Fix libaio prep
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "hash.h"
39#include "smalloc.h"
40#include "verify.h"
41#include "diskutil.h"
42#include "cgroup.h"
43#include "profile.h"
44#include "lib/rand.h"
45
46unsigned long page_mask;
47unsigned long page_size;
48
49#define PAGE_ALIGN(buf) \
50 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
51
52int groupid = 0;
53int thread_number = 0;
54int nr_process = 0;
55int nr_thread = 0;
56int shm_id = 0;
57int temp_stall_ts;
58unsigned long done_secs = 0;
59
60static struct fio_mutex *startup_mutex;
61static struct fio_mutex *writeout_mutex;
62static volatile int fio_abort;
63static int exit_value;
64static struct itimerval itimer;
65static pthread_t gtod_thread;
66static struct flist_head *cgroup_list;
67static char *cgroup_mnt;
68
69struct io_log *agg_io_log[2];
70
71#define TERMINATE_ALL (-1)
72#define JOB_START_TIMEOUT (5 * 1000)
73
74void td_set_runstate(struct thread_data *td, int runstate)
75{
76 if (td->runstate == runstate)
77 return;
78
79 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
80 td->runstate, runstate);
81 td->runstate = runstate;
82}
83
84static void terminate_threads(int group_id)
85{
86 struct thread_data *td;
87 int i;
88
89 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
90
91 for_each_td(td, i) {
92 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
93 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
94 td->o.name, (int) td->pid);
95 td->terminate = 1;
96 td->o.start_delay = 0;
97
98 /*
99 * if the thread is running, just let it exit
100 */
101 if (td->runstate < TD_RUNNING)
102 kill(td->pid, SIGQUIT);
103 else {
104 struct ioengine_ops *ops = td->io_ops;
105
106 if (ops && (ops->flags & FIO_SIGQUIT))
107 kill(td->pid, SIGQUIT);
108 }
109 }
110 }
111}
112
113static void status_timer_arm(void)
114{
115 itimer.it_value.tv_sec = 0;
116 itimer.it_value.tv_usec = DISK_UTIL_MSEC * 1000;
117 setitimer(ITIMER_REAL, &itimer, NULL);
118}
119
120static void sig_alrm(int fio_unused sig)
121{
122 if (threads) {
123 update_io_ticks();
124 print_thread_status();
125 status_timer_arm();
126 }
127}
128
129/*
130 * Happens on thread runs with ctrl-c, ignore our own SIGQUIT
131 */
132static void sig_quit(int sig)
133{
134}
135
136static void sig_int(int sig)
137{
138 if (threads) {
139 log_info("\nfio: terminating on signal %d\n", sig);
140 fflush(stdout);
141 terminate_threads(TERMINATE_ALL);
142 }
143}
144
145static void set_sig_handlers(void)
146{
147 struct sigaction act;
148
149 memset(&act, 0, sizeof(act));
150 act.sa_handler = sig_alrm;
151 act.sa_flags = SA_RESTART;
152 sigaction(SIGALRM, &act, NULL);
153
154 memset(&act, 0, sizeof(act));
155 act.sa_handler = sig_int;
156 act.sa_flags = SA_RESTART;
157 sigaction(SIGINT, &act, NULL);
158
159 memset(&act, 0, sizeof(act));
160 act.sa_handler = sig_quit;
161 act.sa_flags = SA_RESTART;
162 sigaction(SIGQUIT, &act, NULL);
163}
164
165/*
166 * Check if we are above the minimum rate given.
167 */
168static int __check_min_rate(struct thread_data *td, struct timeval *now,
169 enum td_ddir ddir)
170{
171 unsigned long long bytes = 0;
172 unsigned long iops = 0;
173 unsigned long spent;
174 unsigned long rate;
175 unsigned int ratemin = 0;
176 unsigned int rate_iops = 0;
177 unsigned int rate_iops_min = 0;
178
179 assert(ddir_rw(ddir));
180
181 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
182 return 0;
183
184 /*
185 * allow a 2 second settle period in the beginning
186 */
187 if (mtime_since(&td->start, now) < 2000)
188 return 0;
189
190 iops += td->io_blocks[ddir];
191 bytes += td->this_io_bytes[ddir];
192 ratemin += td->o.ratemin[ddir];
193 rate_iops += td->o.rate_iops[ddir];
194 rate_iops_min += td->o.rate_iops_min[ddir];
195
196 /*
197 * if rate blocks is set, sample is running
198 */
199 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
200 spent = mtime_since(&td->lastrate[ddir], now);
201 if (spent < td->o.ratecycle)
202 return 0;
203
204 if (td->o.rate[ddir]) {
205 /*
206 * check bandwidth specified rate
207 */
208 if (bytes < td->rate_bytes[ddir]) {
209 log_err("%s: min rate %u not met\n", td->o.name,
210 ratemin);
211 return 1;
212 } else {
213 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
214 if (rate < ratemin ||
215 bytes < td->rate_bytes[ddir]) {
216 log_err("%s: min rate %u not met, got"
217 " %luKB/sec\n", td->o.name,
218 ratemin, rate);
219 return 1;
220 }
221 }
222 } else {
223 /*
224 * checks iops specified rate
225 */
226 if (iops < rate_iops) {
227 log_err("%s: min iops rate %u not met\n",
228 td->o.name, rate_iops);
229 return 1;
230 } else {
231 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
232 if (rate < rate_iops_min ||
233 iops < td->rate_blocks[ddir]) {
234 log_err("%s: min iops rate %u not met,"
235 " got %lu\n", td->o.name,
236 rate_iops_min, rate);
237 }
238 }
239 }
240 }
241
242 td->rate_bytes[ddir] = bytes;
243 td->rate_blocks[ddir] = iops;
244 memcpy(&td->lastrate[ddir], now, sizeof(*now));
245 return 0;
246}
247
248static int check_min_rate(struct thread_data *td, struct timeval *now,
249 unsigned long *bytes_done)
250{
251 int ret = 0;
252
253 if (bytes_done[0])
254 ret |= __check_min_rate(td, now, 0);
255 if (bytes_done[1])
256 ret |= __check_min_rate(td, now, 1);
257
258 return ret;
259}
260
261static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
262{
263 if (!td->o.timeout)
264 return 0;
265 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
266 return 1;
267
268 return 0;
269}
270
271/*
272 * When job exits, we can cancel the in-flight IO if we are using async
273 * io. Attempt to do so.
