Adapt clat percentiles for min/max values
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <sys/stat.h>
34#include <sys/wait.h>
35#include <sys/ipc.h>
36#include <sys/shm.h>
37#include <sys/mman.h>
38
39#include "fio.h"
40#include "hash.h"
41#include "smalloc.h"
42#include "verify.h"
43#include "trim.h"
44#include "diskutil.h"
45#include "cgroup.h"
46#include "profile.h"
47#include "lib/rand.h"
48#include "memalign.h"
49#include "server.h"
50
51unsigned long page_mask;
52unsigned long page_size;
53
54#define PAGE_ALIGN(buf) \
55 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
56
57int groupid = 0;
58int thread_number = 0;
59int nr_process = 0;
60int nr_thread = 0;
61int shm_id = 0;
62int temp_stall_ts;
63unsigned long done_secs = 0;
64
65static struct fio_mutex *startup_mutex;
66static struct fio_mutex *writeout_mutex;
67static volatile int fio_abort;
68static int exit_value;
69static pthread_t gtod_thread;
70static pthread_t disk_util_thread;
71static struct flist_head *cgroup_list;
72static char *cgroup_mnt;
73
74unsigned long arch_flags = 0;
75
76struct io_log *agg_io_log[2];
77
78#define JOB_START_TIMEOUT (5 * 1000)
79
80static const char *fio_os_strings[os_nr] = {
81 "Invalid",
82 "Linux",
83 "AIX",
84 "FreeBSD",
85 "HP-UX",
86 "OSX",
87 "NetBSD",
88 "Solaris",
89 "Windows"
90};
91
92static const char *fio_arch_strings[arch_nr] = {
93 "Invalid",
94 "x86-64",
95 "x86",
96 "ppc",
97 "ia64",
98 "s390",
99 "alpha",
100 "sparc",
101 "sparc64",
102 "arm",
103 "sh",
104 "hppa",
105 "generic"
106};
107
108const char *fio_get_os_string(int nr)
109{
110 if (nr < os_nr)
111 return fio_os_strings[nr];
112
113 return NULL;
114}
115
116const char *fio_get_arch_string(int nr)
117{
118 if (nr < arch_nr)
119 return fio_arch_strings[nr];
120
121 return NULL;
122}
123
124void td_set_runstate(struct thread_data *td, int runstate)
125{
126 if (td->runstate == runstate)
127 return;
128
129 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
130 td->runstate, runstate);
131 td->runstate = runstate;
132}
133
134void fio_terminate_threads(int group_id)
135{
136 struct thread_data *td;
137 int i;
138
139 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
140
141 for_each_td(td, i) {
142 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
143 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
144 td->o.name, (int) td->pid);
145 td->terminate = 1;
146 td->o.start_delay = 0;
147
148 /*
149 * if the thread is running, just let it exit
150 */
151 if (!td->pid)
152 continue;
153 else if (td->runstate < TD_RAMP)
154 kill(td->pid, SIGTERM);
155 else {
156 struct ioengine_ops *ops = td->io_ops;
157
158 if (ops && (ops->flags & FIO_SIGTERM))
159 kill(td->pid, SIGTERM);
160 }
161 }
162 }
163}
164
165static void sig_int(int sig)
166{
167 if (threads) {
168 if (is_backend)
169 fio_server_got_signal(sig);
170 else {
171 log_info("\nfio: terminating on signal %d\n", sig);
172 fflush(stdout);
173 exit_value = 128;
174 }
175
176 fio_terminate_threads(TERMINATE_ALL);
177 }
178}
179
180static void *disk_thread_main(void *data)
181{
182 fio_mutex_up(startup_mutex);
183
184 while (threads) {
185 usleep(DISK_UTIL_MSEC * 1000);
186 if (!threads)
187 break;
188 update_io_ticks();
189
190 if (!is_backend)
191 print_thread_status();
192 }
193
194 return NULL;
195}
196
197static int create_disk_util_thread(void)
198{
199 int ret;
200
201 ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
202 if (ret) {
203 log_err("Can't create disk util thread: %s\n", strerror(ret));
204 return 1;
205 }
206
207 ret = pthread_detach(disk_util_thread);
208 if (ret) {
209 log_err("Can't detatch disk util thread: %s\n", strerror(ret));
210 return 1;
211 }
212
213 dprint(FD_MUTEX, "wait on startup_mutex\n");
214 fio_mutex_down(startup_mutex);
215 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
216 return 0;
217}
218
219static void set_sig_handlers(void)
220{
221 struct sigaction act;
222
223 memset(&act, 0, sizeof(act));
224 act.sa_handler = sig_int;
225 act.sa_flags = SA_RESTART;
226 sigaction(SIGINT, &act, NULL);
227
228 memset(&act, 0, sizeof(act));
229 act.sa_handler = sig_int;
230 act.sa_flags = SA_RESTART;
231 sigaction(SIGTERM, &act, NULL);
232
233 if (is_backend) {
234 memset(&act, 0, sizeof(act));
235 act.sa_handler = sig_int;
236 act.sa_flags = SA_RESTART;
237 sigaction(SIGPIPE, &act, NULL);
238 }
239}
240
241/*
242 * Check if we are above the minimum rate given.
