Properly strip end-of-option blanks
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "hash.h"
39#include "smalloc.h"
40
41unsigned long page_mask;
42unsigned long page_size;
43#define ALIGN(buf) \
44 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
45
46int groupid = 0;
47int thread_number = 0;
48int nr_process = 0;
49int nr_thread = 0;
50int shm_id = 0;
51int temp_stall_ts;
52unsigned long done_secs = 0;
53
54static struct fio_mutex *startup_mutex;
55static volatile int fio_abort;
56static int exit_value;
57static struct itimerval itimer;
58
59struct io_log *agg_io_log[2];
60
61#define TERMINATE_ALL (-1)
62#define JOB_START_TIMEOUT (5 * 1000)
63
64void td_set_runstate(struct thread_data *td, int runstate)
65{
66 if (td->runstate == runstate)
67 return;
68
69 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
70 td->runstate, runstate);
71 td->runstate = runstate;
72}
73
74static void terminate_threads(int group_id)
75{
76 struct thread_data *td;
77 int i;
78
79 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
80
81 for_each_td(td, i) {
82 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
83 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
84 td->o.name, (int) td->pid);
85 td->terminate = 1;
86 td->o.start_delay = 0;
87
88 /*
89 * if the thread is running, just let it exit
90 */
91 if (td->runstate < TD_RUNNING)
92 kill(td->pid, SIGQUIT);
93 else {
94 struct ioengine_ops *ops = td->io_ops;
95
96 if (ops && (ops->flags & FIO_SIGQUIT))
97 kill(td->pid, SIGQUIT);
98 }
99 }
100 }
101}
102
103static void status_timer_arm(void)
104{
105 itimer.it_value.tv_sec = 0;
106 itimer.it_value.tv_usec = DISK_UTIL_MSEC * 1000;
107 setitimer(ITIMER_REAL, &itimer, NULL);
108}
109
110static void sig_alrm(int fio_unused sig)
111{
112 if (threads) {
113 update_io_ticks();
114 print_thread_status();
115 status_timer_arm();
116 }
117}
118
119/*
120 * Happens on thread runs with ctrl-c, ignore our own SIGQUIT
121 */
122static void sig_quit(int sig)
123{
124}
125
126static void sig_int(int sig)
127{
128 if (threads) {
129 printf("\nfio: terminating on signal %d\n", sig);
130 fflush(stdout);
131 terminate_threads(TERMINATE_ALL);
132 }
133}
134
135static void sig_ill(int fio_unused sig)
136{
137 if (!threads)
138 return;
139
140 log_err("fio: illegal instruction. your cpu does not support "
141 "the sse4.2 instruction for crc32c\n");
142 terminate_threads(TERMINATE_ALL);
143 exit(4);
144}
145
146static void set_sig_handlers(void)
147{
148 struct sigaction act;
149
150 memset(&act, 0, sizeof(act));
151 act.sa_handler = sig_alrm;
152 act.sa_flags = SA_RESTART;
153 sigaction(SIGALRM, &act, NULL);
154
155 memset(&act, 0, sizeof(act));
156 act.sa_handler = sig_int;
157 act.sa_flags = SA_RESTART;
158 sigaction(SIGINT, &act, NULL);
159
160 memset(&act, 0, sizeof(act));
161 act.sa_handler = sig_ill;
162 act.sa_flags = SA_RESTART;
163 sigaction(SIGILL, &act, NULL);
164
165 memset(&act, 0, sizeof(act));
166 act.sa_handler = sig_quit;
167 act.sa_flags = SA_RESTART;
168 sigaction(SIGQUIT, &act, NULL);
169}
170
171static inline int should_check_rate(struct thread_data *td)
172{
173 /*
174 * No minimum rate set, always ok
175 */
176 if (!td->o.ratemin && !td->o.rate_iops_min)
177 return 0;
178
179 return 1;
180}
181
182/*
183 * Check if we are above the minimum rate given.
