[PATCH] First cut at supporting > 1 file per job
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22#include <unistd.h>
23#include <fcntl.h>
24#include <string.h>
25#include <signal.h>
26#include <time.h>
27#include <assert.h>
28#include <sys/stat.h>
29#include <sys/wait.h>
30#include <sys/ipc.h>
31#include <sys/shm.h>
32#include <sys/ioctl.h>
33#include <sys/mman.h>
34
35#include "fio.h"
36#include "os.h"
37
38#define MASK (4095)
39
40#define ALIGN(buf) (char *) (((unsigned long) (buf) + MASK) & ~(MASK))
41
42int groupid = 0;
43int thread_number = 0;
44static char run_str[MAX_JOBS + 1];
45int shm_id = 0;
46static struct timeval genesis;
47int temp_stall_ts;
48char *fio_inst_prefix = _INST_PREFIX;
49
50static void print_thread_status(void);
51
52extern unsigned long long mlock_size;
53
54/*
55 * Thread life cycle. Once a thread has a runstate beyond TD_INITIALIZED, it
56 * will never back again. It may cycle between running/verififying/fsyncing.
57 * Once the thread reaches TD_EXITED, it is just waiting for the core to
58 * reap it.
59 */
60enum {
61 TD_NOT_CREATED = 0,
62 TD_CREATED,
63 TD_INITIALIZED,
64 TD_RUNNING,
65 TD_VERIFYING,
66 TD_FSYNCING,
67 TD_EXITED,
68 TD_REAPED,
69};
70
71#define should_fsync(td) ((td_write(td) || td_rw(td)) && (!(td)->odirect || (td)->override_sync))
72
73static volatile int startup_sem;
74
75#define TERMINATE_ALL (-1)
76#define JOB_START_TIMEOUT (5 * 1000)
77
78static void terminate_threads(int group_id)
79{
80 int i;
81
82 for (i = 0; i < thread_number; i++) {
83 struct thread_data *td = &threads[i];
84
85 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
86 td->terminate = 1;
87 td->start_delay = 0;
88 }
89 }
90}
91
92static void sig_handler(int sig)
93{
94 switch (sig) {
95 case SIGALRM:
96 update_io_ticks();
97 disk_util_timer_arm();
98 print_thread_status();
99 break;
100 default:
101 printf("\nfio: terminating on signal\n");
102 fflush(stdout);
103 terminate_threads(TERMINATE_ALL);
104 break;
105 }
106}
107
108/*
109 * The ->file_map[] contains a map of blocks we have or have not done io
110 * to yet. Used to make sure we cover the entire range in a fair fashion.
111 */
112static int random_map_free(struct thread_data *td, struct fio_file *f,
113 unsigned long long block)
114{
115 unsigned int idx = RAND_MAP_IDX(td, f, block);
116 unsigned int bit = RAND_MAP_BIT(td, f, block);
117
118 return (f->file_map[idx] & (1UL << bit)) == 0;
119}
120
121/*
122 * Return the next free block in the map.
123 */
124static int get_next_free_block(struct thread_data *td, struct fio_file *f,
125 unsigned long long *b)
126{
127 int i;
128
129 *b = 0;
130 i = 0;
131 while ((*b) * td->min_bs < f->file_size) {
132 if (f->file_map[i] != -1UL) {
133 *b += ffz(f->file_map[i]);
134 return 0;
135 }
136
137 *b += BLOCKS_PER_MAP;
138 i++;
139 }
140
141 return 1;
142}
143
144/*
145 * Mark a given offset as used in the map.
146 */
147static void mark_random_map(struct thread_data *td, struct fio_file *f,
148 struct io_u *io_u)
149{
150 unsigned long long block = io_u->offset / (unsigned long long) td->min_bs;
151 unsigned int blocks = 0;
152
153 while (blocks < (io_u->buflen / td->min_bs)) {
154 unsigned int idx, bit;
155
156 if (!random_map_free(td, f, block))
157 break;
158
159 idx = RAND_MAP_IDX(td, f, block);
160 bit = RAND_MAP_BIT(td, f, block);
161
162 assert(idx < f->num_maps);
163
164 f->file_map[idx] |= (1UL << bit);
165 block++;
166 blocks++;
167 }
168
169 if ((blocks * td->min_bs) < io_u->buflen)
170 io_u->buflen = blocks * td->min_bs;
171}
172
173/*
174 * For random io, generate a random new block and see if it's used. Repeat
175 * until we find a free one. For sequential io, just return the end of
176 * the last io issued.
177 */
178static int get_next_offset(struct thread_data *td, struct fio_file *f,
179 unsigned long long *offset)
180{
181 unsigned long long b, rb;
182 long r;
183
184 if (!td->sequential) {
185 unsigned long long max_blocks = td->io_size / td->min_bs;
186 int loops = 50;
187
188 do {
189 r = os_random_long(&td->random_state);
190 b = ((max_blocks - 1) * r / (unsigned long long) (RAND_MAX+1.0));
191 rb = b + (f->file_offset / td->min_bs);
192 loops--;
193 } while (!random_map_free(td, f, rb) && loops);
194
195 if (!loops) {
196 if (get_next_free_block(td, f, &b))
197 return 1;
198 }
199 } else
200 b = f->last_pos / td->min_bs;
201
202 *offset = (b * td->min_bs) + f->file_offset;
203 if (*offset > f->file_size)
204 return 1;
205
206 return 0;
207}
208
209static unsigned int get_next_buflen(struct thread_data *td)
210{
211 unsigned int buflen;
212 long r;
213
214 if (td->min_bs == td->max_bs)
215 buflen = td->min_bs;
216 else {
217 r = os_random_long(&td->bsrange_state);
218 buflen = (1 + (double) (td->max_bs - 1) * r / (RAND_MAX + 1.0));
219 buflen = (buflen + td->min_bs - 1) & ~(td->min_bs - 1);
220 }
221
222 if (buflen > td->io_size - td->this_io_bytes[td->ddir])
223 buflen = td->io_size - td->this_io_bytes[td->ddir];
224
225 return buflen;
226}
227
228/*
229 * Check if we are above the minimum rate given.