243 */
244static int __check_min_rate(struct thread_data *td, struct timeval *now,
245 enum fio_ddir ddir)
246{
247 unsigned long long bytes = 0;
248 unsigned long iops = 0;
249 unsigned long spent;
250 unsigned long rate;
251 unsigned int ratemin = 0;
252 unsigned int rate_iops = 0;
253 unsigned int rate_iops_min = 0;
254
255 assert(ddir_rw(ddir));
256
257 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
258 return 0;
259
260 /*
261 * allow a 2 second settle period in the beginning
262 */
263 if (mtime_since(&td->start, now) < 2000)
264 return 0;
265
266 iops += td->this_io_blocks[ddir];
267 bytes += td->this_io_bytes[ddir];
268 ratemin += td->o.ratemin[ddir];
269 rate_iops += td->o.rate_iops[ddir];
270 rate_iops_min += td->o.rate_iops_min[ddir];
271
272 /*
273 * if rate blocks is set, sample is running
274 */
275 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
276 spent = mtime_since(&td->lastrate[ddir], now);
277 if (spent < td->o.ratecycle)
278 return 0;
279
280 if (td->o.rate[ddir]) {
281 /*
282 * check bandwidth specified rate
283 */
284 if (bytes < td->rate_bytes[ddir]) {
285 log_err("%s: min rate %u not met\n", td->o.name,
286 ratemin);
287 return 1;
288 } else {
289 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
290 if (rate < ratemin ||
291 bytes < td->rate_bytes[ddir]) {
292 log_err("%s: min rate %u not met, got"
293 " %luKB/sec\n", td->o.name,
294 ratemin, rate);
295 return 1;
296 }
297 }
298 } else {
299 /*
300 * checks iops specified rate
301 */
302 if (iops < rate_iops) {
303 log_err("%s: min iops rate %u not met\n",
304 td->o.name, rate_iops);
305 return 1;
306 } else {
307 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
308 if (rate < rate_iops_min ||
309 iops < td->rate_blocks[ddir]) {
310 log_err("%s: min iops rate %u not met,"
311 " got %lu\n", td->o.name,
312 rate_iops_min, rate);
313 }
314 }
315 }
316 }
317
318 td->rate_bytes[ddir] = bytes;
319 td->rate_blocks[ddir] = iops;
320 memcpy(&td->lastrate[ddir], now, sizeof(*now));
321 return 0;
322}
323
324static int check_min_rate(struct thread_data *td, struct timeval *now,
325 unsigned long *bytes_done)
326{
327 int ret = 0;
328
329 if (bytes_done[0])
330 ret |= __check_min_rate(td, now, 0);
331 if (bytes_done[1])
332 ret |= __check_min_rate(td, now, 1);
333
334 return ret;
335}
336
337static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
338{
339 if (!td->o.timeout)
340 return 0;
341 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
342 return 1;
343
344 return 0;
345}
346
347/*
348 * When job exits, we can cancel the in-flight IO if we are using async
349 * io. Attempt to do so.
350 */
351static void cleanup_pending_aio(struct thread_data *td)
352{
353 struct flist_head *entry, *n;
354 struct io_u *io_u;
355 int r;
356
357 /*
358 * get immediately available events, if any
359 */
360 r = io_u_queued_complete(td, 0, NULL);
361 if (r < 0)
362 return;
363
364 /*
365 * now cancel remaining active events
366 */
367 if (td->io_ops->cancel) {
368 flist_for_each_safe(entry, n, &td->io_u_busylist) {
369 io_u = flist_entry(entry, struct io_u, list);
370
371 /*
372 * if the io_u isn't in flight, then that generally
373 * means someone leaked an io_u. complain but fix
374 * it up, so we don't stall here.
375 */
376 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
377 log_err("fio: non-busy IO on busy list\n");
378 put_io_u(td, io_u);
379 } else {
380 r = td->io_ops->cancel(td, io_u);
381 if (!r)
382 put_io_u(td, io_u);
383 }
384 }
385 }
386
387 if (td->cur_depth)
388 r = io_u_queued_complete(td, td->cur_depth, NULL);
389}
390
391/*
392 * Helper to handle the final sync of a file. Works just like the normal
393 * io path, just does everything sync.
394 */
395static int fio_io_sync(struct thread_data *td, struct fio_file *f)
396{
397 struct io_u *io_u = __get_io_u(td);
398 int ret;
399
400 if (!io_u)
401 return 1;
402
403 io_u->ddir = DDIR_SYNC;
404 io_u->file = f;
405
406 if (td_io_prep(td, io_u)) {
407 put_io_u(td, io_u);
408 return 1;
409 }
410
411requeue:
412 ret = td_io_queue(td, io_u);
413 if (ret < 0) {
414 td_verror(td, io_u->error, "td_io_queue");
415 put_io_u(td, io_u);
416 return 1;
417 } else if (ret == FIO_Q_QUEUED) {
418 if (io_u_queued_complete(td, 1, NULL) < 0)
419 return 1;
420 } else if (ret == FIO_Q_COMPLETED) {
421 if (io_u->error) {
422 td_verror(td, io_u->error, "td_io_queue");
423 return 1;
424 }
425
426 if (io_u_sync_complete(td, io_u, NULL) < 0)
427 return 1;
428 } else if (ret == FIO_Q_BUSY) {
429 if (td_io_commit(td))
430 return 1;
431 goto requeue;
432 }
433
434 return 0;
435}
436
437static inline void __update_tv_cache(struct thread_data *td)
438{
439 fio_gettime(&td->tv_cache, NULL);
440}
441
442static inline void update_tv_cache(struct thread_data *td)
443{
444 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
445 __update_tv_cache(td);
446}
447
448static int break_on_this_error(struct thread_data *td, int *retptr)
449{
450 int ret = *retptr;
451
452 if (ret < 0 || td->error) {
453 int err;
454
455 if (!td->o.continue_on_error)
456 return 1;
457
458 if (ret < 0)
459 err = -ret;
460 else
461 err = td->error;
462
463 if (td_non_fatal_error(err)) {
464 /*
465 * Continue with the I/Os in case of
466 * a non fatal error.
467 */
468 update_error_count(td, err);
469 td_clear_error(td);
470 *retptr = 0;
471 return 0;
472 } else if (td->o.fill_device && err == ENOSPC) {
473 /*
474 * We expect to hit this error if
475 * fill_device option is set.
476 */
477 td_clear_error(td);
478 td->terminate = 1;
479 return 1;
480 } else {
481 /*
482 * Stop the I/O in case of a fatal
483 * error.
484 */
485 update_error_count(td, err);
486 return 1;
487 }
488 }
489
490 return 0;
491}
492
493/*
494 * The main verify engine. Runs over the writes we previously submitted,
495 * reads the blocks back in, and checks the crc/md5 of the data.
496 */
497static void do_verify(struct thread_data *td)
498{
499 struct fio_file *f;
500 struct io_u *io_u;
501 int ret, min_events;
502 unsigned int i;
503
504 dprint(FD_VERIFY, "starting loop\n");
505
506 /*
507 * sync io first and invalidate cache, to make sure we really
508 * read from disk.