184 */
185static int check_min_rate(struct thread_data *td, struct timeval *now)
186{
187 unsigned long long bytes = 0;
188 unsigned long iops = 0;
189 unsigned long spent;
190 unsigned long rate;
191
192 /*
193 * allow a 2 second settle period in the beginning
194 */
195 if (mtime_since(&td->start, now) < 2000)
196 return 0;
197
198 if (td_read(td)) {
199 iops += td->io_blocks[DDIR_READ];
200 bytes += td->this_io_bytes[DDIR_READ];
201 }
202 if (td_write(td)) {
203 iops += td->io_blocks[DDIR_WRITE];
204 bytes += td->this_io_bytes[DDIR_WRITE];
205 }
206
207 /*
208 * if rate blocks is set, sample is running
209 */
210 if (td->rate_bytes || td->rate_blocks) {
211 spent = mtime_since(&td->lastrate, now);
212 if (spent < td->o.ratecycle)
213 return 0;
214
215 if (td->o.rate) {
216 /*
217 * check bandwidth specified rate
218 */
219 if (bytes < td->rate_bytes) {
220 log_err("%s: min rate %u not met\n", td->o.name,
221 td->o.ratemin);
222 return 1;
223 } else {
224 rate = (bytes - td->rate_bytes) / spent;
225 if (rate < td->o.ratemin ||
226 bytes < td->rate_bytes) {
227 log_err("%s: min rate %u not met, got"
228 " %luKiB/sec\n", td->o.name,
229 td->o.ratemin, rate);
230 return 1;
231 }
232 }
233 } else {
234 /*
235 * checks iops specified rate
236 */
237 if (iops < td->o.rate_iops) {
238 log_err("%s: min iops rate %u not met\n",
239 td->o.name, td->o.rate_iops);
240 return 1;
241 } else {
242 rate = (iops - td->rate_blocks) / spent;
243 if (rate < td->o.rate_iops_min ||
244 iops < td->rate_blocks) {
245 log_err("%s: min iops rate %u not met,"
246 " got %lu\n", td->o.name,
247 td->o.rate_iops_min,
248 rate);
249 }
250 }
251 }
252 }
253
254 td->rate_bytes = bytes;
255 td->rate_blocks = iops;
256 memcpy(&td->lastrate, now, sizeof(*now));
257 return 0;
258}
259
260static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
261{
262 if (!td->o.timeout)
263 return 0;
264 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
265 return 1;
266
267 return 0;
268}
269
270/*
271 * When job exits, we can cancel the in-flight IO if we are using async
272 * io. Attempt to do so.
273 */
274static void cleanup_pending_aio(struct thread_data *td)
275{
276 struct flist_head *entry, *n;
277 struct io_u *io_u;
278 int r;
279
280 /*
281 * get immediately available events, if any
282 */
283 r = io_u_queued_complete(td, 0);
284 if (r < 0)
285 return;
286
287 /*
288 * now cancel remaining active events
289 */
290 if (td->io_ops->cancel) {
291 flist_for_each_safe(entry, n, &td->io_u_busylist) {
292 io_u = flist_entry(entry, struct io_u, list);
293
294 /*
295 * if the io_u isn't in flight, then that generally
296 * means someone leaked an io_u. complain but fix
297 * it up, so we don't stall here.
298 */
299 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
300 log_err("fio: non-busy IO on busy list\n");
301 put_io_u(td, io_u);
302 } else {
303 r = td->io_ops->cancel(td, io_u);
304 if (!r)
305 put_io_u(td, io_u);
306 }
307 }
308 }
309
310 if (td->cur_depth)
311 r = io_u_queued_complete(td, td->cur_depth);
312}
313
314/*
315 * Helper to handle the final sync of a file. Works just like the normal
316 * io path, just does everything sync.
317 */
318static int fio_io_sync(struct thread_data *td, struct fio_file *f)
319{
320 struct io_u *io_u = __get_io_u(td);
321 int ret;
322
323 if (!io_u)
324 return 1;
325
326 io_u->ddir = DDIR_SYNC;
327 io_u->file = f;
328
329 if (td_io_prep(td, io_u)) {
330 put_io_u(td, io_u);
331 return 1;
332 }
333
334requeue:
335 ret = td_io_queue(td, io_u);
336 if (ret < 0) {
337 td_verror(td, io_u->error, "td_io_queue");
338 put_io_u(td, io_u);
339 return 1;
340 } else if (ret == FIO_Q_QUEUED) {
341 if (io_u_queued_complete(td, 1) < 0)
342 return 1;
343 } else if (ret == FIO_Q_COMPLETED) {
344 if (io_u->error) {
345 td_verror(td, io_u->error, "td_io_queue");
346 return 1;
347 }
348
349 if (io_u_sync_complete(td, io_u) < 0)
350 return 1;
351 } else if (ret == FIO_Q_BUSY) {
352 if (td_io_commit(td))
353 return 1;
354 goto requeue;
355 }
356
357 return 0;
358}
359
360static inline void update_tv_cache(struct thread_data *td)
361{
362 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
363 fio_gettime(&td->tv_cache, NULL);
364}
365
366/*
367 * The main verify engine. Runs over the writes we previously submitted,
368 * reads the blocks back in, and checks the crc/md5 of the data.