230 */
231static int check_min_rate(struct thread_data *td, struct timeval *now)
232{
233 unsigned long spent;
234 unsigned long rate;
235 int ddir = td->ddir;
236
237 /*
238 * allow a 2 second settle period in the beginning
239 */
240 if (mtime_since(&td->start, now) < 2000)
241 return 0;
242
243 /*
244 * if rate blocks is set, sample is running
245 */
246 if (td->rate_bytes) {
247 spent = mtime_since(&td->lastrate, now);
248 if (spent < td->ratecycle)
249 return 0;
250
251 rate = (td->this_io_bytes[ddir] - td->rate_bytes) / spent;
252 if (rate < td->ratemin) {
253 fprintf(f_out, "%s: min rate %d not met, got %ldKiB/sec\n", td->name, td->ratemin, rate);
254 if (rate_quit)
255 terminate_threads(td->groupid);
256 return 1;
257 }
258 }
259
260 td->rate_bytes = td->this_io_bytes[ddir];
261 memcpy(&td->lastrate, now, sizeof(*now));
262 return 0;
263}
264
265static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
266{
267 if (!td->timeout)
268 return 0;
269 if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
270 return 1;
271
272 return 0;
273}
274
275static void fill_random_bytes(struct thread_data *td,
276 unsigned char *p, unsigned int len)
277{
278 unsigned int todo;
279 double r;
280
281 while (len) {
282 r = os_random_double(&td->verify_state);
283
284 /*
285 * lrand48_r seems to be broken and only fill the bottom
286 * 32-bits, even on 64-bit archs with 64-bit longs
287 */
288 todo = sizeof(r);
289 if (todo > len)
290 todo = len;
291
292 memcpy(p, &r, todo);
293
294 len -= todo;
295 p += todo;
296 }
297}
298
299static void hexdump(void *buffer, int len)
300{
301 unsigned char *p = buffer;
302 int i;
303
304 for (i = 0; i < len; i++)
305 fprintf(f_out, "%02x", p[i]);
306 fprintf(f_out, "\n");
307}
308
309static int verify_io_u_crc32(struct verify_header *hdr, struct io_u *io_u)
310{
311 unsigned char *p = (unsigned char *) io_u->buf;
312 unsigned long c;
313
314 p += sizeof(*hdr);
315 c = crc32(p, hdr->len - sizeof(*hdr));
316
317 if (c != hdr->crc32) {
318 log_err("crc32: verify failed at %llu/%u\n", io_u->offset, io_u->buflen);
319 log_err("crc32: wanted %lx, got %lx\n", hdr->crc32, c);
320 return 1;
321 }
322
323 return 0;
324}
325
326static int verify_io_u_md5(struct verify_header *hdr, struct io_u *io_u)
327{
328 unsigned char *p = (unsigned char *) io_u->buf;
329 struct md5_ctx md5_ctx;
330
331 memset(&md5_ctx, 0, sizeof(md5_ctx));
332 p += sizeof(*hdr);
333 md5_update(&md5_ctx, p, hdr->len - sizeof(*hdr));
334
335 if (memcmp(hdr->md5_digest, md5_ctx.hash, sizeof(md5_ctx.hash))) {
336 log_err("md5: verify failed at %llu/%u\n", io_u->offset, io_u->buflen);
337 hexdump(hdr->md5_digest, sizeof(hdr->md5_digest));
338 hexdump(md5_ctx.hash, sizeof(md5_ctx.hash));
339 return 1;
340 }
341
342 return 0;
343}
344
345static int verify_io_u(struct io_u *io_u)
346{
347 struct verify_header *hdr = (struct verify_header *) io_u->buf;
348 int ret;
349
350 if (hdr->fio_magic != FIO_HDR_MAGIC)
351 return 1;
352
353 if (hdr->verify_type == VERIFY_MD5)
354 ret = verify_io_u_md5(hdr, io_u);
355 else if (hdr->verify_type == VERIFY_CRC32)
356 ret = verify_io_u_crc32(hdr, io_u);
357 else {
358 log_err("Bad verify type %d\n", hdr->verify_type);
359 ret = 1;
360 }
361
362 return ret;
363}
364
365static void fill_crc32(struct verify_header *hdr, void *p, unsigned int len)
366{
367 hdr->crc32 = crc32(p, len);
368}
369
370static void fill_md5(struct verify_header *hdr, void *p, unsigned int len)
371{
372 struct md5_ctx md5_ctx;
373
374 memset(&md5_ctx, 0, sizeof(md5_ctx));
375 md5_update(&md5_ctx, p, len);
376 memcpy(hdr->md5_digest, md5_ctx.hash, sizeof(md5_ctx.hash));
377}
378
379/*
380 * Return the data direction for the next io_u. If the job is a
381 * mixed read/write workload, check the rwmix cycle and switch if
382 * necessary.
383 */
384static int get_rw_ddir(struct thread_data *td)
385{
386 if (td_rw(td)) {
387 struct timeval now;
388 unsigned long elapsed;
389
390 gettimeofday(&now, NULL);
391 elapsed = mtime_since_now(&td->rwmix_switch);
392
393 /*
394 * Check if it's time to seed a new data direction.
395 */
396 if (elapsed >= td->rwmixcycle) {
397 int v;
398 long r;
399
400 r = os_random_long(&td->rwmix_state);
401 v = 1 + (int) (100.0 * (r / (RAND_MAX + 1.0)));
402 if (v < td->rwmixread)
403 td->rwmix_ddir = DDIR_READ;
404 else
405 td->rwmix_ddir = DDIR_WRITE;
406 memcpy(&td->rwmix_switch, &now, sizeof(now));
407 }
408 return td->rwmix_ddir;
409 } else if (td_read(td))
410 return DDIR_READ;
411 else
412 return DDIR_WRITE;
413}
414
415/*
416 * fill body of io_u->buf with random data and add a header with the
417 * crc32 or md5 sum of that data.
