct fio_file *f = io_u->file;
333
334 /*
335 * zero read, fail
336 */
337 if (!bytes) {
338 td_verror(td, ENODATA, "full resid");
339 put_io_u(td, io_u);
340 break;
341 }
342
343 io_u->xfer_buflen = io_u->resid;
344 io_u->xfer_buf += bytes;
345 io_u->offset += bytes;
346 f->last_completed_pos = io_u->offset;
347
348 td->ts.short_io_u[io_u->ddir]++;
349
350 if (io_u->offset == f->real_file_size)
351 goto sync_done;
352
353 requeue_io_u(td, &io_u);
354 } else {
355sync_done:
356 ret = io_u_sync_complete(td, io_u);
357 if (ret < 0)
358 break;
359 }
360 continue;
361 case FIO_Q_QUEUED:
362 break;
363 case FIO_Q_BUSY:
364 requeue_io_u(td, &io_u);
365 ret2 = td_io_commit(td);
366 if (ret2 < 0)
367 ret = ret2;
368 break;
369 default:
370 assert(ret < 0);
371 td_verror(td, -ret, "td_io_queue");
372 break;
373 }
374
375 if (ret < 0 || td->error)
376 break;
377
378 /*
379 * if we can queue more, do so. but check if there are
380 * completed io_u's first.
381 */
382 min_events = 0;
383 if (queue_full(td) || ret == FIO_Q_BUSY) {
384 min_events = 1;
385
386 if (td->cur_depth > td->o.iodepth_low)
387 min_events = td->cur_depth - td->o.iodepth_low;
388 }
389
390 /*
391 * Reap required number of io units, if any, and do the
392 * verification on them through the callback handler
393 */
394 if (io_u_queued_complete(td, min_events) < 0)
395 break;
396 }
397
398 if (!td->error) {
399 min_events = td->cur_depth;
400
401 if (min_events)
402 ret = io_u_queued_complete(td, min_events);
403 } else
404 cleanup_pending_aio(td);
405
406 td_set_runstate(td, TD_RUNNING);
407}
408
409/*
410 * Main IO worker function. It retrieves io_u's to process and queues
411 * and reaps them, checking for rate and errors along the way.
412 */
413static void do_io(struct thread_data *td)
414{
415 struct timeval s;
416 unsigned long usec;
417 unsigned int i;
418 int ret = 0;
419
420 td_set_runstate(td, TD_RUNNING);
421
422 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) {
423 struct timeval comp_time;
424 long bytes_done = 0;
425 int min_evts = 0;
426 struct io_u *io_u;
427 int ret2;
428
429 if (td->terminate)
430 break;
431
432 io_u = get_io_u(td);
433 if (!io_u)
434 break;
435
436 memcpy(&s, &io_u->start_time, sizeof(s));
437
438 if (runtime_exceeded(td, &s)) {
439 put_io_u(td, io_u);
440 break;
441 }
442
443 ret = td_io_queue(td, io_u);
444 switch (ret) {
445 case FIO_Q_COMPLETED:
446 if (io_u->error)
447 ret = -io_u->error;
448 else if (io_u->resid) {
449 int bytes = io_u->xfer_buflen - io_u->resid;
450 struct fio_file *f = io_u->file;
451
452 /*
453 * zero read, fail
454 */
455 if (!bytes) {
456 td_verror(td, ENODATA, "full resid");
457 put_io_u(td, io_u);
458 break;
459 }
460
461 io_u->xfer_buflen = io_u->resid;
462 io_u->xfer_buf += bytes;
463 io_u->offset += bytes;
464 f->last_completed_pos = io_u->offset;
465
466 td->ts.short_io_u[io_u->ddir]++;
467
468 if (io_u->offset == f->real_file_size)
469 goto sync_done;
470
471 requeue_io_u(td, &io_u);
472 } else {
473sync_done:
474 fio_gettime(&comp_time, NULL);
475 bytes_done = io_u_sync_complete(td, io_u);
476 if (bytes_done < 0)
477 ret = bytes_done;
478 }
479 break;
480 case FIO_Q_QUEUED:
481 /*
482 * if the engine doesn't have a commit hook,
483 * the io_u is really queued. if it does have such
484 * a hook, it has to call io_u_queued() itself.