369 */
370static void do_verify(struct thread_data *td)
371{
372 struct fio_file *f;
373 struct io_u *io_u;
374 int ret, min_events;
375 unsigned int i;
376
377 /*
378 * sync io first and invalidate cache, to make sure we really
379 * read from disk.
380 */
381 for_each_file(td, f, i) {
382 if (!(f->flags & FIO_FILE_OPEN))
383 continue;
384 if (fio_io_sync(td, f))
385 break;
386 if (file_invalidate_cache(td, f))
387 break;
388 }
389
390 if (td->error)
391 return;
392
393 td_set_runstate(td, TD_VERIFYING);
394
395 io_u = NULL;
396 while (!td->terminate) {
397 int ret2, full;
398
399 io_u = __get_io_u(td);
400 if (!io_u)
401 break;
402
403 update_tv_cache(td);
404
405 if (runtime_exceeded(td, &td->tv_cache)) {
406 put_io_u(td, io_u);
407 td->terminate = 1;
408 break;
409 }
410
411 if (get_next_verify(td, io_u)) {
412 put_io_u(td, io_u);
413 break;
414 }
415
416 if (td_io_prep(td, io_u)) {
417 put_io_u(td, io_u);
418 break;
419 }
420
421 io_u->end_io = verify_io_u;
422
423 ret = td_io_queue(td, io_u);
424 switch (ret) {
425 case FIO_Q_COMPLETED:
426 if (io_u->error)
427 ret = -io_u->error;
428 else if (io_u->resid) {
429 int bytes = io_u->xfer_buflen - io_u->resid;
430 struct fio_file *f = io_u->file;
431
432 /*
433 * zero read, fail
434 */
435 if (!bytes) {
436 td_verror(td, EIO, "full resid");
437 put_io_u(td, io_u);
438 break;
439 }
440
441 io_u->xfer_buflen = io_u->resid;
442 io_u->xfer_buf += bytes;
443 io_u->offset += bytes;
444
445 td->ts.short_io_u[io_u->ddir]++;
446
447 if (io_u->offset == f->real_file_size)
448 goto sync_done;
449
450 requeue_io_u(td, &io_u);
451 } else {
452sync_done:
453 ret = io_u_sync_complete(td, io_u);
454 if (ret < 0)
455 break;
456 }
457 continue;
458 case FIO_Q_QUEUED:
459 break;
460 case FIO_Q_BUSY:
461 requeue_io_u(td, &io_u);
462 ret2 = td_io_commit(td);
463 if (ret2 < 0)
464 ret = ret2;
465 break;
466 default:
467 assert(ret < 0);
468 td_verror(td, -ret, "td_io_queue");
469 break;
470 }
471
472 if (ret < 0 || td->error)
473 break;
474
475 /*
476 * if we can queue more, do so. but check if there are
477 * completed io_u's first.
478 */
479 full = queue_full(td) || ret == FIO_Q_BUSY;
480 if (full || !td->o.iodepth_batch_complete) {
481 min_events = td->o.iodepth_batch_complete;
482 if (full && !min_events)
483 min_events = 1;
484
485 do {
486 /*
487 * Reap required number of io units, if any,
488 * and do the verification on them through
489 * the callback handler
490 */
491 if (io_u_queued_complete(td, min_events) < 0) {
492 ret = -1;
493 break;
494 }
495 } while (full && (td->cur_depth > td->o.iodepth_low));
496 }
497 if (ret < 0)
498 break;
499 }
500
501 if (!td->error) {
502 min_events = td->cur_depth;
503
504 if (min_events)
505 ret = io_u_queued_complete(td, min_events);
506 } else
507 cleanup_pending_aio(td);
508
509 td_set_runstate(td, TD_RUNNING);
510}
511
512/*
513 * Main IO worker function. It retrieves io_u's to process and queues
514 * and reaps them, checking for rate and errors along the way.