418 */
419static void populate_io_u(struct thread_data *td, struct io_u *io_u)
420{
421 unsigned char *p = (unsigned char *) io_u->buf;
422 struct verify_header hdr;
423
424 hdr.fio_magic = FIO_HDR_MAGIC;
425 hdr.len = io_u->buflen;
426 p += sizeof(hdr);
427 fill_random_bytes(td, p, io_u->buflen - sizeof(hdr));
428
429 if (td->verify == VERIFY_MD5) {
430 fill_md5(&hdr, p, io_u->buflen - sizeof(hdr));
431 hdr.verify_type = VERIFY_MD5;
432 } else {
433 fill_crc32(&hdr, p, io_u->buflen - sizeof(hdr));
434 hdr.verify_type = VERIFY_CRC32;
435 }
436
437 memcpy(io_u->buf, &hdr, sizeof(hdr));
438}
439
440static int td_io_prep(struct thread_data *td, struct io_u *io_u)
441{
442 if (td->io_ops->prep && td->io_ops->prep(td, io_u))
443 return 1;
444
445 return 0;
446}
447
448void put_io_u(struct thread_data *td, struct io_u *io_u)
449{
450 io_u->file = NULL;
451 list_del(&io_u->list);
452 list_add(&io_u->list, &td->io_u_freelist);
453 td->cur_depth--;
454}
455
456static int fill_io_u(struct thread_data *td, struct fio_file *f,
457 struct io_u *io_u)
458{
459 /*
460 * If using an iolog, grab next piece if any available.
461 */
462 if (td->read_iolog)
463 return read_iolog_get(td, io_u);
464
465 /*
466 * No log, let the seq/rand engine retrieve the next position.
467 */
468 if (!get_next_offset(td, f, &io_u->offset)) {
469 io_u->buflen = get_next_buflen(td);
470
471 if (io_u->buflen) {
472 io_u->ddir = get_rw_ddir(td);
473
474 /*
475 * If using a write iolog, store this entry.
476 */
477 if (td->write_iolog)
478 write_iolog_put(td, io_u);
479
480 io_u->file = f;
481 return 0;
482 }
483 }
484
485 return 1;
486}
487
488#define queue_full(td) list_empty(&(td)->io_u_freelist)
489
490struct io_u *__get_io_u(struct thread_data *td)
491{
492 struct io_u *io_u = NULL;
493
494 if (!queue_full(td)) {
495 io_u = list_entry(td->io_u_freelist.next, struct io_u, list);
496
497 io_u->error = 0;
498 io_u->resid = 0;
499 list_del(&io_u->list);
500 list_add(&io_u->list, &td->io_u_busylist);
501 td->cur_depth++;
502 }
503
504 return io_u;
505}
506
507/*
508 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
509 * etc. The returned io_u is fully ready to be prepped and submitted.
510 */
511static struct io_u *get_io_u(struct thread_data *td, struct fio_file *f)
512{
513 struct io_u *io_u;
514
515 io_u = __get_io_u(td);
516 if (!io_u)
517 return NULL;
518
519 if (td->zone_bytes >= td->zone_size) {
520 td->zone_bytes = 0;
521 f->last_pos += td->zone_skip;
522 }
523
524 if (fill_io_u(td, f, io_u)) {
525 put_io_u(td, io_u);
526 return NULL;
527 }
528
529 if (io_u->buflen + io_u->offset > f->file_size)
530 io_u->buflen = f->file_size - io_u->offset;
531
532 if (!io_u->buflen) {
533 put_io_u(td, io_u);
534 return NULL;
535 }
536
537 if (!td->read_iolog && !td->sequential)
538 mark_random_map(td, f, io_u);
539
540 f->last_pos += io_u->buflen;
541
542 if (td->verify != VERIFY_NONE)
543 populate_io_u(td, io_u);
544
545 if (td_io_prep(td, io_u)) {
546 put_io_u(td, io_u);
547 return NULL;
548 }
549
550 gettimeofday(&io_u->start_time, NULL);
551 return io_u;
552}
553
554static inline void td_set_runstate(struct thread_data *td, int runstate)
555{
556 td->runstate = runstate;
557}
558
559static int get_next_verify(struct thread_data *td, struct io_u *io_u)
560{
561 struct io_piece *ipo;
562
563 if (!list_empty(&td->io_hist_list)) {
564 ipo = list_entry(td->io_hist_list.next, struct io_piece, list);
565
566 list_del(&ipo->list);
567
568 io_u->offset = ipo->offset;
569 io_u->buflen = ipo->len;
570 io_u->ddir = DDIR_READ;
571 free(ipo);
572 return 0;
573 }
574
575 return 1;
576}
577
578static struct fio_file *get_next_file(struct thread_data *td)
579{
580 struct fio_file *f = &td->files[td->next_file];
581
582 td->next_file++;
583 if (td->next_file >= td->nr_files)
584 td->next_file = 0;
585
586 return f;
587}
588
589static int td_io_sync(struct thread_data *td, struct fio_file *f)
590{
591 if (td->io_ops->sync)
592 return td->io_ops->sync(td, f);
593
594 return 0;
595}
596
597static int io_u_getevents(struct thread_data *td, int min, int max,
598 struct timespec *t)
599{
600 return td->io_ops->getevents(td, min, max, t);
601}
602
603static int io_u_queue(struct thread_data *td, struct io_u *io_u)
604{
605 gettimeofday(&io_u->issue_time, NULL);
606
607 return td->io_ops->queue(td, io_u);
608}
609
610#define iocb_time(iocb) ((unsigned long) (iocb)->data)
611
612static void io_completed(struct thread_data *td, struct io_u *io_u,
613 struct io_completion_data *icd)
614{
615 struct timeval e;
616 unsigned long msec;
617
618 gettimeofday(&e, NULL);
619
620 if (!io_u->error) {
621 unsigned int bytes = io_u->buflen - io_u->resid;
622 const int idx = io_u->ddir;
623
624 td->io_blocks[idx]++;
625 td->io_bytes[idx] += bytes;
626 td->zone_bytes += bytes;
627 td->this_io_bytes[idx] += bytes;
628
629 msec = mtime_since(&io_u->issue_time, &e);
630
631 add_clat_sample(td, idx, msec);
632 add_bw_sample(td, idx);
633
634 if ((td_rw(td) || td_write(td)) && idx == DDIR_WRITE)
635 log_io_piece(td, io_u);
636
637 icd->bytes_done[idx] += bytes;
638 } else
639 icd->error = io_u->error;
640}
641
642static void ios_completed(struct thread_data *td,struct io_completion_data *icd)
643{
644 struct io_u *io_u;
645 int i;
646
647 icd->error = 0;
648 icd->bytes_done[0] = icd->bytes_done[1] = 0;
649
650 for (i = 0; i < icd->nr; i++) {
651 io_u = td->io_ops->event(td, i);
652
653 io_completed(td, io_u, icd);
654 put_io_u(td, io_u);
655 }
656}
657
658/*
659 * When job exits, we can cancel the in-flight IO if we are using async
660 * io. Attempt to do so.