485 */
486 if (td->io_ops->commit == NULL)
487 io_u_queued(td, io_u);
488 break;
489 case FIO_Q_BUSY:
490 requeue_io_u(td, &io_u);
491 ret2 = td_io_commit(td);
492 if (ret2 < 0)
493 ret = ret2;
494 break;
495 default:
496 assert(ret < 0);
497 put_io_u(td, io_u);
498 break;
499 }
500
501 if (ret < 0 || td->error)
502 break;
503
504 /*
505 * See if we need to complete some commands
506 */
507 if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) {
508 min_evts = 0;
509 if (queue_full(td) || ret == FIO_Q_BUSY) {
510 min_evts = 1;
511
512 if (td->cur_depth > td->o.iodepth_low)
513 min_evts = td->cur_depth - td->o.iodepth_low;
514 }
515
516 fio_gettime(&comp_time, NULL);
517 bytes_done = io_u_queued_complete(td, min_evts);
518 if (bytes_done < 0)
519 break;
520 }
521
522 if (!bytes_done)
523 continue;
524
525 /*
526 * the rate is batched for now, it should work for batches
527 * of completions except the very first one which may look
528 * a little bursty
529 */
530 usec = utime_since(&s, &comp_time);
531
532 rate_throttle(td, usec, bytes_done);
533
534 if (check_min_rate(td, &comp_time)) {
535 if (exitall_on_terminate)
536 terminate_threads(td->groupid);
537 td_verror(td, ENODATA, "check_min_rate");
538 break;
539 }
540
541 if (td->o.thinktime) {
542 unsigned long long b;
543
544 b = td->io_blocks[0] + td->io_blocks[1];
545 if (!(b % td->o.thinktime_blocks)) {
546 int left;
547
548 if (td->o.thinktime_spin)
549 __usec_sleep(td->o.thinktime_spin);
550
551 left = td->o.thinktime - td->o.thinktime_spin;
552 if (left)
553 usec_sleep(td, left);
554 }
555 }
556 }
557
558 if (!td->error) {
559 struct fio_file *f;
560
561 i = td->cur_depth;
562 if (i)
563 ret = io_u_queued_complete(td, i);
564
565 if (should_fsync(td) && td->o.end_fsync) {
566 td_set_runstate(td, TD_FSYNCING);
567
568 for_each_file(td, f, i) {
569 if (!(f->flags & FIO_FILE_OPEN))
570 continue;
571 fio_io_sync(td, f);
572 }
573 }
574 } else
575 cleanup_pending_aio(td);
576}
577
578static void cleanup_io_u(struct thread_data *td)
579{
580 struct list_head *entry, *n;
581 struct io_u *io_u;
582
583 list_for_each_safe(entry, n, &td->io_u_freelist) {
584 io_u = list_entry(entry, struct io_u, list);
585
586 list_del(&io_u->list);
587 free(io_u);
588 }
589
590 free_io_mem(td);
591}
592
593/*
594 * "randomly" fill the buffer contents
595 */
596static void fill_rand_buf(struct io_u *io_u, int max_bs)
597{
598 int *ptr = io_u->buf;
599
600 while ((void *) ptr - io_u->buf < max_bs) {
601 *ptr = rand() * 0x9e370001;
602 ptr++;
603 }
604}
605
606static int init_io_u(struct thread_data *td)
607{
608 unsigned long long buf_size;
609 struct io_u *io_u;
610 unsigned int max_bs;
611 int i, max_units;
612 char *p;
613
614 if (td->io_ops->flags & FIO_SYNCIO)
615 max_units = 1;
616 else
617 max_units = td->o.iodepth;
618
619 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
620 buf_size = (unsigned long long) max_bs * (unsigned long long) max_units;
621 buf_size += page_mask;
622 if (buf_size != (size_t) buf_size) {
623 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
624 return 1;
625 }
626
627 td->orig_buffer_size = buf_size;
628
629 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE)
630 td->orig_buffer_size = (td->orig_buffer_size + td->o.hugepage_size - 1) & ~(td->o.hugepage_size - 1);
631 else if (td->orig_buffer_size & page_mask)
632 td->orig_buffer_size = (td->orig_buffer_size + page_mask) & ~page_mask;
633
634 if (allocate_io_mem(td))
635 return 1;
636
637 p = ALIGN(td->orig_buffer);
638 for (i = 0; i < max_units; i++) {
639 io_u = malloc(sizeof(*io_u));
640 memset(io_u, 0, sizeof(*io_u));
641 INIT_LIST_HEAD(&io_u->list);
642
643 io_u->buf = p + max_bs * i;
644 if (td_write(td))
645 fill_rand_buf(io_u, max_bs);
646
647 io_u->index = i;
648 io_u->flags = IO_U_F_FREE;
649 list_add(&io_u->list, &td->io_u_freelist);
650 }
651
652 io_u_init_timeout();
653
654 return 0;
655}
656
657static int switch_ioscheduler(struct thread_data *td)
658{
659 char tmp[256], tmp2[128];
660 FILE *f;
661 int ret;
662
663 if (td->io_ops->flags & FIO_DISKLESSIO)
664 return 0;
665
666 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
667
668 f = fopen(tmp, "r+");
669 if (!f) {
670 if (errno == ENOENT) {
671 log_err("fio: os or kernel doesn't support IO scheduler switching\n");
672 return 0;
673 }
674 td_verror(td, errno, "fopen iosched");
675 return 1;
676 }
677
678 /*
679 * Set io scheduler.