509 */
510 for_each_file(td, f, i) {
511 if (!fio_file_open(f))
512 continue;
513 if (fio_io_sync(td, f))
514 break;
515 if (file_invalidate_cache(td, f))
516 break;
517 }
518
519 if (td->error)
520 return;
521
522 td_set_runstate(td, TD_VERIFYING);
523
524 io_u = NULL;
525 while (!td->terminate) {
526 int ret2, full;
527
528 update_tv_cache(td);
529
530 if (runtime_exceeded(td, &td->tv_cache)) {
531 __update_tv_cache(td);
532 if (runtime_exceeded(td, &td->tv_cache)) {
533 td->terminate = 1;
534 break;
535 }
536 }
537
538 io_u = __get_io_u(td);
539 if (!io_u)
540 break;
541
542 if (get_next_verify(td, io_u)) {
543 put_io_u(td, io_u);
544 break;
545 }
546
547 if (td_io_prep(td, io_u)) {
548 put_io_u(td, io_u);
549 break;
550 }
551
552 if (td->o.verify_async)
553 io_u->end_io = verify_io_u_async;
554 else
555 io_u->end_io = verify_io_u;
556
557 ret = td_io_queue(td, io_u);
558 switch (ret) {
559 case FIO_Q_COMPLETED:
560 if (io_u->error) {
561 ret = -io_u->error;
562 clear_io_u(td, io_u);
563 } else if (io_u->resid) {
564 int bytes = io_u->xfer_buflen - io_u->resid;
565
566 /*
567 * zero read, fail
568 */
569 if (!bytes) {
570 td_verror(td, EIO, "full resid");
571 put_io_u(td, io_u);
572 break;
573 }
574
575 io_u->xfer_buflen = io_u->resid;
576 io_u->xfer_buf += bytes;
577 io_u->offset += bytes;
578
579 if (ddir_rw(io_u->ddir))
580 td->ts.short_io_u[io_u->ddir]++;
581
582 f = io_u->file;
583 if (io_u->offset == f->real_file_size)
584 goto sync_done;
585
586 requeue_io_u(td, &io_u);
587 } else {
588sync_done:
589 ret = io_u_sync_complete(td, io_u, NULL);
590 if (ret < 0)
591 break;
592 }
593 continue;
594 case FIO_Q_QUEUED:
595 break;
596 case FIO_Q_BUSY:
597 requeue_io_u(td, &io_u);
598 ret2 = td_io_commit(td);
599 if (ret2 < 0)
600 ret = ret2;
601 break;
602 default:
603 assert(ret < 0);
604 td_verror(td, -ret, "td_io_queue");
605 break;
606 }
607
608 if (break_on_this_error(td, &ret))
609 break;
610
611 /*
612 * if we can queue more, do so. but check if there are
613 * completed io_u's first. Note that we can get BUSY even
614 * without IO queued, if the system is resource starved.
615 */
616 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
617 if (full || !td->o.iodepth_batch_complete) {
618 min_events = min(td->o.iodepth_batch_complete,
619 td->cur_depth);
620 if (full && !min_events && td->o.iodepth_batch_complete != 0)
621 min_events = 1;
622
623 do {
624 /*
625 * Reap required number of io units, if any,
626 * and do the verification on them through
627 * the callback handler
628 */
629 if (io_u_queued_complete(td, min_events, NULL) < 0) {
630 ret = -1;
631 break;
632 }
633 } while (full && (td->cur_depth > td->o.iodepth_low));
634 }
635 if (ret < 0)
636 break;
637 }
638
639 if (!td->error) {
640 min_events = td->cur_depth;
641
642 if (min_events)
643 ret = io_u_queued_complete(td, min_events, NULL);
644 } else
645 cleanup_pending_aio(td);
646
647 td_set_runstate(td, TD_RUNNING);
648
649 dprint(FD_VERIFY, "exiting loop\n");
650}
651
652/*
653 * Main IO worker function. It retrieves io_u's to process and queues
654 * and reaps them, checking for rate and errors along the way.
655 */
656static void do_io(struct thread_data *td)
657{
658 unsigned int i;
659 int ret = 0;
660
661 if (in_ramp_time(td))
662 td_set_runstate(td, TD_RAMP);
663 else
664 td_set_runstate(td, TD_RUNNING);
665
666 while ( (td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
667 (!flist_empty(&td->trim_list)) ||
668 ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) ) {
669 struct timeval comp_time;
670 unsigned long bytes_done[2] = { 0, 0 };
671 int min_evts = 0;
672 struct io_u *io_u;
673 int ret2, full;
674
675 if (td->terminate)
676 break;
677
678 update_tv_cache(td);
679
680 if (runtime_exceeded(td, &td->tv_cache)) {
681 __update_tv_cache(td);
682 if (runtime_exceeded(td, &td->tv_cache)) {
683 td->terminate = 1;
684 break;
685 }
686 }
687
688 io_u = get_io_u(td);
689 if (!io_u)
690 break;
691
692 /*
693 * Add verification end_io handler, if asked to verify
694 * a previously written file.
695 */
696 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
697 !td_rw(td)) {
698 if (td->o.verify_async)
699 io_u->end_io = verify_io_u_async;
700 else
701 io_u->end_io = verify_io_u;
702 td_set_runstate(td, TD_VERIFYING);
703 } else if (in_ramp_time(td))
704 td_set_runstate(td, TD_RAMP);
705 else
706 td_set_runstate(td, TD_RUNNING);
707
708 ret = td_io_queue(td, io_u);
709 switch (ret) {
710 case FIO_Q_COMPLETED:
711 if (io_u->error) {
712 ret = -io_u->error;
713 clear_io_u(td, io_u);
714 } else if (io_u->resid) {
715 int bytes = io_u->xfer_buflen - io_u->resid;
716 struct fio_file *f = io_u->file;
717
718 /*
719 * zero read, fail
720 */
721 if (!bytes) {
722 td_verror(td, EIO, "full resid");
723 put_io_u(td, io_u);
724 break;
725 }
726
727 io_u->xfer_buflen = io_u->resid;
728 io_u->xfer_buf += bytes;
729 io_u->offset += bytes;
730
731 if (ddir_rw(io_u->ddir))
732 td->ts.short_io_u[io_u->ddir]++;
733
734 if (io_u->offset == f->real_file_size)
735 goto sync_done;
736
737 requeue_io_u(td, &io_u);
738 } else {
739sync_done:
740 if (__should_check_rate(td, 0) ||
741 __should_check_rate(td, 1))
742 fio_gettime(&comp_time, NULL);
743
744 ret = io_u_sync_complete(td, io_u, bytes_done);
745 if (ret < 0)
746 break;
747 }
748 break;
749 case FIO_Q_QUEUED:
750 /*
751 * if the engine doesn't have a commit hook,
752 * the io_u is really queued. if it does have such
753 * a hook, it has to call io_u_queued() itself.
754 */
755 if (td->io_ops->commit == NULL)
756 io_u_queued(td, io_u);
757 break;
758 case FIO_Q_BUSY:
759 requeue_io_u(td, &io_u);
760 ret2 = td_io_commit(td);
761 if (ret2 < 0)
762 ret = ret2;
763 break;
764 default:
765 assert(ret < 0);
766 put_io_u(td, io_u);
767 break;
768 }
769
770 if (break_on_this_error(td, &ret))
771 break;
772
773 /*
774 * See if we need to complete some commands. Note that we
775 * can get BUSY even without IO queued, if the system is
776 * resource starved.