661 */
662static void cleanup_pending_aio(struct thread_data *td)
663{
664 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
665 struct list_head *entry, *n;
666 struct io_completion_data icd;
667 struct io_u *io_u;
668 int r;
669
670 /*
671 * get immediately available events, if any
672 */
673 r = io_u_getevents(td, 0, td->cur_depth, &ts);
674 if (r > 0) {
675 icd.nr = r;
676 ios_completed(td, &icd);
677 }
678
679 /*
680 * now cancel remaining active events
681 */
682 if (td->io_ops->cancel) {
683 list_for_each_safe(entry, n, &td->io_u_busylist) {
684 io_u = list_entry(entry, struct io_u, list);
685
686 r = td->io_ops->cancel(td, io_u);
687 if (!r)
688 put_io_u(td, io_u);
689 }
690 }
691
692 if (td->cur_depth) {
693 r = io_u_getevents(td, td->cur_depth, td->cur_depth, NULL);
694 if (r > 0) {
695 icd.nr = r;
696 ios_completed(td, &icd);
697 }
698 }
699}
700
701static int do_io_u_verify(struct thread_data *td, struct io_u **io_u)
702{
703 struct io_u *v_io_u = *io_u;
704 int ret = 0;
705
706 if (v_io_u) {
707 ret = verify_io_u(v_io_u);
708 put_io_u(td, v_io_u);
709 *io_u = NULL;
710 }
711
712 return ret;
713}
714
715/*
716 * The main verify engine. Runs over the writes we previusly submitted,
717 * reads the blocks back in, and checks the crc/md5 of the data.
718 */
719static void do_verify(struct thread_data *td)
720{
721 struct timeval t;
722 struct io_u *io_u, *v_io_u = NULL;
723 struct io_completion_data icd;
724 struct fio_file *f;
725 int ret;
726
727 td_set_runstate(td, TD_VERIFYING);
728
729 do {
730 if (td->terminate)
731 break;
732
733 gettimeofday(&t, NULL);
734 if (runtime_exceeded(td, &t))
735 break;
736
737 io_u = __get_io_u(td);
738 if (!io_u)
739 break;
740
741 if (get_next_verify(td, io_u)) {
742 put_io_u(td, io_u);
743 break;
744 }
745
746 f = get_next_file(td);
747 if (!f)
748 break;
749
750 io_u->file = f;
751
752 if (td_io_prep(td, io_u)) {
753 put_io_u(td, io_u);
754 break;
755 }
756
757 ret = io_u_queue(td, io_u);
758 if (ret) {
759 put_io_u(td, io_u);
760 td_verror(td, ret);
761 break;
762 }
763
764 /*
765 * we have one pending to verify, do that while
766 * we are doing io on the next one
767 */
768 if (do_io_u_verify(td, &v_io_u))
769 break;
770
771 ret = io_u_getevents(td, 1, 1, NULL);
772 if (ret != 1) {
773 if (ret < 0)
774 td_verror(td, ret);
775 break;
776 }
777
778 v_io_u = td->io_ops->event(td, 0);
779 icd.nr = 1;
780 icd.error = 0;
781 io_completed(td, v_io_u, &icd);
782
783 if (icd.error) {
784 td_verror(td, icd.error);
785 put_io_u(td, v_io_u);
786 v_io_u = NULL;
787 break;
788 }
789
790 /*
791 * if we can't submit more io, we need to verify now
792 */
793 if (queue_full(td) && do_io_u_verify(td, &v_io_u))
794 break;
795
796 } while (1);
797
798 do_io_u_verify(td, &v_io_u);
799
800 if (td->cur_depth)
801 cleanup_pending_aio(td);
802
803 td_set_runstate(td, TD_RUNNING);
804}
805
806/*
807 * Not really an io thread, all it does is burn CPU cycles in the specified
808 * manner.
809 */
810static void do_cpuio(struct thread_data *td)
811{
812 struct timeval e;
813 int split = 100 / td->cpuload;
814 int i = 0;
815
816 while (!td->terminate) {
817 gettimeofday(&e, NULL);
818
819 if (runtime_exceeded(td, &e))
820 break;
821
822 if (!(i % split))
823 __usec_sleep(10000);
824 else
825 usec_sleep(td, 10000);
826
827 i++;
828 }
829}
830
831/*
832 * Main IO worker function. It retrieves io_u's to process and queues
833 * and reaps them, checking for rate and errors along the way.