680 */
681 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
682 if (ferror(f) || ret != 1) {
683 td_verror(td, errno, "fwrite");
684 fclose(f);
685 return 1;
686 }
687
688 rewind(f);
689
690 /*
691 * Read back and check that the selected scheduler is now the default.
692 */
693 ret = fread(tmp, 1, sizeof(tmp), f);
694 if (ferror(f) || ret < 0) {
695 td_verror(td, errno, "fread");
696 fclose(f);
697 return 1;
698 }
699
700 sprintf(tmp2, "[%s]", td->o.ioscheduler);
701 if (!strstr(tmp, tmp2)) {
702 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
703 td_verror(td, EINVAL, "iosched_switch");
704 fclose(f);
705 return 1;
706 }
707
708 fclose(f);
709 return 0;
710}
711
712static int clear_io_state(struct thread_data *td)
713{
714 struct fio_file *f;
715 unsigned int i;
716 int ret;
717
718 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
719 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
720 td->zone_bytes = 0;
721 td->rate_bytes = 0;
722 td->rate_blocks = 0;
723 td->rw_end_set[0] = td->rw_end_set[1] = 0;
724
725 td->last_was_sync = 0;
726
727 for_each_file(td, f, i)
728 td_io_close_file(td, f);
729
730 ret = 0;
731 for_each_file(td, f, i) {
732 ret = td_io_open_file(td, f);
733 if (ret)
734 break;
735 }
736
737 return ret;
738}
739
740/*
741 * Entry point for the thread based jobs. The process based jobs end up
742 * here as well, after a little setup.
743 */
744static void *thread_main(void *data)
745{
746 unsigned long long runtime[2];
747 struct thread_data *td = data;
748 unsigned long elapsed;
749 int clear_state;
750
751 if (!td->o.use_thread)
752 setsid();
753
754 td->pid = getpid();
755
756 INIT_LIST_HEAD(&td->io_u_freelist);
757 INIT_LIST_HEAD(&td->io_u_busylist);
758 INIT_LIST_HEAD(&td->io_u_requeues);
759 INIT_LIST_HEAD(&td->io_log_list);
760 INIT_LIST_HEAD(&td->io_hist_list);
761 td->io_hist_tree = RB_ROOT;
762
763 if (init_io_u(td))
764 goto err_sem;
765
766 if (fio_setaffinity(td) == -1) {
767 td_verror(td, errno, "cpu_set_affinity");
768 goto err_sem;
769 }
770
771 if (init_iolog(td))
772 goto err_sem;
773
774 if (td->ioprio) {
775 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
776 td_verror(td, errno, "ioprio_set");
777 goto err_sem;
778 }
779 }
780
781 if (nice(td->o.nice) == -1) {
782 td_verror(td, errno, "nice");
783 goto err_sem;
784 }
785
786 if (td->o.ioscheduler && switch_ioscheduler(td))
787 goto err_sem;
788
789 td_set_runstate(td, TD_INITIALIZED);
790 fio_sem_up(startup_sem);
791 fio_sem_down(td->mutex);
792
793 /*
794 * the ->mutex semaphore is now no longer used, close it to avoid
795 * eating a file descriptor
796 */
797 fio_sem_remove(td->mutex);
798
799 if (!td->o.create_serialize && setup_files(td))
800 goto err;
801
802 if (td_io_init(td))
803 goto err;
804
805 if (open_files(td))
806 goto err;
807
808 if (init_random_map(td))
809 goto err;
810
811 if (td->o.exec_prerun) {
812 if (system(td->o.exec_prerun) < 0)
813 goto err;
814 }
815
816 fio_gettime(&td->epoch, NULL);