777 */
778 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
779 if (full || !td->o.iodepth_batch_complete) {
780 min_evts = min(td->o.iodepth_batch_complete,
781 td->cur_depth);
782 if (full && !min_evts && td->o.iodepth_batch_complete != 0)
783 min_evts = 1;
784
785 if (__should_check_rate(td, 0) ||
786 __should_check_rate(td, 1))
787 fio_gettime(&comp_time, NULL);
788
789 do {
790 ret = io_u_queued_complete(td, min_evts, bytes_done);
791 if (ret < 0)
792 break;
793
794 } while (full && (td->cur_depth > td->o.iodepth_low));
795 }
796
797 if (ret < 0)
798 break;
799 if (!(bytes_done[0] + bytes_done[1]))
800 continue;
801
802 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
803 if (check_min_rate(td, &comp_time, bytes_done)) {
804 if (exitall_on_terminate)
805 fio_terminate_threads(td->groupid);
806 td_verror(td, EIO, "check_min_rate");
807 break;
808 }
809 }
810
811 if (td->o.thinktime) {
812 unsigned long long b;
813
814 b = td->io_blocks[0] + td->io_blocks[1];
815 if (!(b % td->o.thinktime_blocks)) {
816 int left;
817
818 if (td->o.thinktime_spin)
819 usec_spin(td->o.thinktime_spin);
820
821 left = td->o.thinktime - td->o.thinktime_spin;
822 if (left)
823 usec_sleep(td, left);
824 }
825 }
826 }
827
828 if (td->trim_entries)
829 printf("trim entries %ld\n", td->trim_entries);
830
831 if (td->o.fill_device && td->error == ENOSPC) {
832 td->error = 0;
833 td->terminate = 1;
834 }
835 if (!td->error) {
836 struct fio_file *f;
837
838 i = td->cur_depth;
839 if (i) {
840 ret = io_u_queued_complete(td, i, NULL);
841 if (td->o.fill_device && td->error == ENOSPC)
842 td->error = 0;
843 }
844
845 if (should_fsync(td) && td->o.end_fsync) {
846 td_set_runstate(td, TD_FSYNCING);
847
848 for_each_file(td, f, i) {
849 if (!fio_file_open(f))
850 continue;
851 fio_io_sync(td, f);
852 }
853 }
854 } else
855 cleanup_pending_aio(td);
856
857 /*
858 * stop job if we failed doing any IO
859 */
860 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
861 td->done = 1;
862}
863
864static void cleanup_io_u(struct thread_data *td)
865{
866 struct flist_head *entry, *n;
867 struct io_u *io_u;
868
869 flist_for_each_safe(entry, n, &td->io_u_freelist) {
870 io_u = flist_entry(entry, struct io_u, list);
871
872 flist_del(&io_u->list);
873 fio_memfree(io_u, sizeof(*io_u));
874 }
875
876 free_io_mem(td);
877}
878
879static int init_io_u(struct thread_data *td)
880{
881 struct io_u *io_u;
882 unsigned int max_bs;
883 int cl_align, i, max_units;
884 char *p;
885
886 max_units = td->o.iodepth;
887 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
888 td->orig_buffer_size = (unsigned long long) max_bs
889 * (unsigned long long) max_units;
890
891 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
892 unsigned long bs;
893
894 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
895 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
896 }
897
898 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
899 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
900 return 1;
901 }
902
903 if (allocate_io_mem(td))
904 return 1;
905
906 if (td->o.odirect || td->o.mem_align ||
907 (td->io_ops->flags & FIO_RAWIO))
908 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
909 else
910 p = td->orig_buffer;
911
912 cl_align = os_cache_line_size();
913
914 for (i = 0; i < max_units; i++) {
915 void *ptr;
916
917 if (td->terminate)
918 return 1;
919
920 ptr = fio_memalign(cl_align, sizeof(*io_u));
921 if (!ptr) {
922 log_err("fio: unable to allocate aligned memory\n");
923 break;
924 }
925
926 io_u = ptr;
927 memset(io_u, 0, sizeof(*io_u));
928 INIT_FLIST_HEAD(&io_u->list);
929 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
930
931 if (!(td->io_ops->flags & FIO_NOIO)) {
932 io_u->buf = p + max_bs * i;
933 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
934
935 if (td_write(td))
936 io_u_fill_buffer(td, io_u, max_bs);
937 if (td_write(td) && td->o.verify_pattern_bytes) {
938 /*
939 * Fill the buffer with the pattern if we are
940 * going to be doing writes.
941 */
942 fill_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
943 }
944 }
945
946 io_u->index = i;
947 io_u->flags = IO_U_F_FREE;
948 flist_add(&io_u->list, &td->io_u_freelist);
949 }
950
951 return 0;
952}
953
954static int switch_ioscheduler(struct thread_data *td)
955{
956 char tmp[256], tmp2[128];
957 FILE *f;
958 int ret;
959
960 if (td->io_ops->flags & FIO_DISKLESSIO)
961 return 0;
962
963 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
964
965 f = fopen(tmp, "r+");
966 if (!f) {
967 if (errno == ENOENT) {
968 log_err("fio: os or kernel doesn't support IO scheduler"
969 " switching\n");
970 return 0;
971 }
972 td_verror(td, errno, "fopen iosched");
973 return 1;
974 }
975
976 /*
977 * Set io scheduler.
978 */
979 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
980 if (ferror(f) || ret != 1) {
981 td_verror(td, errno, "fwrite");
982 fclose(f);
983 return 1;
984 }
985
986 rewind(f);
987
988 /*
989 * Read back and check that the selected scheduler is now the default.