834 */
835static void do_io(struct thread_data *td)
836{
837 struct io_completion_data icd;
838 struct timeval s, e;
839 unsigned long usec;
840 struct fio_file *f;
841 int i;
842
843 td_set_runstate(td, TD_RUNNING);
844
845 while (td->this_io_bytes[td->ddir] < td->io_size) {
846 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
847 struct timespec *timeout;
848 int ret, min_evts = 0;
849 struct io_u *io_u;
850
851 if (td->terminate)
852 break;
853
854 f = get_next_file(td);
855 if (!f)
856 break;
857
858 io_u = get_io_u(td, f);
859 if (!io_u)
860 break;
861
862 memcpy(&s, &io_u->start_time, sizeof(s));
863
864 ret = io_u_queue(td, io_u);
865 if (ret) {
866 put_io_u(td, io_u);
867 td_verror(td, ret);
868 break;
869 }
870
871 add_slat_sample(td, io_u->ddir, mtime_since(&io_u->start_time, &io_u->issue_time));
872
873 if (td->cur_depth < td->iodepth) {
874 timeout = &ts;
875 min_evts = 0;
876 } else {
877 timeout = NULL;
878 min_evts = 1;
879 }
880
881 ret = io_u_getevents(td, min_evts, td->cur_depth, timeout);
882 if (ret < 0) {
883 td_verror(td, ret);
884 break;
885 } else if (!ret)
886 continue;
887
888 icd.nr = ret;
889 ios_completed(td, &icd);
890 if (icd.error) {
891 td_verror(td, icd.error);
892 break;
893 }
894
895 /*
896 * the rate is batched for now, it should work for batches
897 * of completions except the very first one which may look
898 * a little bursty
899 */
900 gettimeofday(&e, NULL);
901 usec = utime_since(&s, &e);
902
903 rate_throttle(td, usec, icd.bytes_done[td->ddir]);
904
905 if (check_min_rate(td, &e)) {
906 td_verror(td, ENOMEM);
907 break;
908 }
909
910 if (runtime_exceeded(td, &e))
911 break;
912
913 if (td->thinktime)
914 usec_sleep(td, td->thinktime);
915
916 if (should_fsync(td) && td->fsync_blocks &&
917 (td->io_blocks[DDIR_WRITE] % td->fsync_blocks) == 0)
918 td_io_sync(td, f);
919 }
920
921 if (td->cur_depth)
922 cleanup_pending_aio(td);
923
924 if (should_fsync(td) && td->end_fsync) {
925 td_set_runstate(td, TD_FSYNCING);
926 for_each_file(td, f, i)
927 td_io_sync(td, f);
928 }
929}
930
931static int init_io(struct thread_data *td)
932{
933 if (td->io_ops->init)
934 return td->io_ops->init(td);
935
936 return 0;
937}
938
939static void cleanup_io_u(struct thread_data *td)
940{
941 struct list_head *entry, *n;
942 struct io_u *io_u;
943
944 list_for_each_safe(entry, n, &td->io_u_freelist) {
945 io_u = list_entry(entry, struct io_u, list);
946
947 list_del(&io_u->list);
948 free(io_u);
949 }
950
951 if (td->mem_type == MEM_MALLOC)
952 free(td->orig_buffer);
953 else if (td->mem_type == MEM_SHM) {
954 struct shmid_ds sbuf;
955
956 shmdt(td->orig_buffer);
957 shmctl(td->shm_id, IPC_RMID, &sbuf);
958 } else if (td->mem_type == MEM_MMAP)
959 munmap(td->orig_buffer, td->orig_buffer_size);
960 else
961 log_err("Bad memory type %d\n", td->mem_type);
962
963 td->orig_buffer = NULL;
964}
965
966static int init_io_u(struct thread_data *td)
967{
968 struct io_u *io_u;
969 int i, max_units;
970 char *p;
971
972 if (td->io_ops->flags & FIO_CPUIO)
973 return 0;
974
975 if (td->io_ops->flags & FIO_SYNCIO)
976 max_units = 1;
977 else
978 max_units = td->iodepth;
979
980 td->orig_buffer_size = td->max_bs * max_units + MASK;
981
982 if (td->mem_type == MEM_MALLOC)
983 td->orig_buffer = malloc(td->orig_buffer_size);
984 else if (td->mem_type == MEM_SHM) {
985 td->shm_id = shmget(IPC_PRIVATE, td->orig_buffer_size, IPC_CREAT | 0600);
986 if (td->shm_id < 0) {
987 td_verror(td, errno);
988 perror("shmget");
989 return 1;
990 }
991
992 td->orig_buffer = shmat(td->shm_id, NULL, 0);
993 if (td->orig_buffer == (void *) -1) {
994 td_verror(td, errno);
995 perror("shmat");
996 td->orig_buffer = NULL;
997 return 1;
998 }
999 } else if (td->mem_type == MEM_MMAP) {
1000 td->orig_buffer = mmap(NULL, td->orig_buffer_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | OS_MAP_ANON, 0, 0);
1001 if (td->orig_buffer == MAP_FAILED) {
1002 td_verror(td, errno);
1003 perror("mmap");
1004 td->orig_buffer = NULL;
1005 return 1;
1006 }
1007 }
1008
1009 p = ALIGN(td->orig_buffer);
1010 for (i = 0; i < max_units; i++) {
1011 io_u = malloc(sizeof(*io_u));
1012 memset(io_u, 0, sizeof(*io_u));
1013 INIT_LIST_HEAD(&io_u->list);
1014
1015 io_u->buf = p + td->max_bs * i;
1016 io_u->index = i;
1017 list_add(&io_u->list, &td->io_u_freelist);
1018 }
1019
1020 return 0;
1021}
1022
1023static int switch_ioscheduler(struct thread_data *td)
1024{
1025 char tmp[256], tmp2[128];
1026 FILE *f;
1027 int ret;
1028
1029 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1030
1031 f = fopen(tmp, "r+");
1032 if (!f) {
1033 td_verror(td, errno);
1034 return 1;
1035 }
1036
1037 /*
1038 * Set io scheduler.
1039 */
1040 ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
1041 if (ferror(f) || ret != 1) {
1042 td_verror(td, errno);
1043 fclose(f);
1044 return 1;
1045 }
1046
1047 rewind(f);
1048
1049 /*
1050 * Read back and check that the selected scheduler is now the default.
1051 */
1052 ret = fread(tmp, 1, sizeof(tmp), f);
1053 if (ferror(f) || ret < 0) {
1054 td_verror(td, errno);
1055 fclose(f);
1056 return 1;
1057 }
1058
1059 sprintf(tmp2, "[%s]", td->ioscheduler);
1060 if (!strstr(tmp, tmp2)) {
1061 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
1062 td_verror(td, EINVAL);
1063 fclose(f);
1064 return 1;
1065 }
1066
1067 fclose(f);
1068 return 0;
1069}
1070
1071static void clear_io_state(struct thread_data *td)
1072{
1073 struct fio_file *f;
1074 int i;
1075
1076 td->stat_io_bytes[0] = td->stat_io_bytes[1] = 0;
1077 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
1078 td->zone_bytes = 0;
1079
1080 for_each_file(td, f, i) {
1081 f->last_pos = 0;
1082 if (td->io_ops->flags & FIO_SYNCIO)
1083 lseek(f->fd, SEEK_SET, 0);
1084
1085 if (f->file_map)
1086 memset(f->file_map, 0, f->num_maps * sizeof(long));
1087 }
1088}
1089
1090/*
1091 * Entry point for the thread based jobs. The process based jobs end up
1092 * here as well, after a little setup.