817 memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch));
818 getrusage(RUSAGE_SELF, &td->ts.ru_start);
819
820 runtime[0] = runtime[1] = 0;
821 clear_state = 0;
822 while (td->o.loops--) {
823 fio_gettime(&td->start, NULL);
824 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
825
826 if (td->o.ratemin)
827 memcpy(&td->lastrate, &td->ts.stat_sample_time, sizeof(td->lastrate));
828
829 if (clear_state && clear_io_state(td))
830 break;
831
832 prune_io_piece_log(td);
833
834 do_io(td);
835
836 clear_state = 1;
837
838 if (td_read(td) && td->io_bytes[DDIR_READ]) {
839 if (td->rw_end_set[DDIR_READ])
840 elapsed = utime_since(&td->start, &td->rw_end[DDIR_READ]);
841 else
842 elapsed = utime_since_now(&td->start);
843
844 runtime[DDIR_READ] += elapsed;
845 }
846 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
847 if (td->rw_end_set[DDIR_WRITE])
848 elapsed = utime_since(&td->start, &td->rw_end[DDIR_WRITE]);
849 else
850 elapsed = utime_since_now(&td->start);
851
852 runtime[DDIR_WRITE] += elapsed;
853 }
854
855 if (td->error || td->terminate)
856 break;
857
858 if (td->o.verify == VERIFY_NONE)
859 continue;
860
861 if (clear_io_state(td))
862 break;
863
864 fio_gettime(&td->start, NULL);
865
866 do_verify(td);
867
868 runtime[DDIR_READ] += utime_since_now(&td->start);
869
870 if (td->error || td->terminate)
871 break;
872 }
873
874 update_rusage_stat(td);
875 td->ts.runtime[0] = runtime[0] / 1000;
876 td->ts.runtime[1] = runtime[1] / 1000;
877 td->ts.total_run_time = mtime_since_now(&td->epoch);
878 td->ts.io_bytes[0] = td->io_bytes[0];
879 td->ts.io_bytes[1] = td->io_bytes[1];
880
881 if (td->ts.bw_log)
882 finish_log(td, td->ts.bw_log, "bw");
883 if (td->ts.slat_log)
884 finish_log(td, td->ts.slat_log, "slat");
885 if (td->ts.clat_log)
886 finish_log(td, td->ts.clat_log, "clat");
887 if (td->o.write_iolog_file)
888 write_iolog_close(td);
889 if (td->o.exec_postrun) {
890 if (system(td->o.exec_postrun) < 0)
891 log_err("fio: postrun %s failed\n", td->o.exec_postrun);
892 }
893
894 if (exitall_on_terminate)
895 terminate_threads(td->groupid);
896
897err:
898 if (td->error)
899 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
900 close_files(td);
901 close_ioengine(td);
902 cleanup_io_u(td);
903 options_mem_free(td);
904 td_set_runstate(td, TD_EXITED);
905 return (void *) (unsigned long) td->error;
906err_sem:
907 fio_sem_up(startup_sem);
908 goto err;
909}
910
911/*
912 * We cannot pass the td data into a forked process, so attach the td and
913 * pass it to the thread worker.
914 */
915static int fork_main(int shmid, int offset)
916{
917 struct thread_data *td;
918 void *data, *ret;
919
920 data = shmat(shmid, NULL, 0);
921 if (data == (void *) -1) {
922 int __err = errno;
923
924 perror("shmat");
925 return __err;
926 }
927
928 td = data + offset * sizeof(struct thread_data);
929 ret = thread_main(td);
930 shmdt(data);
931 return (int) (unsigned long) ret;
932}
933
934/*
935 * Run over the job map and reap the threads that have exited, if any.