274 */
275static void cleanup_pending_aio(struct thread_data *td)
276{
277 struct flist_head *entry, *n;
278 struct io_u *io_u;
279 int r;
280
281 /*
282 * get immediately available events, if any
283 */
284 r = io_u_queued_complete(td, 0, NULL);
285 if (r < 0)
286 return;
287
288 /*
289 * now cancel remaining active events
290 */
291 if (td->io_ops->cancel) {
292 flist_for_each_safe(entry, n, &td->io_u_busylist) {
293 io_u = flist_entry(entry, struct io_u, list);
294
295 /*
296 * if the io_u isn't in flight, then that generally
297 * means someone leaked an io_u. complain but fix
298 * it up, so we don't stall here.
299 */
300 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
301 log_err("fio: non-busy IO on busy list\n");
302 put_io_u(td, io_u);
303 } else {
304 r = td->io_ops->cancel(td, io_u);
305 if (!r)
306 put_io_u(td, io_u);
307 }
308 }
309 }
310
311 if (td->cur_depth)
312 r = io_u_queued_complete(td, td->cur_depth, NULL);
313}
314
315/*
316 * Helper to handle the final sync of a file. Works just like the normal
317 * io path, just does everything sync.
318 */
319static int fio_io_sync(struct thread_data *td, struct fio_file *f)
320{
321 struct io_u *io_u = __get_io_u(td);
322 int ret;
323
324 if (!io_u)
325 return 1;
326
327 io_u->ddir = DDIR_SYNC;
328 io_u->file = f;
329
330 if (td_io_prep(td, io_u)) {
331 put_io_u(td, io_u);
332 return 1;
333 }
334
335requeue:
336 ret = td_io_queue(td, io_u);
337 if (ret < 0) {
338 td_verror(td, io_u->error, "td_io_queue");
339 put_io_u(td, io_u);
340 return 1;
341 } else if (ret == FIO_Q_QUEUED) {
342 if (io_u_queued_complete(td, 1, NULL) < 0)
343 return 1;
344 } else if (ret == FIO_Q_COMPLETED) {
345 if (io_u->error) {
346 td_verror(td, io_u->error, "td_io_queue");
347 return 1;
348 }
349
350 if (io_u_sync_complete(td, io_u, NULL) < 0)
351 return 1;
352 } else if (ret == FIO_Q_BUSY) {
353 if (td_io_commit(td))
354 return 1;
355 goto requeue;
356 }
357
358 return 0;
359}
360
361static inline void update_tv_cache(struct thread_data *td)
362{
363 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
364 fio_gettime(&td->tv_cache, NULL);
365}
366
367static int break_on_this_error(struct thread_data *td, int *retptr)
368{
369 int ret = *retptr;
370
371 if (ret < 0 || td->error) {
372 int err;
373
374 if (!td->o.continue_on_error)
375 return 1;
376
377 if (ret < 0)
378 err = -ret;
379 else
380 err = td->error;
381
382 if (td_non_fatal_error(err)) {
383 /*
384 * Continue with the I/Os in case of
385 * a non fatal error.
386 */
387 update_error_count(td, err);
388 td_clear_error(td);
389 *retptr = 0;
390 return 0;
391 } else if (td->o.fill_device && err == ENOSPC) {
392 /*
393 * We expect to hit this error if
394 * fill_device option is set.
395 */
396 td_clear_error(td);
397 td->terminate = 1;
398 return 1;
399 } else {
400 /*
401 * Stop the I/O in case of a fatal
402 * error.
403 */
404 update_error_count(td, err);
405 return 1;
406 }
407 }
408
409 return 0;
410}
411
412/*
413 * The main verify engine. Runs over the writes we previously submitted,
414 * reads the blocks back in, and checks the crc/md5 of the data.
415 */
416static void do_verify(struct thread_data *td)
417{
418 struct fio_file *f;
419 struct io_u *io_u;
420 int ret, min_events;
421 unsigned int i;
422
423 dprint(FD_VERIFY, "starting loop\n");
424
425 /*
426 * sync io first and invalidate cache, to make sure we really
427 * read from disk.
428 */
429 for_each_file(td, f, i) {
430 if (!fio_file_open(f))
431 continue;
432 if (fio_io_sync(td, f))
433 break;
434 if (file_invalidate_cache(td, f))
435 break;
436 }
437
438 if (td->error)
439 return;
440
441 td_set_runstate(td, TD_VERIFYING);
442
443 io_u = NULL;
444 while (!td->terminate) {
445 int ret2, full;
446
447 update_tv_cache(td);
448
449 if (runtime_exceeded(td, &td->tv_cache)) {
450 td->terminate = 1;
451 break;
452 }
453
454 io_u = __get_io_u(td);
455 if (!io_u)
456 break;
457
458 if (get_next_verify(td, io_u)) {
459 put_io_u(td, io_u);
460 break;
461 }
462
463 if (td_io_prep(td, io_u)) {
464 put_io_u(td, io_u);
465 break;
466 }
467
468 if (td->o.verify_async)
469 io_u->end_io = verify_io_u_async;
470 else
471 io_u->end_io = verify_io_u;
472
473 ret = td_io_queue(td, io_u);
474 switch (ret) {
475 case FIO_Q_COMPLETED:
476 if (io_u->error) {
477 ret = -io_u->error;
478 clear_io_u(td, io_u);
479 } else if (io_u->resid) {
480 int bytes = io_u->xfer_buflen - io_u->resid;
481 struct fio_file *f = io_u->file;
482
483 /*
484 * zero read, fail
485 */
486 if (!bytes) {
487 td_verror(td, EIO, "full resid");
488 put_io_u(td, io_u);
489 break;
490 }
491
492 io_u->xfer_buflen = io_u->resid;
493 io_u->xfer_buf += bytes;
494 io_u->offset += bytes;
495
496 if (ddir_rw(io_u->ddir))
497 td->ts.short_io_u[io_u->ddir]++;
498
499 if (io_u->offset == f->real_file_size)
500 goto sync_done;
501
502 requeue_io_u(td, &io_u);
503 } else {
504sync_done:
505 ret = io_u_sync_complete(td, io_u, NULL);
506 if (ret < 0)
507 break;
508 }
509 continue;
510 case FIO_Q_QUEUED:
511 break;
512 case FIO_Q_BUSY:
513 requeue_io_u(td, &io_u);
514 ret2 = td_io_commit(td);
515 if (ret2 < 0)
516 ret = ret2;
517 break;
518 default:
519 assert(ret < 0);
520 td_verror(td, -ret, "td_io_queue");
521 break;
522 }
523
524 if (break_on_this_error(td, &ret))
525 break;
526
527 /*
528 * if we can queue more, do so. but check if there are
529 * completed io_u's first.