1093 */
1094static void *thread_main(void *data)
1095{
1096 struct thread_data *td = data;
1097
1098 if (!td->use_thread)
1099 setsid();
1100
1101 td->pid = getpid();
1102
1103 INIT_LIST_HEAD(&td->io_u_freelist);
1104 INIT_LIST_HEAD(&td->io_u_busylist);
1105 INIT_LIST_HEAD(&td->io_hist_list);
1106 INIT_LIST_HEAD(&td->io_log_list);
1107
1108 if (init_io_u(td))
1109 goto err;
1110
1111 if (fio_setaffinity(td) == -1) {
1112 td_verror(td, errno);
1113 goto err;
1114 }
1115
1116 if (init_io(td))
1117 goto err;
1118
1119 if (init_iolog(td))
1120 goto err;
1121
1122 if (td->ioprio) {
1123 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1124 td_verror(td, errno);
1125 goto err;
1126 }
1127 }
1128
1129 if (nice(td->nice) == -1) {
1130 td_verror(td, errno);
1131 goto err;
1132 }
1133
1134 if (init_random_state(td))
1135 goto err;
1136
1137 if (td->ioscheduler && switch_ioscheduler(td))
1138 goto err;
1139
1140 td_set_runstate(td, TD_INITIALIZED);
1141 fio_sem_up(&startup_sem);
1142 fio_sem_down(&td->mutex);
1143
1144 if (!td->create_serialize && setup_files(td))
1145 goto err;
1146
1147 gettimeofday(&td->epoch, NULL);
1148
1149 if (td->exec_prerun)
1150 system(td->exec_prerun);
1151
1152 while (td->loops--) {
1153 getrusage(RUSAGE_SELF, &td->ru_start);
1154 gettimeofday(&td->start, NULL);
1155 memcpy(&td->stat_sample_time, &td->start, sizeof(td->start));
1156
1157 if (td->ratemin)
1158 memcpy(&td->lastrate, &td->stat_sample_time, sizeof(td->lastrate));
1159
1160 clear_io_state(td);
1161 prune_io_piece_log(td);
1162
1163 if (td->io_ops->flags & FIO_CPUIO)
1164 do_cpuio(td);
1165 else
1166 do_io(td);
1167
1168 td->runtime[td->ddir] += mtime_since_now(&td->start);
1169 if (td_rw(td) && td->io_bytes[td->ddir ^ 1])
1170 td->runtime[td->ddir ^ 1] = td->runtime[td->ddir];
1171
1172 update_rusage_stat(td);
1173
1174 if (td->error || td->terminate)
1175 break;
1176
1177 if (td->verify == VERIFY_NONE)
1178 continue;
1179
1180 clear_io_state(td);
1181 gettimeofday(&td->start, NULL);
1182
1183 do_verify(td);
1184
1185 td->runtime[DDIR_READ] += mtime_since_now(&td->start);
1186
1187 if (td->error || td->terminate)
1188 break;
1189 }
1190
1191 if (td->bw_log)
1192 finish_log(td, td->bw_log, "bw");
1193 if (td->slat_log)
1194 finish_log(td, td->slat_log, "slat");
1195 if (td->clat_log)
1196 finish_log(td, td->clat_log, "clat");
1197 if (td->write_iolog)
1198 write_iolog_close(td);
1199 if (td->exec_postrun)
1200 system(td->exec_postrun);
1201
1202 if (exitall_on_terminate)
1203 terminate_threads(td->groupid);
1204
1205err:
1206 close_files(td);
1207 close_ioengine(td);
1208 cleanup_io_u(td);
1209 td_set_runstate(td, TD_EXITED);
1210 return NULL;
1211
1212}
1213
1214/*
1215 * We cannot pass the td data into a forked process, so attach the td and
1216 * pass it to the thread worker.
1217 */
1218static void *fork_main(int shmid, int offset)
1219{
1220 struct thread_data *td;
1221 void *data;
1222
1223 data = shmat(shmid, NULL, 0);
1224 if (data == (void *) -1) {
1225 perror("shmat");
1226 return NULL;
1227 }
1228
1229 td = data + offset * sizeof(struct thread_data);
1230 thread_main(td);
1231 shmdt(data);
1232 return NULL;
1233}
1234
1235/*
1236 * Sets the status of the 'td' in the printed status map.
1237 */
1238static void check_str_update(struct thread_data *td)
1239{
1240 char c = run_str[td->thread_number - 1];
1241
1242 switch (td->runstate) {
1243 case TD_REAPED:
1244 c = '_';
1245 break;
1246 case TD_EXITED:
1247 c = 'E';
1248 break;
1249 case TD_RUNNING:
1250 if (td_rw(td)) {
1251 if (td->sequential)
1252 c = 'M';
1253 else
1254 c = 'm';
1255 } else if (td_read(td)) {
1256 if (td->sequential)
1257 c = 'R';
1258 else
1259 c = 'r';
1260 } else {
1261 if (td->sequential)
1262 c = 'W';
1263 else
1264 c = 'w';
1265 }
1266 break;
1267 case TD_VERIFYING:
1268 c = 'V';
1269 break;
1270 case TD_FSYNCING:
1271 c = 'F';
1272 break;
1273 case TD_CREATED:
1274 c = 'C';
1275 break;
1276 case TD_INITIALIZED:
1277 c = 'I';
1278 break;
1279 case TD_NOT_CREATED:
1280 c = 'P';
1281 break;
1282 default:
1283 log_err("state %d\n", td->runstate);
1284 }
1285
1286 run_str[td->thread_number - 1] = c;
1287}
1288
1289/*
1290 * Convert seconds to a printable string.
1291 */
1292static void eta_to_str(char *str, int eta_sec)
1293{
1294 unsigned int d, h, m, s;
1295 static int always_d, always_h;
1296
1297 d = h = m = s = 0;
1298
1299 s = eta_sec % 60;
1300 eta_sec /= 60;
1301 m = eta_sec % 60;
1302 eta_sec /= 60;
1303 h = eta_sec % 24;
1304 eta_sec /= 24;
1305 d = eta_sec;
1306
1307 if (d || always_d) {
1308 always_d = 1;
1309 str += sprintf(str, "%02dd:", d);
1310 }
1311 if (h || always_h) {
1312 always_h = 1;
1313 str += sprintf(str, "%02dh:", h);
1314 }
1315
1316 str += sprintf(str, "%02dm:", m);
1317 str += sprintf(str, "%02ds", s);
1318}
1319
1320/*
1321 * Best effort calculation of the estimated pending runtime of a job.