936 */
937static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
938{
939 struct thread_data *td;
940 int i, cputhreads, pending, status, ret;
941
942 /*
943 * reap exited threads (TD_EXITED -> TD_REAPED)
944 */
945 pending = cputhreads = 0;
946 for_each_td(td, i) {
947 int flags = 0;
948
949 /*
950 * ->io_ops is NULL for a thread that has closed its
951 * io engine
952 */
953 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
954 cputhreads++;
955
956 if (!td->pid || td->runstate == TD_REAPED)
957 continue;
958 if (td->o.use_thread) {
959 if (td->runstate == TD_EXITED) {
960 td_set_runstate(td, TD_REAPED);
961 goto reaped;
962 }
963 continue;
964 }
965
966 flags = WNOHANG;
967 if (td->runstate == TD_EXITED)
968 flags = 0;
969
970 /*
971 * check if someone quit or got killed in an unusual way
972 */
973 ret = waitpid(td->pid, &status, flags);
974 if (ret < 0) {
975 if (errno == ECHILD) {
976 log_err("fio: pid=%d disappeared %d\n", td->pid, td->runstate);
977 td_set_runstate(td, TD_REAPED);
978 goto reaped;
979 }
980 perror("waitpid");
981 } else if (ret == td->pid) {
982 if (WIFSIGNALED(status)) {
983 int sig = WTERMSIG(status);
984
985 if (sig != SIGQUIT)
986 log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
987 td_set_runstate(td, TD_REAPED);
988 goto reaped;
989 }
990 if (WIFEXITED(status)) {
991 if (WEXITSTATUS(status) && !td->error)
992 td->error = WEXITSTATUS(status);
993
994 td_set_runstate(td, TD_REAPED);
995 goto reaped;
996 }
997 }
998
999 /*
1000 * thread is not dead, continue
1001 */
1002 pending++;
1003 continue;
1004reaped:
1005 if (td->o.use_thread) {
1006 long ret;
1007
1008 if (pthread_join(td->thread, (void *) &ret))
1009 perror("pthread_join");
1010 }
1011
1012 (*nr_running)--;
1013 (*m_rate) -= td->o.ratemin;
1014 (*t_rate) -= td->o.rate;
1015 pending--;
1016
1017 if (td->error)
1018 exit_value++;
1019 }
1020
1021 if (*nr_running == cputhreads && !pending)
1022 terminate_threads(TERMINATE_ALL);
1023}
1024
1025/*
1026 * Main function for kicking off and reaping jobs, as needed.
1027 */
1028static void run_threads(void)
1029{
1030 struct thread_data *td;
1031 unsigned long spent;
1032 int i, todo, nr_running, m_rate, t_rate, nr_started;
1033
1034 if (fio_pin_memory())
1035 return;
1036
1037 if (!terse_output) {
1038 printf("Starting ");
1039 if (nr_thread)
1040 printf("%d thread%s", nr_thread, nr_thread > 1 ? "s" : "");
1041 if (nr_process) {
1042 if (nr_thread)
1043 printf(" and ");
1044 printf("%d process%s", nr_process, nr_process > 1 ? "es" : "");
1045 }
1046 printf("\n");
1047 fflush(stdout);
1048 }
1049
1050 signal(SIGINT, sig_handler);
1051 signal(SIGALRM, sig_handler);
1052
1053 todo = thread_number;
1054 nr_running = 0;
1055 nr_started = 0;
1056 m_rate = t_rate = 0;
1057
1058 for_each_td(td, i) {
1059 print_status_init(td->thread_number - 1);
1060
1061 if (!td->o.create_serialize) {
1062 init_disk_util(td);
1063 continue;
1064 }
1065
1066 /*
1067 * do file setup here so it happens sequentially,
1068 * we don't want X number of threads getting their
1069 * client data interspersed on disk
1070 */
1071 if (setup_files(td)) {
1072 exit_value++;
1073 if (td->error)
1074 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
1075 td_set_runstate(td, TD_REAPED);
1076 todo--;
1077 }
1078
1079 init_disk_util(td);
1080 }
1081
1082 set_genesis_time();
1083
1084 while (todo) {
1085 struct thread_data *map[MAX_JOBS];
1086 struct timeval this_start;
1087 int this_jobs = 0, left;
1088
1089 /*
1090 * create threads (TD_NOT_CREATED -> TD_CREATED)
1091 */
1092 for_each_td(td, i) {
1093 if (td->runstate != TD_NOT_CREATED)
1094 continue;
1095
1096 /*
1097 * never got a chance to start, killed by other
1098 * thread for some reason
1099 */
1100 if (td->terminate) {
1101 todo--;
1102 continue;
1103 }
1104
1105 if (td->o.start_delay) {
1106 spent = mtime_since_genesis();
1107
1108 if (td->o.start_delay * 1000 > spent)
1109 continue;
1110 }
1111
1112 if (td->o.stonewall && (nr_started || nr_running))
1113 break;
1114
1115 /*
1116 * Set state to created. Thread will transition
1117 * to TD_INITIALIZED when it's done setting up.