515 */
516static void do_io(struct thread_data *td)
517{
518 unsigned long usec;
519 unsigned int i;
520 int ret = 0;
521
522 if (in_ramp_time(td))
523 td_set_runstate(td, TD_RAMP);
524 else
525 td_set_runstate(td, TD_RUNNING);
526
527 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) {
528 struct timeval comp_time;
529 long bytes_done = 0;
530 int min_evts = 0;
531 struct io_u *io_u;
532 int ret2, full;
533
534 if (td->terminate)
535 break;
536
537 io_u = get_io_u(td);
538 if (!io_u)
539 break;
540
541 update_tv_cache(td);
542
543 if (runtime_exceeded(td, &td->tv_cache)) {
544 put_io_u(td, io_u);
545 td->terminate = 1;
546 break;
547 }
548
549 /*
550 * Add verification end_io handler, if asked to verify
551 * a previously written file.
552 */
553 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ) {
554 io_u->end_io = verify_io_u;
555 td_set_runstate(td, TD_VERIFYING);
556 } else if (in_ramp_time(td))
557 td_set_runstate(td, TD_RAMP);
558 else
559 td_set_runstate(td, TD_RUNNING);
560
561 ret = td_io_queue(td, io_u);
562 switch (ret) {
563 case FIO_Q_COMPLETED:
564 if (io_u->error)
565 ret = -io_u->error;
566 else if (io_u->resid) {
567 int bytes = io_u->xfer_buflen - io_u->resid;
568 struct fio_file *f = io_u->file;
569
570 /*
571 * zero read, fail
572 */
573 if (!bytes) {
574 td_verror(td, EIO, "full resid");
575 put_io_u(td, io_u);
576 break;
577 }
578
579 io_u->xfer_buflen = io_u->resid;
580 io_u->xfer_buf += bytes;
581 io_u->offset += bytes;
582
583 td->ts.short_io_u[io_u->ddir]++;
584
585 if (io_u->offset == f->real_file_size)
586 goto sync_done;
587
588 requeue_io_u(td, &io_u);
589 } else {
590sync_done:
591 if (should_check_rate(td))
592 fio_gettime(&comp_time, NULL);
593
594 bytes_done = io_u_sync_complete(td, io_u);
595 if (bytes_done < 0)
596 ret = bytes_done;
597 }
598 break;
599 case FIO_Q_QUEUED:
600 /*
601 * if the engine doesn't have a commit hook,
602 * the io_u is really queued. if it does have such
603 * a hook, it has to call io_u_queued() itself.
604 */
605 if (td->io_ops->commit == NULL)
606 io_u_queued(td, io_u);
607 break;
608 case FIO_Q_BUSY:
609 requeue_io_u(td, &io_u);
610 ret2 = td_io_commit(td);
611 if (ret2 < 0)
612 ret = ret2;
613 break;
614 default:
615 assert(ret < 0);
616 put_io_u(td, io_u);
617 break;
618 }
619
620 if (ret < 0 || td->error)
621 break;
622
623 /*
624 * See if we need to complete some commands
625 */
626 full = queue_full(td) || ret == FIO_Q_BUSY;
627 if (full || !td->o.iodepth_batch_complete) {
628 min_evts = td->o.iodepth_batch_complete;
629 if (full && !min_evts)
630 min_evts = 1;
631
632 if (should_check_rate(td))
633 fio_gettime(&comp_time, NULL);
634
635 do {
636 ret = io_u_queued_complete(td, min_evts);
637 if (ret <= 0)
638 break;
639
640 bytes_done += ret;
641 } while (full && (td->cur_depth > td->o.iodepth_low));
642 }
643
644 if (ret < 0)
645 break;
646 if (!bytes_done)
647 continue;
648
649 /*
650 * the rate is batched for now, it should work for batches
651 * of completions except the very first one which may look
652 * a little bursty
653 */
654 if (!in_ramp_time(td) && should_check_rate(td)) {
655 usec = utime_since(&td->tv_cache, &comp_time);
656
657 rate_throttle(td, usec, bytes_done);
658
659 if (check_min_rate(td, &comp_time)) {
660 if (exitall_on_terminate)
661 terminate_threads(td->groupid);
662 td_verror(td, EIO, "check_min_rate");
663 break;