990 */
991 ret = fread(tmp, 1, sizeof(tmp), f);
992 if (ferror(f) || ret < 0) {
993 td_verror(td, errno, "fread");
994 fclose(f);
995 return 1;
996 }
997
998 sprintf(tmp2, "[%s]", td->o.ioscheduler);
999 if (!strstr(tmp, tmp2)) {
1000 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1001 td_verror(td, EINVAL, "iosched_switch");
1002 fclose(f);
1003 return 1;
1004 }
1005
1006 fclose(f);
1007 return 0;
1008}
1009
1010static int keep_running(struct thread_data *td)
1011{
1012 unsigned long long io_done;
1013
1014 if (td->done)
1015 return 0;
1016 if (td->o.time_based)
1017 return 1;
1018 if (td->o.loops) {
1019 td->o.loops--;
1020 return 1;
1021 }
1022
1023 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
1024 + td->io_skip_bytes;
1025 if (io_done < td->o.size)
1026 return 1;
1027
1028 return 0;
1029}
1030
1031static void reset_io_counters(struct thread_data *td)
1032{
1033 td->stat_io_bytes[0] = td->stat_io_bytes[1] = 0;
1034 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
1035 td->stat_io_blocks[0] = td->stat_io_blocks[1] = 0;
1036 td->this_io_blocks[0] = td->this_io_blocks[1] = 0;
1037 td->zone_bytes = 0;
1038 td->rate_bytes[0] = td->rate_bytes[1] = 0;
1039 td->rate_blocks[0] = td->rate_blocks[1] = 0;
1040
1041 td->last_was_sync = 0;
1042
1043 /*
1044 * reset file done count if we are to start over
1045 */
1046 if (td->o.time_based || td->o.loops)
1047 td->nr_done_files = 0;
1048}
1049
1050void reset_all_stats(struct thread_data *td)
1051{
1052 struct timeval tv;
1053 int i;
1054
1055 reset_io_counters(td);
1056
1057 for (i = 0; i < 2; i++) {
1058 td->io_bytes[i] = 0;
1059 td->io_blocks[i] = 0;
1060 td->io_issues[i] = 0;
1061 td->ts.total_io_u[i] = 0;
1062 }
1063
1064 fio_gettime(&tv, NULL);
1065 td->ts.runtime[0] = 0;
1066 td->ts.runtime[1] = 0;
1067 memcpy(&td->epoch, &tv, sizeof(tv));
1068 memcpy(&td->start, &tv, sizeof(tv));
1069}
1070
1071static void clear_io_state(struct thread_data *td)
1072{
1073 struct fio_file *f;
1074 unsigned int i;
1075
1076 reset_io_counters(td);
1077
1078 close_files(td);
1079 for_each_file(td, f, i)
1080 fio_file_clear_done(f);
1081
1082 /*
1083 * Set the same seed to get repeatable runs
1084 */
1085 td_fill_rand_seeds(td);
1086}
1087
1088static int exec_string(const char *string)
1089{
1090 int ret, newlen = strlen(string) + 1 + 8;
1091 char *str;
1092
1093 str = malloc(newlen);
1094 sprintf(str, "sh -c %s", string);
1095
1096 ret = system(str);
1097 if (ret == -1)
1098 log_err("fio: exec of cmd <%s> failed\n", str);
1099
1100 free(str);
1101 return ret;
1102}
1103
1104/*
1105 * Entry point for the thread based jobs. The process based jobs end up
1106 * here as well, after a little setup.
1107 */
1108static void *thread_main(void *data)
1109{
1110 unsigned long long elapsed;
1111 struct thread_data *td = data;
1112 pthread_condattr_t attr;
1113 int clear_state;
1114
1115 if (!td->o.use_thread) {
1116 setsid();
1117 td->pid = getpid();
1118 } else
1119 td->pid = gettid();
1120
1121 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1122
1123 INIT_FLIST_HEAD(&td->io_u_freelist);
1124 INIT_FLIST_HEAD(&td->io_u_busylist);
1125 INIT_FLIST_HEAD(&td->io_u_requeues);
1126 INIT_FLIST_HEAD(&td->io_log_list);
1127 INIT_FLIST_HEAD(&td->io_hist_list);
1128 INIT_FLIST_HEAD(&td->verify_list);
1129 INIT_FLIST_HEAD(&td->trim_list);
1130 pthread_mutex_init(&td->io_u_lock, NULL);
1131 td->io_hist_tree = RB_ROOT;
1132
1133 pthread_condattr_init(&attr);
1134 pthread_cond_init(&td->verify_cond, &attr);
1135 pthread_cond_init(&td->free_cond, &attr);
1136
1137 td_set_runstate(td, TD_INITIALIZED);
1138 dprint(FD_MUTEX, "up startup_mutex\n");
1139 fio_mutex_up(startup_mutex);
1140 dprint(FD_MUTEX, "wait on td->mutex\n");
1141 fio_mutex_down(td->mutex);
1142 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1143
1144 /*
1145 * the ->mutex mutex is now no longer used, close it to avoid
1146 * eating a file descriptor
1147 */
1148 fio_mutex_remove(td->mutex);
1149
1150 /*
1151 * A new gid requires privilege, so we need to do this before setting
1152 * the uid.
1153 */
1154 if (td->o.gid != -1U && setgid(td->o.gid)) {
1155 td_verror(td, errno, "setgid");
1156 goto err;
1157 }
1158 if (td->o.uid != -1U && setuid(td->o.uid)) {
1159 td_verror(td, errno, "setuid");
1160 goto err;
1161 }
1162
1163 /*
1164 * If we have a gettimeofday() thread, make sure we exclude that
1165 * thread from this job
1166 */
1167 if (td->o.gtod_cpu)
1168 fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
1169
1170 /*
1171 * Set affinity first, in case it has an impact on the memory
1172 * allocations.
1173 */
1174 if (td->o.cpumask_set && fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1175 td_verror(td, errno, "cpu_set_affinity");
1176 goto err;
1177 }
1178
1179 /*
1180 * May alter parameters that init_io_u() will use, so we need to
1181 * do this first.