530 */
531 full = queue_full(td) || ret == FIO_Q_BUSY;
532 if (full || !td->o.iodepth_batch_complete) {
533 min_events = min(td->o.iodepth_batch_complete,
534 td->cur_depth);
535 if (full && !min_events)
536 min_events = 1;
537
538 do {
539 /*
540 * Reap required number of io units, if any,
541 * and do the verification on them through
542 * the callback handler
543 */
544 if (io_u_queued_complete(td, min_events, NULL) < 0) {
545 ret = -1;
546 break;
547 }
548 } while (full && (td->cur_depth > td->o.iodepth_low));
549 }
550 if (ret < 0)
551 break;
552 }
553
554 if (!td->error) {
555 min_events = td->cur_depth;
556
557 if (min_events)
558 ret = io_u_queued_complete(td, min_events, NULL);
559 } else
560 cleanup_pending_aio(td);
561
562 td_set_runstate(td, TD_RUNNING);
563
564 dprint(FD_VERIFY, "exiting loop\n");
565}
566
567/*
568 * Main IO worker function. It retrieves io_u's to process and queues
569 * and reaps them, checking for rate and errors along the way.
570 */
571static void do_io(struct thread_data *td)
572{
573 unsigned int i;
574 int ret = 0;
575
576 if (in_ramp_time(td))
577 td_set_runstate(td, TD_RAMP);
578 else
579 td_set_runstate(td, TD_RUNNING);
580
581 while ( (td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
582 ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) ) {
583 struct timeval comp_time;
584 unsigned long bytes_done[2] = { 0, 0 };
585 int min_evts = 0;
586 struct io_u *io_u;
587 int ret2, full;
588
589 if (td->terminate)
590 break;
591
592 update_tv_cache(td);
593
594 if (runtime_exceeded(td, &td->tv_cache)) {
595 td->terminate = 1;
596 break;
597 }
598
599 io_u = get_io_u(td);
600 if (!io_u)
601 break;
602
603 /*
604 * Add verification end_io handler, if asked to verify
605 * a previously written file.
606 */
607 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
608 !td_rw(td)) {
609 if (td->o.verify_async)
610 io_u->end_io = verify_io_u_async;
611 else
612 io_u->end_io = verify_io_u;
613 td_set_runstate(td, TD_VERIFYING);
614 } else if (in_ramp_time(td))
615 td_set_runstate(td, TD_RAMP);
616 else
617 td_set_runstate(td, TD_RUNNING);
618
619 ret = td_io_queue(td, io_u);
620 switch (ret) {
621 case FIO_Q_COMPLETED:
622 if (io_u->error) {
623 ret = -io_u->error;
624 clear_io_u(td, io_u);
625 } else if (io_u->resid) {
626 int bytes = io_u->xfer_buflen - io_u->resid;
627 struct fio_file *f = io_u->file;
628
629 /*
630 * zero read, fail
631 */
632 if (!bytes) {
633 td_verror(td, EIO, "full resid");
634 put_io_u(td, io_u);
635 break;
636 }
637
638 io_u->xfer_buflen = io_u->resid;
639 io_u->xfer_buf += bytes;
640 io_u->offset += bytes;
641
642 if (ddir_rw(io_u->ddir))
643 td->ts.short_io_u[io_u->ddir]++;
644
645 if (io_u->offset == f->real_file_size)
646 goto sync_done;
647
648 requeue_io_u(td, &io_u);
649 } else {
650sync_done:
651 if (__should_check_rate(td, 0) ||
652 __should_check_rate(td, 1))
653 fio_gettime(&comp_time, NULL);
654
655 ret = io_u_sync_complete(td, io_u, bytes_done);
656 if (ret < 0)
657 break;
658 }
659 break;
660 case FIO_Q_QUEUED:
661 /*
662 * if the engine doesn't have a commit hook,
663 * the io_u is really queued. if it does have such
664 * a hook, it has to call io_u_queued() itself.