664 }
665 }
666
667 if (td->o.thinktime) {
668 unsigned long long b;
669
670 b = td->io_blocks[0] + td->io_blocks[1];
671 if (!(b % td->o.thinktime_blocks)) {
672 int left;
673
674 if (td->o.thinktime_spin)
675 __usec_sleep(td->o.thinktime_spin);
676
677 left = td->o.thinktime - td->o.thinktime_spin;
678 if (left)
679 usec_sleep(td, left);
680 }
681 }
682 }
683
684 if (td->o.fill_device && td->error == ENOSPC) {
685 td->error = 0;
686 td->terminate = 1;
687 }
688 if (!td->error) {
689 struct fio_file *f;
690
691 i = td->cur_depth;
692 if (i)
693 ret = io_u_queued_complete(td, i);
694
695 if (should_fsync(td) && td->o.end_fsync) {
696 td_set_runstate(td, TD_FSYNCING);
697
698 for_each_file(td, f, i) {
699 if (!(f->flags & FIO_FILE_OPEN))
700 continue;
701 fio_io_sync(td, f);
702 }
703 }
704 } else
705 cleanup_pending_aio(td);
706
707 /*
708 * stop job if we failed doing any IO
709 */
710 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
711 td->done = 1;
712}
713
714static void cleanup_io_u(struct thread_data *td)
715{
716 struct flist_head *entry, *n;
717 struct io_u *io_u;
718
719 flist_for_each_safe(entry, n, &td->io_u_freelist) {
720 io_u = flist_entry(entry, struct io_u, list);
721
722 flist_del(&io_u->list);
723 free(io_u);
724 }
725
726 free_io_mem(td);
727}
728
729static int init_io_u(struct thread_data *td)
730{
731 struct io_u *io_u;
732 unsigned int max_bs;
733 int i, max_units;
734 char *p;
735
736 max_units = td->o.iodepth;
737 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
738 td->orig_buffer_size = (unsigned long long) max_bs
739 * (unsigned long long) max_units;
740
741 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
742 unsigned long bs;
743
744 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
745 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
746 }
747
748 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
749 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
750 return 1;
751 }
752
753 if (allocate_io_mem(td))
754 return 1;
755
756 if (td->o.odirect)
757 p = ALIGN(td->orig_buffer);
758 else
759 p = td->orig_buffer;
760
761 for (i = 0; i < max_units; i++) {
762 if (td->terminate)
763 return 1;
764 io_u = malloc(sizeof(*io_u));
765 memset(io_u, 0, sizeof(*io_u));
766 INIT_FLIST_HEAD(&io_u->list);
767
768 if (!(td->io_ops->flags & FIO_NOIO)) {
769 io_u->buf = p + max_bs * i;
770
771 if (td_write(td) && !td->o.refill_buffers)
772 io_u_fill_buffer(td, io_u, max_bs);
773 }
774
775 io_u->index = i;
776 io_u->flags = IO_U_F_FREE;
777 flist_add(&io_u->list, &td->io_u_freelist);
778 }
779
780 return 0;
781}
782
783static int switch_ioscheduler(struct thread_data *td)
784{
785 char tmp[256], tmp2[128];
786 FILE *f;
787 int ret;
788
789 if (td->io_ops->flags & FIO_DISKLESSIO)
790 return 0;
791
792 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
793
794 f = fopen(tmp, "r+");
795 if (!f) {
796 if (errno == ENOENT) {
797 log_err("fio: os or kernel doesn't support IO scheduler"
798 " switching\n");
799 return 0;
800 }
801 td_verror(td, errno, "fopen iosched");
802 return 1;
803 }
804
805 /*
806 * Set io scheduler.
807 */
808 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
809 if (ferror(f) || ret != 1) {
810 td_verror(td, errno, "fwrite");
811 fclose(f);
812 return 1;
813 }
814
815 rewind(f);
816
817 /*
818 * Read back and check that the selected scheduler is now the default.