1322 */
1323static int thread_eta(struct thread_data *td, unsigned long elapsed)
1324{
1325 unsigned long long bytes_total, bytes_done;
1326 unsigned int eta_sec = 0;
1327
1328 bytes_total = td->total_io_size;
1329
1330 /*
1331 * if writing, bytes_total will be twice the size. If mixing,
1332 * assume a 50/50 split and thus bytes_total will be 50% larger.
1333 */
1334 if (td->verify) {
1335 if (td_rw(td))
1336 bytes_total = bytes_total * 3 / 2;
1337 else
1338 bytes_total <<= 1;
1339 }
1340 if (td->zone_size && td->zone_skip)
1341 bytes_total /= (td->zone_skip / td->zone_size);
1342
1343 if (td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING) {
1344 double perc;
1345
1346 bytes_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE];
1347 perc = (double) bytes_done / (double) bytes_total;
1348 if (perc > 1.0)
1349 perc = 1.0;
1350
1351 eta_sec = (elapsed * (1.0 / perc)) - elapsed;
1352
1353 if (td->timeout && eta_sec > (td->timeout - elapsed))
1354 eta_sec = td->timeout - elapsed;
1355 } else if (td->runstate == TD_NOT_CREATED || td->runstate == TD_CREATED
1356 || td->runstate == TD_INITIALIZED) {
1357 int t_eta = 0, r_eta = 0;
1358
1359 /*
1360 * We can only guess - assume it'll run the full timeout
1361 * if given, otherwise assume it'll run at the specified rate.
1362 */
1363 if (td->timeout)
1364 t_eta = td->timeout + td->start_delay - elapsed;
1365 if (td->rate) {
1366 r_eta = (bytes_total / 1024) / td->rate;
1367 r_eta += td->start_delay - elapsed;
1368 }
1369
1370 if (r_eta && t_eta)
1371 eta_sec = min(r_eta, t_eta);
1372 else if (r_eta)
1373 eta_sec = r_eta;
1374 else if (t_eta)
1375 eta_sec = t_eta;
1376 else
1377 eta_sec = 0;
1378 } else {
1379 /*
1380 * thread is already done or waiting for fsync
1381 */
1382 eta_sec = 0;
1383 }
1384
1385 return eta_sec;
1386}
1387
1388/*
1389 * Print status of the jobs we know about. This includes rate estimates,
1390 * ETA, thread state, etc.
1391 */
1392static void print_thread_status(void)
1393{
1394 unsigned long elapsed = time_since_now(&genesis);
1395 int i, nr_running, nr_pending, t_rate, m_rate, *eta_secs, eta_sec;
1396 char eta_str[32];
1397 double perc = 0.0;
1398
1399 if (temp_stall_ts || terse_output)
1400 return;
1401
1402 eta_secs = malloc(thread_number * sizeof(int));
1403 memset(eta_secs, 0, thread_number * sizeof(int));
1404
1405 nr_pending = nr_running = t_rate = m_rate = 0;
1406 for (i = 0; i < thread_number; i++) {
1407 struct thread_data *td = &threads[i];
1408
1409 if (td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING||
1410 td->runstate == TD_FSYNCING) {
1411 nr_running++;
1412 t_rate += td->rate;
1413 m_rate += td->ratemin;
1414 } else if (td->runstate < TD_RUNNING)
1415 nr_pending++;
1416
1417 if (elapsed >= 3)
1418 eta_secs[i] = thread_eta(td, elapsed);
1419 else
1420 eta_secs[i] = INT_MAX;
1421
1422 check_str_update(td);
1423 }
1424
1425 if (exitall_on_terminate)
1426 eta_sec = INT_MAX;
1427 else
1428 eta_sec = 0;
1429
1430 for (i = 0; i < thread_number; i++) {
1431 if (exitall_on_terminate) {
1432 if (eta_secs[i] < eta_sec)
1433 eta_sec = eta_secs[i];
1434 } else {
1435 if (eta_secs[i] > eta_sec)
1436 eta_sec = eta_secs[i];
1437 }
1438 }
1439
1440 if (eta_sec != INT_MAX && elapsed) {
1441 perc = (double) elapsed / (double) (elapsed + eta_sec);
1442 eta_to_str(eta_str, eta_sec);
1443 }
1444
1445 if (!nr_running && !nr_pending)
1446 return;
1447
1448 printf("Threads running: %d", nr_running);
1449 if (m_rate || t_rate)
1450 printf(", commitrate %d/%dKiB/sec", t_rate, m_rate);
1451 if (eta_sec != INT_MAX && nr_running) {
1452 perc *= 100.0;
1453 printf(": [%s] [%3.2f%% done] [eta %s]", run_str, perc,eta_str);
1454 }
1455 printf("\r");
1456 fflush(stdout);
1457 free(eta_secs);
1458}
1459
1460/*
1461 * Run over the job map and reap the threads that have exited, if any.
1462 */
1463static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1464{
1465 int i, cputhreads;
1466
1467 /*
1468 * reap exited threads (TD_EXITED -> TD_REAPED)
1469 */
1470 for (i = 0, cputhreads = 0; i < thread_number; i++) {
1471 struct thread_data *td = &threads[i];
1472
1473 if (td->io_ops->flags & FIO_CPUIO)
1474 cputhreads++;
1475
1476 if (td->runstate != TD_EXITED)
1477 continue;
1478
1479 td_set_runstate(td, TD_REAPED);
1480
1481 if (td->use_thread) {
1482 long ret;
1483
1484 if (pthread_join(td->thread, (void *) &ret))
1485 perror("thread_join");
1486 } else
1487 waitpid(td->pid, NULL, 0);
1488
1489 (*nr_running)--;
1490 (*m_rate) -= td->ratemin;
1491 (*t_rate) -= td->rate;
1492 }
1493
1494 if (*nr_running == cputhreads)
1495 terminate_threads(TERMINATE_ALL);
1496}
1497
1498static void fio_unpin_memory(void *pinned)
1499{
1500 if (pinned) {
1501 if (munlock(pinned, mlock_size) < 0)
1502 perror("munlock");
1503 munmap(pinned, mlock_size);
1504 }
1505}
1506
1507static void *fio_pin_memory(void)
1508{
1509 unsigned long long phys_mem;
1510 void *ptr;
1511
1512 if (!mlock_size)
1513 return NULL;
1514
1515 /*
1516 * Don't allow mlock of more than real_mem-128MB
1517 */
1518 phys_mem = os_phys_mem();
1519 if (phys_mem) {
1520 if ((mlock_size + 128 * 1024 * 1024) > phys_mem) {
1521 mlock_size = phys_mem - 128 * 1024 * 1024;
1522 fprintf(f_out, "fio: limiting mlocked memory to %lluMiB\n", mlock_size >> 20);
1523 }
1524 }
1525
1526 ptr = mmap(NULL, mlock_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | OS_MAP_ANON, 0, 0);
1527 if (!ptr) {
1528 perror("malloc locked mem");
1529 return NULL;
1530 }
1531 if (mlock(ptr, mlock_size) < 0) {
1532 munmap(ptr, mlock_size);
1533 perror("mlock");
1534 return NULL;
1535 }
1536
1537 return ptr;
1538}
1539
1540/*
1541 * Main function for kicking off and reaping jobs, as needed.