1182 */
1183 if (init_iolog(td))
1184 goto err;
1185
1186 if (init_io_u(td))
1187 goto err;
1188
1189 if (td->o.verify_async && verify_async_init(td))
1190 goto err;
1191
1192 if (td->ioprio_set) {
1193 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1194 td_verror(td, errno, "ioprio_set");
1195 goto err;
1196 }
1197 }
1198
1199 if (td->o.cgroup_weight && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1200 goto err;
1201
1202 if (nice(td->o.nice) == -1) {
1203 td_verror(td, errno, "nice");
1204 goto err;
1205 }
1206
1207 if (td->o.ioscheduler && switch_ioscheduler(td))
1208 goto err;
1209
1210 if (!td->o.create_serialize && setup_files(td))
1211 goto err;
1212
1213 if (td_io_init(td))
1214 goto err;
1215
1216 if (init_random_map(td))
1217 goto err;
1218
1219 if (td->o.exec_prerun) {
1220 if (exec_string(td->o.exec_prerun))
1221 goto err;
1222 }
1223
1224 if (td->o.pre_read) {
1225 if (pre_read_files(td) < 0)
1226 goto err;
1227 }
1228
1229 fio_gettime(&td->epoch, NULL);
1230 getrusage(RUSAGE_SELF, &td->ru_start);
1231
1232 clear_state = 0;
1233 while (keep_running(td)) {
1234 fio_gettime(&td->start, NULL);
1235 memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1236 memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1237 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1238
1239 if (td->o.ratemin[0] || td->o.ratemin[1])
1240 memcpy(&td->lastrate, &td->bw_sample_time,
1241 sizeof(td->lastrate));
1242
1243 if (clear_state)
1244 clear_io_state(td);
1245
1246 prune_io_piece_log(td);
1247
1248 do_io(td);
1249
1250 clear_state = 1;
1251
1252 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1253 elapsed = utime_since_now(&td->start);
1254 td->ts.runtime[DDIR_READ] += elapsed;
1255 }
1256 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1257 elapsed = utime_since_now(&td->start);
1258 td->ts.runtime[DDIR_WRITE] += elapsed;
1259 }
1260
1261 if (td->error || td->terminate)
1262 break;
1263
1264 if (!td->o.do_verify ||
1265 td->o.verify == VERIFY_NONE ||
1266 (td->io_ops->flags & FIO_UNIDIR))
1267 continue;
1268
1269 clear_io_state(td);
1270
1271 fio_gettime(&td->start, NULL);
1272
1273 do_verify(td);
1274
1275 td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1276
1277 if (td->error || td->terminate)
1278 break;
1279 }
1280
1281 update_rusage_stat(td);
1282 td->ts.runtime[0] = (td->ts.runtime[0] + 999) / 1000;
1283 td->ts.runtime[1] = (td->ts.runtime[1] + 999) / 1000;
1284 td->ts.total_run_time = mtime_since_now(&td->epoch);
1285 td->ts.io_bytes[0] = td->io_bytes[0];
1286 td->ts.io_bytes[1] = td->io_bytes[1];
1287
1288 fio_mutex_down(writeout_mutex);
1289 if (td->bw_log) {
1290 if (td->o.bw_log_file) {
1291 finish_log_named(td, td->bw_log,
1292 td->o.bw_log_file, "bw");
1293 } else
1294 finish_log(td, td->bw_log, "bw");
1295 }
1296 if (td->lat_log) {
1297 if (td->o.lat_log_file) {
1298 finish_log_named(td, td->lat_log,
1299 td->o.lat_log_file, "lat");
1300 } else
1301 finish_log(td, td->lat_log, "lat");
1302 }
1303 if (td->slat_log) {
1304 if (td->o.lat_log_file) {
1305 finish_log_named(td, td->slat_log,
1306 td->o.lat_log_file, "slat");
1307 } else
1308 finish_log(td, td->slat_log, "slat");
1309 }
1310 if (td->clat_log) {
1311 if (td->o.lat_log_file) {
1312 finish_log_named(td, td->clat_log,
1313 td->o.lat_log_file, "clat");
1314 } else
1315 finish_log(td, td->clat_log, "clat");
1316 }
1317 if (td->iops_log) {
1318 if (td->o.iops_log_file) {
1319 finish_log_named(td, td->iops_log,
1320 td->o.iops_log_file, "iops");
1321 } else
1322 finish_log(td, td->iops_log, "iops");
1323 }
1324
1325 fio_mutex_up(writeout_mutex);
1326 if (td->o.exec_postrun)
1327 exec_string(td->o.exec_postrun);
1328
1329 if (exitall_on_terminate)
1330 fio_terminate_threads(td->groupid);
1331
1332err:
1333 if (td->error)
1334 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1335 td->verror);
1336
1337 if (td->o.verify_async)
1338 verify_async_exit(td);
1339
1340 close_and_free_files(td);
1341 close_ioengine(td);
1342 cleanup_io_u(td);
1343 cgroup_shutdown(td, &cgroup_mnt);
1344
1345 if (td->o.cpumask_set) {
1346 int ret = fio_cpuset_exit(&td->o.cpumask);
1347
1348 td_verror(td, ret, "fio_cpuset_exit");
1349 }
1350
1351 /*
1352 * do this very late, it will log file closing as well
1353 */
1354 if (td->o.write_iolog_file)
1355 write_iolog_close(td);
1356
1357 options_mem_free(td);
1358 td_set_runstate(td, TD_EXITED);
1359 return (void *) (unsigned long) td->error;
1360}
1361
1362/*
1363 * We cannot pass the td data into a forked process, so attach the td and
1364 * pass it to the thread worker.
1365 */
1366static int fork_main(int shmid, int offset)
1367{
1368 struct thread_data *td;
1369 void *data, *ret;
1370
1371#ifndef __hpux
1372 data = shmat(shmid, NULL, 0);
1373 if (data == (void *) -1) {
1374 int __err = errno;
1375
1376 perror("shmat");
1377 return __err;
1378 }
1379#else
1380 /*
1381 * HP-UX inherits shm mappings?
1382 */
1383 data = threads;
1384#endif
1385
1386 td = data + offset * sizeof(struct thread_data);
1387 ret = thread_main(td);
1388 shmdt(data);
1389 return (int) (unsigned long) ret;
1390}
1391
1392/*
1393 * Run over the job map and reap the threads that have exited, if any.