665 */
666 if (td->io_ops->commit == NULL)
667 io_u_queued(td, io_u);
668 break;
669 case FIO_Q_BUSY:
670 requeue_io_u(td, &io_u);
671 ret2 = td_io_commit(td);
672 if (ret2 < 0)
673 ret = ret2;
674 break;
675 default:
676 assert(ret < 0);
677 put_io_u(td, io_u);
678 break;
679 }
680
681 if (break_on_this_error(td, &ret))
682 break;
683
684 /*
685 * See if we need to complete some commands
686 */
687 full = queue_full(td) || ret == FIO_Q_BUSY;
688 if (full || !td->o.iodepth_batch_complete) {
689 min_evts = min(td->o.iodepth_batch_complete,
690 td->cur_depth);
691 if (full && !min_evts)
692 min_evts = 1;
693
694 if (__should_check_rate(td, 0) ||
695 __should_check_rate(td, 1))
696 fio_gettime(&comp_time, NULL);
697
698 do {
699 ret = io_u_queued_complete(td, min_evts, bytes_done);
700 if (ret < 0)
701 break;
702
703 } while (full && (td->cur_depth > td->o.iodepth_low));
704 }
705
706 if (ret < 0)
707 break;
708 if (!(bytes_done[0] + bytes_done[1]))
709 continue;
710
711 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
712 if (check_min_rate(td, &comp_time, bytes_done)) {
713 if (exitall_on_terminate)
714 terminate_threads(td->groupid);
715 td_verror(td, EIO, "check_min_rate");
716 break;
717 }
718 }
719
720 if (td->o.thinktime) {
721 unsigned long long b;
722
723 b = td->io_blocks[0] + td->io_blocks[1];
724 if (!(b % td->o.thinktime_blocks)) {
725 int left;
726
727 if (td->o.thinktime_spin)
728 usec_spin(td->o.thinktime_spin);
729
730 left = td->o.thinktime - td->o.thinktime_spin;
731 if (left)
732 usec_sleep(td, left);
733 }
734 }
735 }
736
737 if (td->o.fill_device && td->error == ENOSPC) {
738 td->error = 0;
739 td->terminate = 1;
740 }
741 if (!td->error) {
742 struct fio_file *f;
743
744 i = td->cur_depth;
745 if (i)
746 ret = io_u_queued_complete(td, i, NULL);
747
748 if (should_fsync(td) && td->o.end_fsync) {
749 td_set_runstate(td, TD_FSYNCING);
750
751 for_each_file(td, f, i) {
752 if (!fio_file_open(f))
753 continue;
754 fio_io_sync(td, f);
755 }
756 }
757 } else
758 cleanup_pending_aio(td);
759
760 /*
761 * stop job if we failed doing any IO
762 */
763 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
764 td->done = 1;
765}
766
767static void cleanup_io_u(struct thread_data *td)
768{
769 struct flist_head *entry, *n;
770 struct io_u *io_u;
771
772 flist_for_each_safe(entry, n, &td->io_u_freelist) {
773 io_u = flist_entry(entry, struct io_u, list);
774
775 flist_del(&io_u->list);
776 free(io_u);
777 }
778
779 free_io_mem(td);
780}
781
782static int init_io_u(struct thread_data *td)
783{
784 struct io_u *io_u;
785 unsigned int max_bs;
786 int cl_align, i, max_units;
787 char *p;
788
789 max_units = td->o.iodepth;
790 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
791 td->orig_buffer_size = (unsigned long long) max_bs
792 * (unsigned long long) max_units;
793
794 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
795 unsigned long bs;
796
797 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
798 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
799 }
800
801 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
802 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
803 return 1;
804 }
805
806 if (allocate_io_mem(td))
807 return 1;
808
809 if (td->o.odirect || td->o.mem_align)
810 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
811 else
812 p = td->orig_buffer;
813
814 cl_align = os_cache_line_size();
815
816 for (i = 0; i < max_units; i++) {
817 void *ptr;
818
819 if (td->terminate)
820 return 1;
821
822 if (posix_memalign(&ptr, cl_align, sizeof(*io_u))) {
823 log_err("fio: posix_memalign=%s\n", strerror(errno));
824 break;
825 }
826
827 io_u = ptr;
828 memset(io_u, 0, sizeof(*io_u));
829 INIT_FLIST_HEAD(&io_u->list);
830 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
831
832 if (!(td->io_ops->flags & FIO_NOIO)) {
833 io_u->buf = p + max_bs * i;
834 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
835
836 if (td_write(td) && !td->o.refill_buffers)
837 io_u_fill_buffer(td, io_u, max_bs);
838 else if (td_write(td) && td->o.verify_pattern_bytes) {
839 /*
840 * Fill the buffer with the pattern if we are
841 * going to be doing writes.
842 */
843 fill_pattern(td, io_u->buf, max_bs, io_u);
844 }
845 }
846
847 io_u->index = i;
848 io_u->flags = IO_U_F_FREE;
849 flist_add(&io_u->list, &td->io_u_freelist);
850 }
851
852 return 0;
853}
854
855static int switch_ioscheduler(struct thread_data *td)
856{
857 char tmp[256], tmp2[128];
858 FILE *f;
859 int ret;
860
861 if (td->io_ops->flags & FIO_DISKLESSIO)
862 return 0;
863
864 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
865
866 f = fopen(tmp, "r+");
867 if (!f) {
868 if (errno == ENOENT) {
869 log_err("fio: os or kernel doesn't support IO scheduler"
870 " switching\n");
871 return 0;
872 }
873 td_verror(td, errno, "fopen iosched");
874 return 1;
875 }
876
877 /*
878 * Set io scheduler.
879 */
880 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
881 if (ferror(f) || ret != 1) {
882 td_verror(td, errno, "fwrite");
883 fclose(f);
884 return 1;
885 }
886
887 rewind(f);
888
889 /*
890 * Read back and check that the selected scheduler is now the default.