1118 */
1119 td_set_runstate(td, TD_CREATED);
1120 map[this_jobs++] = td;
1121 nr_started++;
1122
1123 if (td->o.use_thread) {
1124 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1125 perror("thread_create");
1126 nr_started--;
1127 break;
1128 }
1129 } else {
1130 if (!fork()) {
1131 int ret = fork_main(shm_id, i);
1132
1133 exit(ret);
1134 }
1135 }
1136 fio_sem_down(startup_sem);
1137 }
1138
1139 /*
1140 * Wait for the started threads to transition to
1141 * TD_INITIALIZED.
1142 */
1143 fio_gettime(&this_start, NULL);
1144 left = this_jobs;
1145 while (left && !fio_abort) {
1146 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1147 break;
1148
1149 usleep(100000);
1150
1151 for (i = 0; i < this_jobs; i++) {
1152 td = map[i];
1153 if (!td)
1154 continue;
1155 if (td->runstate == TD_INITIALIZED) {
1156 map[i] = NULL;
1157 left--;
1158 } else if (td->runstate >= TD_EXITED) {
1159 map[i] = NULL;
1160 left--;
1161 todo--;
1162 nr_running++; /* work-around... */
1163 }
1164 }
1165 }
1166
1167 if (left) {
1168 log_err("fio: %d jobs failed to start\n", left);
1169 for (i = 0; i < this_jobs; i++) {
1170 td = map[i];
1171 if (!td)
1172 continue;
1173 kill(td->pid, SIGTERM);
1174 }
1175 break;
1176 }
1177
1178 /*
1179 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1180 */
1181 for_each_td(td, i) {
1182 if (td->runstate != TD_INITIALIZED)
1183 continue;
1184
1185 td_set_runstate(td, TD_RUNNING);
1186 nr_running++;
1187 nr_started--;
1188 m_rate += td->o.ratemin;
1189 t_rate += td->o.rate;
1190 todo--;
1191 fio_sem_up(td->mutex);
1192 }
1193
1194 reap_threads(&nr_running, &t_rate, &m_rate);
1195
1196 if (todo)
1197 usleep(100000);
1198 }
1199
1200 while (nr_running) {
1201 reap_threads(&nr_running, &t_rate, &m_rate);
1202 usleep(10000);
1203 }
1204
1205 update_io_ticks();
1206 fio_unpin_memory();
1207}
1208
1209int main(int argc, char *argv[])
1210{
1211 long ps;
1212
1213 /*
1214 * We need locale for number printing, if it isn't set then just
1215 * go with the US format.
1216 */
1217 if (!getenv("LC_NUMERIC"))
1218 setlocale(LC_NUMERIC, "en_US");
1219
1220 if (parse_options(argc, argv))
1221 return 1;
1222
1223 if (!thread_number)
1224 return 0;
1225
1226 ps = sysconf(_SC_PAGESIZE);
1227 if (ps < 0) {
1228 log_err("Failed to get page size\n");
1229 return 1;
1230 }
1231
1232 page_size = ps;
1233 page_mask = ps - 1;
1234
1235 if (write_bw_log) {
1236 setup_log(&agg_io_log[DDIR_READ]);
1237 setup_log(&agg_io_log[DDIR_WRITE]);
1238 }
1239
1240 startup_sem = fio_sem_init(0);
1241
1242 set_genesis_time();
1243
1244 disk_util_timer_arm();
1245
1246 run_threads();
1247
1248 if (!fio_abort) {
1249 show_run_stats();
1250 if (write_bw_log) {
1251 __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1252 __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1253 }
1254 }
1255
1256 fio_sem_remove(startup_sem);
1257 return exit_value;
1258}