1394 */
1395static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1396{
1397 struct thread_data *td;
1398 int i, cputhreads, realthreads, pending, status, ret;
1399
1400 /*
1401 * reap exited threads (TD_EXITED -> TD_REAPED)
1402 */
1403 realthreads = pending = cputhreads = 0;
1404 for_each_td(td, i) {
1405 int flags = 0;
1406
1407 /*
1408 * ->io_ops is NULL for a thread that has closed its
1409 * io engine
1410 */
1411 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1412 cputhreads++;
1413 else
1414 realthreads++;
1415
1416 if (!td->pid) {
1417 pending++;
1418 continue;
1419 }
1420 if (td->runstate == TD_REAPED)
1421 continue;
1422 if (td->o.use_thread) {
1423 if (td->runstate == TD_EXITED) {
1424 td_set_runstate(td, TD_REAPED);
1425 goto reaped;
1426 }
1427 continue;
1428 }
1429
1430 flags = WNOHANG;
1431 if (td->runstate == TD_EXITED)
1432 flags = 0;
1433
1434 /*
1435 * check if someone quit or got killed in an unusual way
1436 */
1437 ret = waitpid(td->pid, &status, flags);
1438 if (ret < 0) {
1439 if (errno == ECHILD) {
1440 log_err("fio: pid=%d disappeared %d\n",
1441 (int) td->pid, td->runstate);
1442 td_set_runstate(td, TD_REAPED);
1443 goto reaped;
1444 }
1445 perror("waitpid");
1446 } else if (ret == td->pid) {
1447 if (WIFSIGNALED(status)) {
1448 int sig = WTERMSIG(status);
1449
1450 if (sig != SIGTERM)
1451 log_err("fio: pid=%d, got signal=%d\n",
1452 (int) td->pid, sig);
1453 td_set_runstate(td, TD_REAPED);
1454 goto reaped;
1455 }
1456 if (WIFEXITED(status)) {
1457 if (WEXITSTATUS(status) && !td->error)
1458 td->error = WEXITSTATUS(status);
1459
1460 td_set_runstate(td, TD_REAPED);
1461 goto reaped;
1462 }
1463 }
1464
1465 /*
1466 * thread is not dead, continue
1467 */
1468 pending++;
1469 continue;
1470reaped:
1471 (*nr_running)--;
1472 (*m_rate) -= (td->o.ratemin[0] + td->o.ratemin[1]);
1473 (*t_rate) -= (td->o.rate[0] + td->o.rate[1]);
1474 if (!td->pid)
1475 pending--;
1476
1477 if (td->error)
1478 exit_value++;
1479
1480 done_secs += mtime_since_now(&td->epoch) / 1000;
1481 }
1482
1483 if (*nr_running == cputhreads && !pending && realthreads)
1484 fio_terminate_threads(TERMINATE_ALL);
1485}
1486
1487static void *gtod_thread_main(void *data)
1488{
1489 fio_mutex_up(startup_mutex);
1490
1491 /*
1492 * As long as we have jobs around, update the clock. It would be nice
1493 * to have some way of NOT hammering that CPU with gettimeofday(),
1494 * but I'm not sure what to use outside of a simple CPU nop to relax
1495 * it - we don't want to lose precision.
1496 */
1497 while (threads) {
1498 fio_gtod_update();
1499 nop;
1500 }
1501
1502 return NULL;
1503}
1504
1505static int fio_start_gtod_thread(void)
1506{
1507 pthread_attr_t attr;
1508 int ret;
1509
1510 pthread_attr_init(&attr);
1511 pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN);
1512 ret = pthread_create(&gtod_thread, &attr, gtod_thread_main, NULL);
1513 pthread_attr_destroy(&attr);
1514 if (ret) {
1515 log_err("Can't create gtod thread: %s\n", strerror(ret));
1516 return 1;
1517 }
1518
1519 ret = pthread_detach(gtod_thread);
1520 if (ret) {
1521 log_err("Can't detatch gtod thread: %s\n", strerror(ret));
1522 return 1;
1523 }
1524
1525 dprint(FD_MUTEX, "wait on startup_mutex\n");
1526 fio_mutex_down(startup_mutex);
1527 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1528 return 0;
1529}
1530
1531/*
1532 * Main function for kicking off and reaping jobs, as needed.
1533 */
1534static void run_threads(void)
1535{
1536 struct thread_data *td;
1537 unsigned long spent;
1538 int i, todo, nr_running, m_rate, t_rate, nr_started;
1539
1540 if (fio_pin_memory())
1541 return;
1542
1543 if (fio_gtod_offload && fio_start_gtod_thread())
1544 return;
1545
1546 set_sig_handlers();
1547
1548 if (!terse_output) {
1549 log_info("Starting ");
1550 if (nr_thread)
1551 log_info("%d thread%s", nr_thread,
1552 nr_thread > 1 ? "s" : "");
1553 if (nr_process) {
1554 if (nr_thread)
1555 printf(" and ");
1556 log_info("%d process%s", nr_process,
1557 nr_process > 1 ? "es" : "");
1558 }
1559 log_info("\n");
1560 fflush(stdout);
1561 }
1562
1563 todo = thread_number;
1564 nr_running = 0;
1565 nr_started = 0;
1566 m_rate = t_rate = 0;
1567
1568 for_each_td(td, i) {
1569 print_status_init(td->thread_number - 1);
1570
1571 if (!td->o.create_serialize)
1572 continue;
1573
1574 /*
1575 * do file setup here so it happens sequentially,
1576 * we don't want X number of threads getting their
1577 * client data interspersed on disk
1578 */
1579 if (setup_files(td)) {
1580 exit_value++;
1581 if (td->error)
1582 log_err("fio: pid=%d, err=%d/%s\n",
1583 (int) td->pid, td->error, td->verror);
1584 td_set_runstate(td, TD_REAPED);
1585 todo--;
1586 } else {
1587 struct fio_file *f;
1588 unsigned int j;
1589
1590 /*
1591 * for sharing to work, each job must always open
1592 * its own files. so close them, if we opened them
1593 * for creation
1594 */
1595 for_each_file(td, f, j) {
1596 if (fio_file_open(f))
1597 td_io_close_file(td, f);
1598 }
1599 }
1600 }
1601
1602 set_genesis_time();
1603
1604 while (todo) {
1605 struct thread_data *map[REAL_MAX_JOBS];
1606 struct timeval this_start;
1607 int this_jobs = 0, left;
1608
1609 /*
1610 * create threads (TD_NOT_CREATED -> TD_CREATED)
1611 */
1612 for_each_td(td, i) {
1613 if (td->runstate != TD_NOT_CREATED)
1614 continue;
1615
1616 /*
1617 * never got a chance to start, killed by other
1618 * thread for some reason
1619 */
1620 if (td->terminate) {
1621 todo--;
1622 continue;
1623 }
1624
1625 if (td->o.start_delay) {
1626 spent = mtime_since_genesis();
1627
1628 if (td->o.start_delay * 1000 > spent)
1629 continue;
1630 }
1631
1632 if (td->o.stonewall && (nr_started || nr_running)) {
1633 dprint(FD_PROCESS, "%s: stonewall wait\n",
1634 td->o.name);
1635 break;
1636 }
1637
1638 init_disk_util(td);
1639
1640 /*
1641 * Set state to created. Thread will transition
1642 * to TD_INITIALIZED when it's done setting up.