891 */
892 ret = fread(tmp, 1, sizeof(tmp), f);
893 if (ferror(f) || ret < 0) {
894 td_verror(td, errno, "fread");
895 fclose(f);
896 return 1;
897 }
898
899 sprintf(tmp2, "[%s]", td->o.ioscheduler);
900 if (!strstr(tmp, tmp2)) {
901 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
902 td_verror(td, EINVAL, "iosched_switch");
903 fclose(f);
904 return 1;
905 }
906
907 fclose(f);
908 return 0;
909}
910
911static int keep_running(struct thread_data *td)
912{
913 unsigned long long io_done;
914
915 if (td->done)
916 return 0;
917 if (td->o.time_based)
918 return 1;
919 if (td->o.loops) {
920 td->o.loops--;
921 return 1;
922 }
923
924 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
925 + td->io_skip_bytes;
926 if (io_done < td->o.size)
927 return 1;
928
929 return 0;
930}
931
932static void reset_io_counters(struct thread_data *td)
933{
934 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
935 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
936 td->zone_bytes = 0;
937 td->rate_bytes[0] = td->rate_bytes[1] = 0;
938 td->rate_blocks[0] = td->rate_blocks[1] = 0;
939
940 td->last_was_sync = 0;
941
942 /*
943 * reset file done count if we are to start over
944 */
945 if (td->o.time_based || td->o.loops)
946 td->nr_done_files = 0;
947
948 /*
949 * Set the same seed to get repeatable runs
950 */
951 td_fill_rand_seeds(td);
952}
953
954void reset_all_stats(struct thread_data *td)
955{
956 struct timeval tv;
957 int i;
958
959 reset_io_counters(td);
960
961 for (i = 0; i < 2; i++) {
962 td->io_bytes[i] = 0;
963 td->io_blocks[i] = 0;
964 td->io_issues[i] = 0;
965 td->ts.total_io_u[i] = 0;
966 }
967
968 fio_gettime(&tv, NULL);
969 memcpy(&td->epoch, &tv, sizeof(tv));
970 memcpy(&td->start, &tv, sizeof(tv));
971}
972
973static void clear_io_state(struct thread_data *td)
974{
975 struct fio_file *f;
976 unsigned int i;
977
978 reset_io_counters(td);
979
980 close_files(td);
981 for_each_file(td, f, i)
982 fio_file_clear_done(f);
983}
984
985static int exec_string(const char *string)
986{
987 int ret, newlen = strlen(string) + 1 + 8;
988 char *str;
989
990 str = malloc(newlen);
991 sprintf(str, "sh -c %s", string);
992
993 ret = system(str);
994 if (ret == -1)
995 log_err("fio: exec of cmd <%s> failed\n", str);
996
997 free(str);
998 return ret;
999}
1000
1001/*
1002 * Entry point for the thread based jobs. The process based jobs end up
1003 * here as well, after a little setup.
1004 */
1005static void *thread_main(void *data)
1006{
1007 unsigned long long runtime[2], elapsed;
1008 struct thread_data *td = data;
1009 pthread_condattr_t attr;
1010 int clear_state;
1011
1012 if (!td->o.use_thread)
1013 setsid();
1014
1015 td->pid = getpid();
1016
1017 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1018
1019 INIT_FLIST_HEAD(&td->io_u_freelist);
1020 INIT_FLIST_HEAD(&td->io_u_busylist);
1021 INIT_FLIST_HEAD(&td->io_u_requeues);
1022 INIT_FLIST_HEAD(&td->io_log_list);
1023 INIT_FLIST_HEAD(&td->io_hist_list);
1024 INIT_FLIST_HEAD(&td->verify_list);
1025 INIT_FLIST_HEAD(&td->trim_list);
1026 pthread_mutex_init(&td->io_u_lock, NULL);
1027 td->io_hist_tree = RB_ROOT;
1028
1029 pthread_condattr_init(&attr);
1030 pthread_cond_init(&td->verify_cond, &attr);
1031 pthread_cond_init(&td->free_cond, &attr);
1032
1033 td_set_runstate(td, TD_INITIALIZED);
1034 dprint(FD_MUTEX, "up startup_mutex\n");
1035 fio_mutex_up(startup_mutex);
1036 dprint(FD_MUTEX, "wait on td->mutex\n");
1037 fio_mutex_down(td->mutex);
1038 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1039
1040 /*
1041 * the ->mutex mutex is now no longer used, close it to avoid
1042 * eating a file descriptor
1043 */
1044 fio_mutex_remove(td->mutex);
1045
1046 if (td->o.uid != -1U && setuid(td->o.uid)) {
1047 td_verror(td, errno, "setuid");
1048 goto err;
1049 }
1050 if (td->o.gid != -1U && setgid(td->o.gid)) {
1051 td_verror(td, errno, "setgid");
1052 goto err;
1053 }
1054
1055 /*
1056 * May alter parameters that init_io_u() will use, so we need to
1057 * do this first.
1058 */
1059 if (init_iolog(td))
1060 goto err;
1061
1062 if (init_io_u(td))
1063 goto err;
1064
1065 if (td->o.verify_async && verify_async_init(td))
1066 goto err;
1067
1068 if (td->o.cpumask_set && fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1069 td_verror(td, errno, "cpu_set_affinity");
1070 goto err;
1071 }
1072
1073 /*
1074 * If we have a gettimeofday() thread, make sure we exclude that
1075 * thread from this job
1076 */
1077 if (td->o.gtod_cpu) {
1078 fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
1079 if (fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1080 td_verror(td, errno, "cpu_set_affinity");
1081 goto err;
1082 }
1083 }
1084
1085 if (td->ioprio_set) {