1542 */
1543static void run_threads(void)
1544{
1545 struct thread_data *td;
1546 unsigned long spent;
1547 int i, todo, nr_running, m_rate, t_rate, nr_started;
1548 void *mlocked_mem;
1549
1550 mlocked_mem = fio_pin_memory();
1551
1552 if (!terse_output) {
1553 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
1554 fflush(stdout);
1555 }
1556
1557 signal(SIGINT, sig_handler);
1558 signal(SIGALRM, sig_handler);
1559
1560 todo = thread_number;
1561 nr_running = 0;
1562 nr_started = 0;
1563 m_rate = t_rate = 0;
1564
1565 for (i = 0; i < thread_number; i++) {
1566 td = &threads[i];
1567
1568 run_str[td->thread_number - 1] = 'P';
1569
1570 init_disk_util(td);
1571
1572 if (!td->create_serialize)
1573 continue;
1574
1575 /*
1576 * do file setup here so it happens sequentially,
1577 * we don't want X number of threads getting their
1578 * client data interspersed on disk
1579 */
1580 if (setup_files(td)) {
1581 td_set_runstate(td, TD_REAPED);
1582 todo--;
1583 }
1584 }
1585
1586 gettimeofday(&genesis, NULL);
1587
1588 while (todo) {
1589 struct thread_data *map[MAX_JOBS];
1590 struct timeval this_start;
1591 int this_jobs = 0, left;
1592
1593 /*
1594 * create threads (TD_NOT_CREATED -> TD_CREATED)
1595 */
1596 for (i = 0; i < thread_number; i++) {
1597 td = &threads[i];
1598
1599 if (td->runstate != TD_NOT_CREATED)
1600 continue;
1601
1602 /*
1603 * never got a chance to start, killed by other
1604 * thread for some reason
1605 */
1606 if (td->terminate) {
1607 todo--;
1608 continue;
1609 }
1610
1611 if (td->start_delay) {
1612 spent = mtime_since_now(&genesis);
1613
1614 if (td->start_delay * 1000 > spent)
1615 continue;
1616 }
1617
1618 if (td->stonewall && (nr_started || nr_running))
1619 break;
1620
1621 /*
1622 * Set state to created. Thread will transition
1623 * to TD_INITIALIZED when it's done setting up.
1624 */
1625 td_set_runstate(td, TD_CREATED);
1626 map[this_jobs++] = td;
1627 fio_sem_init(&startup_sem, 1);
1628 nr_started++;
1629
1630 if (td->use_thread) {
1631 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1632 perror("thread_create");
1633 nr_started--;
1634 }
1635 } else {
1636 if (fork())
1637 fio_sem_down(&startup_sem);
1638 else {
1639 fork_main(shm_id, i);
1640 exit(0);
1641 }
1642 }
1643 }
1644
1645 /*
1646 * Wait for the started threads to transition to
1647 * TD_INITIALIZED.
1648 */
1649 gettimeofday(&this_start, NULL);
1650 left = this_jobs;
1651 while (left) {
1652 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1653 break;
1654
1655 usleep(100000);
1656
1657 for (i = 0; i < this_jobs; i++) {
1658 td = map[i];
1659 if (!td)
1660 continue;
1661 if (td->runstate == TD_INITIALIZED) {
1662 map[i] = NULL;
1663 left--;
1664 } else if (td->runstate >= TD_EXITED) {
1665 map[i] = NULL;
1666 left--;
1667 todo--;
1668 nr_running++; /* work-around... */
1669 }
1670 }
1671 }
1672
1673 if (left) {
1674 log_err("fio: %d jobs failed to start\n", left);
1675 for (i = 0; i < this_jobs; i++) {
1676 td = map[i];
1677 if (!td)
1678 continue;
1679 kill(td->pid, SIGTERM);
1680 }
1681 break;
1682 }
1683
1684 /*
1685 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1686 */
1687 for (i = 0; i < thread_number; i++) {
1688 td = &threads[i];
1689
1690 if (td->runstate != TD_INITIALIZED)
1691 continue;
1692
1693 td_set_runstate(td, TD_RUNNING);
1694 nr_running++;
1695 nr_started--;
1696 m_rate += td->ratemin;
1697 t_rate += td->rate;
1698 todo--;
1699 fio_sem_up(&td->mutex);
1700 }
1701
1702 reap_threads(&nr_running, &t_rate, &m_rate);
1703
1704 if (todo)
1705 usleep(100000);
1706 }
1707
1708 while (nr_running) {
1709 reap_threads(&nr_running, &t_rate, &m_rate);
1710 usleep(10000);
1711 }
1712
1713 update_io_ticks();
1714 fio_unpin_memory(mlocked_mem);
1715}
1716
1717int main(int argc, char *argv[])
1718{
1719 if (parse_options(argc, argv))
1720 return 1;
1721
1722 if (!thread_number) {
1723 log_err("Nothing to do\n");
1724 return 1;
1725 }
1726
1727 disk_util_timer_arm();
1728
1729 run_threads();
1730 show_run_stats();
1731
1732 return 0;
1733}