1643 */
1644 td_set_runstate(td, TD_CREATED);
1645 map[this_jobs++] = td;
1646 nr_started++;
1647
1648 if (td->o.use_thread) {
1649 int ret;
1650
1651 dprint(FD_PROCESS, "will pthread_create\n");
1652 ret = pthread_create(&td->thread, NULL,
1653 thread_main, td);
1654 if (ret) {
1655 log_err("pthread_create: %s\n",
1656 strerror(ret));
1657 nr_started--;
1658 break;
1659 }
1660 ret = pthread_detach(td->thread);
1661 if (ret)
1662 log_err("pthread_detach: %s",
1663 strerror(ret));
1664 } else {
1665 pid_t pid;
1666 dprint(FD_PROCESS, "will fork\n");
1667 pid = fork();
1668 if (!pid) {
1669 int ret = fork_main(shm_id, i);
1670
1671 _exit(ret);
1672 } else if (i == fio_debug_jobno)
1673 *fio_debug_jobp = pid;
1674 }
1675 dprint(FD_MUTEX, "wait on startup_mutex\n");
1676 if (fio_mutex_down_timeout(startup_mutex, 10)) {
1677 log_err("fio: job startup hung? exiting.\n");
1678 fio_terminate_threads(TERMINATE_ALL);
1679 fio_abort = 1;
1680 nr_started--;
1681 break;
1682 }
1683 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1684 }
1685
1686 /*
1687 * Wait for the started threads to transition to
1688 * TD_INITIALIZED.
1689 */
1690 fio_gettime(&this_start, NULL);
1691 left = this_jobs;
1692 while (left && !fio_abort) {
1693 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1694 break;
1695
1696 usleep(100000);
1697
1698 for (i = 0; i < this_jobs; i++) {
1699 td = map[i];
1700 if (!td)
1701 continue;
1702 if (td->runstate == TD_INITIALIZED) {
1703 map[i] = NULL;
1704 left--;
1705 } else if (td->runstate >= TD_EXITED) {
1706 map[i] = NULL;
1707 left--;
1708 todo--;
1709 nr_running++; /* work-around... */
1710 }
1711 }
1712 }
1713
1714 if (left) {
1715 log_err("fio: %d jobs failed to start\n", left);
1716 for (i = 0; i < this_jobs; i++) {
1717 td = map[i];
1718 if (!td)
1719 continue;
1720 kill(td->pid, SIGTERM);
1721 }
1722 break;
1723 }
1724
1725 /*
1726 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1727 */
1728 for_each_td(td, i) {
1729 if (td->runstate != TD_INITIALIZED)
1730 continue;
1731
1732 if (in_ramp_time(td))
1733 td_set_runstate(td, TD_RAMP);
1734 else
1735 td_set_runstate(td, TD_RUNNING);
1736 nr_running++;
1737 nr_started--;
1738 m_rate += td->o.ratemin[0] + td->o.ratemin[1];
1739 t_rate += td->o.rate[0] + td->o.rate[1];
1740 todo--;
1741 fio_mutex_up(td->mutex);
1742 }
1743
1744 reap_threads(&nr_running, &t_rate, &m_rate);
1745
1746 if (todo) {
1747 if (is_backend)
1748 fio_server_idle_loop();
1749 else
1750 usleep(100000);
1751 }
1752 }
1753
1754 while (nr_running) {
1755 reap_threads(&nr_running, &t_rate, &m_rate);
1756
1757 if (is_backend)
1758 fio_server_idle_loop();
1759 else
1760 usleep(10000);
1761 }
1762
1763 update_io_ticks();
1764 fio_unpin_memory();
1765}
1766
1767int exec_run(void)
1768{
1769 if (nr_clients)
1770 return fio_handle_clients();
1771 if (exec_profile && load_profile(exec_profile))
1772 return 1;
1773
1774 if (!thread_number)
1775 return 0;
1776
1777 if (write_bw_log) {
1778 setup_log(&agg_io_log[DDIR_READ]);
1779 setup_log(&agg_io_log[DDIR_WRITE]);
1780 }
1781
1782 startup_mutex = fio_mutex_init(0);
1783 if (startup_mutex == NULL)
1784 return 1;
1785 writeout_mutex = fio_mutex_init(1);
1786 if (writeout_mutex == NULL)
1787 return 1;
1788
1789 set_genesis_time();
1790 create_disk_util_thread();
1791
1792 cgroup_list = smalloc(sizeof(*cgroup_list));
1793 INIT_FLIST_HEAD(cgroup_list);
1794
1795 run_threads();
1796
1797 if (!fio_abort) {
1798 show_run_stats();
1799 if (write_bw_log) {
1800 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1801 __finish_log(agg_io_log[DDIR_WRITE],
1802 "agg-write_bw.log");
1803 }
1804 }
1805
1806 cgroup_kill(cgroup_list);
1807 sfree(cgroup_list);
1808 sfree(cgroup_mnt);
1809
1810 fio_mutex_remove(startup_mutex);
1811 fio_mutex_remove(writeout_mutex);
1812 return exit_value;
1813}
1814
1815void reset_fio_state(void)
1816{
1817 groupid = 0;
1818 thread_number = 0;
1819 nr_process = 0;
1820 nr_thread = 0;
1821 done_secs = 0;
1822}
1823
1824static int endian_check(void)
1825{
1826 union {
1827 uint8_t c[8];
1828 uint64_t v;
1829 } u;
1830 int le = 0, be = 0;
1831
1832 u.v = 0x12;
1833 if (u.c[7] == 0x12)
1834 be = 1;
1835 else if (u.c[0] == 0x12)
1836 le = 1;
1837
1838#if defined(FIO_LITTLE_ENDIAN)
1839 if (be)
1840 return 1;
1841#elif defined(FIO_BIG_ENDIAN)
1842 if (le)
1843 return 1;
1844#else
1845 return 1;
1846#endif
1847
1848 if (!le && !be)
1849 return 1;
1850
1851 return 0;
1852}
1853
1854int main(int argc, char *argv[], char *envp[])
1855{
1856 long ps;
1857
1858 if (endian_check()) {
1859 log_err("fio: endianness settings appear wrong.\n");
1860 log_err("fio: please report this to fio@vger.kernel.org\n");
1861 return 1;
1862 }
1863
1864 arch_init(envp);
1865
1866 sinit();
1867
1868 /*
1869 * We need locale for number printing, if it isn't set then just
1870 * go with the US format.
1871 */
1872 if (!getenv("LC_NUMERIC"))
1873 setlocale(LC_NUMERIC, "en_US");
1874
1875 ps = sysconf(_SC_PAGESIZE);
1876 if (ps < 0) {
1877 log_err("Failed to get page size\n");
1878 return 1;
1879 }
1880
1881 page_size = ps;
1882 page_mask = ps - 1;
1883
1884 fio_keywords_init();
1885
1886 if (parse_options(argc, argv))
1887 return 1;
1888
1889 return exec_run();
1890}