1086 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1087 td_verror(td, errno, "ioprio_set");
1088 goto err;
1089 }
1090 }
1091
1092 if (td->o.cgroup_weight && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1093 goto err;
1094
1095 if (nice(td->o.nice) == -1) {
1096 td_verror(td, errno, "nice");
1097 goto err;
1098 }
1099
1100 if (td->o.ioscheduler && switch_ioscheduler(td))
1101 goto err;
1102
1103 if (!td->o.create_serialize && setup_files(td))
1104 goto err;
1105
1106 if (td_io_init(td))
1107 goto err;
1108
1109 if (init_random_map(td))
1110 goto err;
1111
1112 if (td->o.exec_prerun) {
1113 if (exec_string(td->o.exec_prerun))
1114 goto err;
1115 }
1116
1117 if (td->o.pre_read) {
1118 if (pre_read_files(td) < 0)
1119 goto err;
1120 }
1121
1122 fio_gettime(&td->epoch, NULL);
1123 getrusage(RUSAGE_SELF, &td->ts.ru_start);
1124
1125 runtime[0] = runtime[1] = 0;
1126 clear_state = 0;
1127 while (keep_running(td)) {
1128 fio_gettime(&td->start, NULL);
1129 memcpy(&td->ts.stat_sample_time[0], &td->start,
1130 sizeof(td->start));
1131 memcpy(&td->ts.stat_sample_time[1], &td->start,
1132 sizeof(td->start));
1133 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1134
1135 if (td->o.ratemin[0] || td->o.ratemin[1])
1136 memcpy(&td->lastrate, &td->ts.stat_sample_time,
1137 sizeof(td->lastrate));
1138
1139 if (clear_state)
1140 clear_io_state(td);
1141
1142 prune_io_piece_log(td);
1143
1144 do_io(td);
1145
1146 clear_state = 1;
1147
1148 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1149 elapsed = utime_since_now(&td->start);
1150 runtime[DDIR_READ] += elapsed;
1151 }
1152 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1153 elapsed = utime_since_now(&td->start);
1154 runtime[DDIR_WRITE] += elapsed;
1155 }
1156
1157 if (td->error || td->terminate)
1158 break;
1159
1160 if (!td->o.do_verify ||
1161 td->o.verify == VERIFY_NONE ||
1162 (td->io_ops->flags & FIO_UNIDIR))
1163 continue;
1164
1165 clear_io_state(td);
1166
1167 fio_gettime(&td->start, NULL);
1168
1169 do_verify(td);
1170
1171 runtime[DDIR_READ] += utime_since_now(&td->start);
1172
1173 if (td->error || td->terminate)
1174 break;
1175 }
1176
1177 update_rusage_stat(td);
1178 td->ts.runtime[0] = (runtime[0] + 999) / 1000;
1179 td->ts.runtime[1] = (runtime[1] + 999) / 1000;
1180 td->ts.total_run_time = mtime_since_now(&td->epoch);
1181 td->ts.io_bytes[0] = td->io_bytes[0];
1182 td->ts.io_bytes[1] = td->io_bytes[1];
1183
1184 fio_mutex_down(writeout_mutex);
1185 if (td->ts.bw_log) {
1186 if (td->o.bw_log_file) {
1187 finish_log_named(td, td->ts.bw_log,
1188 td->o.bw_log_file, "bw");
1189 } else
1190 finish_log(td, td->ts.bw_log, "bw");
1191 }
1192 if (td->ts.lat_log) {
1193 if (td->o.lat_log_file) {
1194 finish_log_named(td, td->ts.lat_log,
1195 td->o.lat_log_file, "lat");
1196 } else
1197 finish_log(td, td->ts.lat_log, "lat");
1198 }
1199 if (td->ts.slat_log) {
1200 if (td->o.lat_log_file) {
1201 finish_log_named(td, td->ts.slat_log,
1202 td->o.lat_log_file, "slat");
1203 } else
1204 finish_log(td, td->ts.slat_log, "slat");
1205 }
1206 if (td->ts.clat_log) {
1207 if (td->o.lat_log_file) {
1208 finish_log_named(td, td->ts.clat_log,
1209 td->o.lat_log_file, "clat");
1210 } else
1211 finish_log(td, td->ts.clat_log, "clat");
1212 }
1213 fio_mutex_up(writeout_mutex);
1214 if (td->o.exec_postrun)
1215 exec_string(td->o.exec_postrun);
1216
1217 if (exitall_on_terminate)
1218 terminate_threads(td->groupid);
1219
1220err:
1221 if (td->error)
1222 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1223 td->verror);
1224
1225 if (td->o.verify_async)
1226 verify_async_exit(td);
1227
1228 close_and_free_files(td);
1229 close_ioengine(td);
1230 cleanup_io_u(td);
1231 cgroup_shutdown(td, &cgroup_mnt);
1232
1233 if (td->o.cpumask_set) {
1234 int ret = fio_cpuset_exit(&td->o.cpumask);
1235
1236 td_verror(td, ret, "fio_cpuset_exit");
1237 }
1238
1239 /*
1240 * do this very late, it will log file closing as well
1241 */
1242 if (td->o.write_iolog_file)
1243 write_iolog_close(td);
1244
1245 options_mem_free(td);
1246 td_set_runstate(td, TD_EXITED);
1247 return (void *) (unsigned long) td->error;
1248}
1249
1250/*
1251 * We cannot pass the td data into a forked process, so attach the td and
1252 * pass it to the thread worker.
1253 */
1254static int fork_main(int shmid, int offset)
1255{
1256 struct thread_data *td;
1257 void *data, *ret;
1258
1259 data = shmat(shmid, NULL, 0);
1260 if (data == (void *) -1) {
1261 int __err = errno;
1262
1263 perror("shmat");
1264 return __err;
1265 }
1266
1267 td = data + offset * sizeof(struct thread_data);
1268 ret = thread_main(td);
1269 shmdt(data);
1270 return (int) (unsigned long) ret;
1271}
1272
1273/*
1274 * Run over the job map and reap the threads that have exited, if any.
1275 */
1276static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1277{
1278 struct thread_data *td;
1279 int i, cputhreads, realthreads, pending, status, ret;
1280
1281 /*
1282 * reap exited threads (TD_EXITED -> TD_REAPED)
1283 */
1284 realthreads = pending = cputhreads = 0;
1285 for_each_td(td, i) {
1286 int flags = 0;
1287
1288 /*
1289 * ->io_ops is NULL for a thread that has closed its
1290 * io engine
1291 */
1292 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1293 cputhreads++;
1294 else
1295 realthreads++;
1296
1297 if (!td->pid) {
1298 pending++;
1299 continue;
1300 }
1301 if (td->runstate == TD_REAPED)
1302 continue;
1303 if (td->o.use_thread) {
1304 if (td->runstate == TD_EXITED) {
1305 td_set_runstate(td, TD_REAPED);
1306 goto reaped;
1307 }
1308 continue;
1309 }
1310
1311 flags = WNOHANG;
1312 if (td->runstate == TD_EXITED)
1313 flags = 0;
1314
1315 /*
1316 * check if someone quit or got killed in an unusual way
1317 */
1318 ret = waitpid(td->pid, &status, flags);
1319 if (ret < 0) {
1320 if (errno == ECHILD) {
1321 log_err("fio: pid=%d disappeared %d\n",
1322 (int) td->pid, td->runstate);
1323 td_set_runstate(td, TD_REAPED);
1324 goto reaped;
1325 }
1326 perror("waitpid");
1327 } else if (ret == td->pid) {
1328 if (WIFSIGNALED(status)) {
1329 int sig = WTERMSIG(status);
1330
1331 if (sig != SIGQUIT)
1332 log_err("fio: pid=%d, got signal=%d\n",
1333 (int) td->pid, sig);
1334 td_set_runstate(td, TD_REAPED);
1335 goto reaped;
1336 }
1337 if (WIFEXITED(status)) {
1338 if (WEXITSTATUS(status) && !td->error)
1339 td->error = WEXITSTATUS(status);
1340
1341 td_set_runstate(td, TD_REAPED);
1342 goto reaped;
1343 }
1344 }
1345
1346 /*
1347 * thread is not dead, continue
1348 */
1349 pending++;
1350 continue;
1351reaped:
1352 (*nr_running)--;
1353 (*m_rate) -= (td->o.ratemin[0] + td->o.ratemin[1]);
1354 (*t_rate) -= (td->o.rate[0] + td->o.rate[1]);
1355 if (!td->pid)
1356 pending--;
1357
1358 if (td->error)
1359 exit_value++;
1360
1361 done_secs += mtime_since_now(&td->epoch) / 1000;
1362 }
1363
1364 if (*nr_running == cputhreads && !pending && realthreads)
1365 terminate_threads(TERMINATE_ALL);
1366}
1367
1368static void *gtod_thread_main(void *data)
1369{
1370 fio_mutex_up(startup_mutex);
1371
1372 /*
1373 * As long as we have jobs around, update the clock. It would be nice
1374 * to have some way of NOT hammering that CPU with gettimeofday(),
1375 * but I'm not sure what to use outside of a simple CPU nop to relax
1376 * it - we don't want to lose precision.
1377 */
1378 while (threads) {
1379 fio_gtod_update();
1380 nop;
1381 }
1382
1383 return NULL;
1384}
1385
1386static int fio_start_gtod_thread(void)
1387{
1388 pthread_attr_t attr;
1389 int ret;
1390
1391 pthread_attr_init(&attr);
1392 pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN);
1393 ret = pthread_create(&gtod_thread, &attr, gtod_thread_main, NULL);
1394 pthread_attr_destroy(&attr);
1395 if (ret) {
1396 log_err("Can't create gtod thread: %s\n", strerror(ret));
1397 return 1;
1398 }
1399
1400 ret = pthread_detach(gtod_thread);
1401 if (ret) {
1402 log_err("Can't detatch gtod thread: %s\n", strerror(ret));
1403 return 1;
1404 }
1405
1406 dprint(FD_MUTEX, "wait on startup_mutex\n");
1407 fio_mutex_down(startup_mutex);
1408 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1409 return 0;
1410}
1411
1412/*
1413 * Main function for kicking off and reaping jobs, as needed.
1414 */
1415static void run_threads(void)
1416{
1417 struct thread_data *td;
1418 unsigned long spent;
1419 int i, todo, nr_running, m_rate, t_rate, nr_started;
1420
1421 if (fio_pin_memory())
1422 return;
1423
1424 if (fio_gtod_offload && fio_start_gtod_thread())
1425 return;
1426
1427 if (!terse_output) {
1428 log_info("Starting ");
1429 if (nr_thread)
1430 log_info("%d thread%s", nr_thread,
1431 nr_thread > 1 ? "s" : "");
1432 if (nr_process) {
1433 if (nr_thread)
1434 printf(" and ");
1435 log_info("%d process%s", nr_process,
1436 nr_process > 1 ? "es" : "");
1437 }
1438 log_info("\n");
1439 fflush(stdout);
1440 }
1441
1442 set_sig_handlers();
1443
1444 todo = thread_number;
1445 nr_running = 0;
1446 nr_started = 0;
1447 m_rate = t_rate = 0;
1448
1449 for_each_td(td, i) {
1450 print_status_init(td->thread_number - 1);
1451
1452 if (!td->o.create_serialize) {
1453 init_disk_util(td);
1454 continue;
1455 }
1456
1457 /*
1458 * do file setup here so it happens sequentially,
1459 * we don't want X number of threads getting their
1460 * client data interspersed on disk
1461 */
1462 if (setup_files(td)) {
1463 exit_value++;
1464 if (td->error)
1465 log_err("fio: pid=%d, err=%d/%s\n",
1466 (int) td->pid, td->error, td->verror);
1467 td_set_runstate(td, TD_REAPED);
1468 todo--;
1469 } else {
1470 struct fio_file *f;
1471 unsigned int i;
1472
1473 /*
1474 * for sharing to work, each job must always open
1475 * its own files. so close them, if we opened them
1476 * for creation
1477 */
1478 for_each_file(td, f, i) {
1479 if (fio_file_open(f))
1480 td_io_close_file(td, f);
1481 }
1482 }
1483
1484 init_disk_util(td);
1485 }
1486
1487 set_genesis_time();
1488
1489 while (todo) {
1490 struct thread_data *map[MAX_JOBS];
1491 struct timeval this_start;
1492 int this_jobs = 0, left;
1493
1494 /*
1495 * create threads (TD_NOT_CREATED -> TD_CREATED)
1496 */
1497 for_each_td(td, i) {
1498 if (td->runstate != TD_NOT_CREATED)
1499 continue;
1500
1501 /*
1502 * never got a chance to start, killed by other
1503 * thread for some reason
1504 */
1505 if (td->terminate) {
1506 todo--;
1507 continue;
1508 }
1509
1510 if (td->o.start_delay) {
1511 spent = mtime_since_genesis();
1512
1513 if (td->o.start_delay * 1000 > spent)
1514 continue;
1515 }
1516
1517 if (td->o.stonewall && (nr_started || nr_running)) {
1518 dprint(FD_PROCESS, "%s: stonewall wait\n",
1519 td->o.name);
1520 break;
1521 }
1522
1523 /*
1524 * Set state to created. Thread will transition
1525 * to TD_INITIALIZED when it's done setting up.
1526 */
1527 td_set_runstate(td, TD_CREATED);
1528 map[this_jobs++] = td;
1529 nr_started++;
1530
1531 if (td->o.use_thread) {
1532 int ret;
1533
1534 dprint(FD_PROCESS, "will pthread_create\n");
1535 ret = pthread_create(&td->thread, NULL,
1536 thread_main, td);
1537 if (ret) {
1538 log_err("pthread_create: %s\n",
1539 strerror(ret));
1540 nr_started--;
1541 break;
1542 }
1543 ret = pthread_detach(td->thread);
1544 if (ret)
1545 log_err("pthread_detach: %s",
1546 strerror(ret));
1547 } else {
1548 pid_t pid;
1549 dprint(FD_PROCESS, "will fork\n");
1550 pid = fork();
1551 if (!pid) {
1552 int ret = fork_main(shm_id, i);
1553
1554 _exit(ret);
1555 } else if (i == fio_debug_jobno)
1556 *fio_debug_jobp = pid;
1557 }
1558 dprint(FD_MUTEX, "wait on startup_mutex\n");
1559 if (fio_mutex_down_timeout(startup_mutex, 10)) {
1560 log_err("fio: job startup hung? exiting.\n");
1561 terminate_threads(TERMINATE_ALL);
1562 fio_abort = 1;
1563 nr_started--;
1564 break;
1565 }
1566 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1567 }
1568
1569 /*
1570 * Wait for the started threads to transition to
1571 * TD_INITIALIZED.
1572 */
1573 fio_gettime(&this_start, NULL);
1574 left = this_jobs;
1575 while (left && !fio_abort) {
1576 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1577 break;
1578
1579 usleep(100000);
1580
1581 for (i = 0; i < this_jobs; i++) {
1582 td = map[i];
1583 if (!td)
1584 continue;
1585 if (td->runstate == TD_INITIALIZED) {
1586 map[i] = NULL;
1587 left--;
1588 } else if (td->runstate >= TD_EXITED) {
1589 map[i] = NULL;
1590 left--;
1591 todo--;
1592 nr_running++; /* work-around... */
1593 }
1594 }
1595 }
1596
1597 if (left) {
1598 log_err("fio: %d jobs failed to start\n", left);
1599 for (i = 0; i < this_jobs; i++) {
1600 td = map[i];
1601 if (!td)
1602 continue;
1603 kill(td->pid, SIGTERM);
1604 }
1605 break;
1606 }
1607
1608 /*
1609 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1610 */
1611 for_each_td(td, i) {
1612 if (td->runstate != TD_INITIALIZED)
1613 continue;
1614
1615 if (in_ramp_time(td))
1616 td_set_runstate(td, TD_RAMP);
1617 else
1618 td_set_runstate(td, TD_RUNNING);
1619 nr_running++;
1620 nr_started--;
1621 m_rate += td->o.ratemin[0] + td->o.ratemin[1];
1622 t_rate += td->o.rate[0] + td->o.rate[1];
1623 todo--;
1624 fio_mutex_up(td->mutex);
1625 }
1626
1627 reap_threads(&nr_running, &t_rate, &m_rate);
1628
1629 if (todo)
1630 usleep(100000);
1631 }
1632
1633 while (nr_running) {
1634 reap_threads(&nr_running, &t_rate, &m_rate);
1635 usleep(10000);
1636 }
1637
1638 update_io_ticks();
1639 fio_unpin_memory();
1640}
1641
1642int main(int argc, char *argv[])
1643{
1644 long ps;
1645
1646 sinit();
1647 init_rand(&__fio_rand_state);
1648
1649 /*
1650 * We need locale for number printing, if it isn't set then just
1651 * go with the US format.
1652 */
1653 if (!getenv("LC_NUMERIC"))
1654 setlocale(LC_NUMERIC, "en_US");
1655
1656 ps = sysconf(_SC_PAGESIZE);
1657 if (ps < 0) {
1658 log_err("Failed to get page size\n");
1659 return 1;
1660 }
1661
1662 page_size = ps;
1663 page_mask = ps - 1;
1664
1665 fio_keywords_init();
1666
1667 if (parse_options(argc, argv))
1668 return 1;
1669
1670 if (exec_profile && load_profile(exec_profile))
1671 return 1;
1672
1673 if (!thread_number)
1674 return 0;
1675
1676 if (write_bw_log) {
1677 setup_log(&agg_io_log[DDIR_READ]);
1678 setup_log(&agg_io_log[DDIR_WRITE]);
1679 }
1680
1681 startup_mutex = fio_mutex_init(0);
1682 writeout_mutex = fio_mutex_init(1);
1683
1684 set_genesis_time();
1685
1686 status_timer_arm();
1687
1688 cgroup_list = smalloc(sizeof(*cgroup_list));
1689 INIT_FLIST_HEAD(cgroup_list);
1690
1691 run_threads();
1692
1693 if (!fio_abort) {
1694 show_run_stats();
1695 if (write_bw_log) {
1696 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1697 __finish_log(agg_io_log[DDIR_WRITE],
1698 "agg-write_bw.log");
1699 }
1700 }
1701
1702 cgroup_kill(cgroup_list);
1703 sfree(cgroup_list);
1704 sfree(cgroup_mnt);
1705
1706 fio_mutex_remove(startup_mutex);
1707 fio_mutex_remove(writeout_mutex);
1708 return exit_value;
1709}