819 */
820 ret = fread(tmp, 1, sizeof(tmp), f);
821 if (ferror(f) || ret < 0) {
822 td_verror(td, errno, "fread");
823 fclose(f);
824 return 1;
825 }
826
827 sprintf(tmp2, "[%s]", td->o.ioscheduler);
828 if (!strstr(tmp, tmp2)) {
829 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
830 td_verror(td, EINVAL, "iosched_switch");
831 fclose(f);
832 return 1;
833 }
834
835 fclose(f);
836 return 0;
837}
838
839static int keep_running(struct thread_data *td)
840{
841 unsigned long long io_done;
842
843 if (td->done)
844 return 0;
845 if (td->o.time_based)
846 return 1;
847 if (td->o.loops) {
848 td->o.loops--;
849 return 1;
850 }
851
852 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
853 + td->io_skip_bytes;
854 if (io_done < td->o.size)
855 return 1;
856
857 return 0;
858}
859
860static void reset_io_counters(struct thread_data *td)
861{
862 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
863 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
864 td->zone_bytes = 0;
865 td->rate_bytes = 0;
866 td->rate_blocks = 0;
867 td->rw_end_set[0] = td->rw_end_set[1] = 0;
868
869 td->last_was_sync = 0;
870
871 /*
872 * reset file done count if we are to start over
873 */
874 if (td->o.time_based || td->o.loops)
875 td->nr_done_files = 0;
876}
877
878void reset_all_stats(struct thread_data *td)
879{
880 struct timeval tv;
881 int i;
882
883 reset_io_counters(td);
884
885 for (i = 0; i < 2; i++) {
886 td->io_bytes[i] = 0;
887 td->io_blocks[i] = 0;
888 td->io_issues[i] = 0;
889 td->ts.total_io_u[i] = 0;
890 }
891
892 fio_gettime(&tv, NULL);
893 memcpy(&td->epoch, &tv, sizeof(tv));
894 memcpy(&td->start, &tv, sizeof(tv));
895}
896
897static int clear_io_state(struct thread_data *td)
898{
899 struct fio_file *f;
900 unsigned int i;
901 int ret;
902
903 reset_io_counters(td);
904
905 close_files(td);
906
907 ret = 0;
908 for_each_file(td, f, i) {
909 f->flags &= ~FIO_FILE_DONE;
910 ret = td_io_open_file(td, f);
911 if (ret)
912 break;
913 }
914
915 return ret;
916}
917
918/*
919 * Entry point for the thread based jobs. The process based jobs end up
920 * here as well, after a little setup.
921 */
922static void *thread_main(void *data)
923{
924 unsigned long long runtime[2], elapsed;
925 struct thread_data *td = data;
926 int clear_state;
927
928 if (!td->o.use_thread)
929 setsid();
930
931 td->pid = getpid();
932
933 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
934
935 INIT_FLIST_HEAD(&td->io_u_freelist);
936 INIT_FLIST_HEAD(&td->io_u_busylist);
937 INIT_FLIST_HEAD(&td->io_u_requeues);
938 INIT_FLIST_HEAD(&td->io_log_list);
939 INIT_FLIST_HEAD(&td->io_hist_list);
940 td->io_hist_tree = RB_ROOT;
941
942 td_set_runstate(td, TD_INITIALIZED);
943 fio_mutex_up(startup_mutex);
944 fio_mutex_down(td->mutex);
945
946 /*
947 * the ->mutex mutex is now no longer used, close it to avoid
948 * eating a file descriptor
949 */
950 fio_mutex_remove(td->mutex);
951
952 /*
953 * May alter parameters that init_io_u() will use, so we need to
954 * do this first.
955 */
956 if (init_iolog(td))
957 goto err;
958
959 if (init_io_u(td))
960 goto err;
961
962 if (td->o.cpumask_set && fio_setaffinity(td) == -1) {
963 td_verror(td, errno, "cpu_set_affinity");
964 goto err;
965 }
966
967 if (td->ioprio_set) {
968 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
969 td_verror(td, errno, "ioprio_set");
970 goto err;
971 }
972 }
973
974 if (nice(td->o.nice) == -1) {
975 td_verror(td, errno, "nice");
976 goto err;
977 }
978
979 if (td->o.ioscheduler && switch_ioscheduler(td))
980 goto err;
981
982 if (!td->o.create_serialize && setup_files(td))
983 goto err;
984
985 if (td_io_init(td))
986 goto err;
987
988 if (open_files(td))
989 goto err;
990
991 if (init_random_map(td))
992 goto err;
993
994 if (td->o.exec_prerun) {
995 if (system(td->o.exec_prerun) < 0)
996 goto err;
997 }
998
999 fio_gettime(&td->epoch, NULL);
1000 getrusage(RUSAGE_SELF, &td->ts.ru_start);
1001
1002 runtime[0] = runtime[1] = 0;
1003 clear_state = 0;
1004 while (keep_running(td)) {
1005 fio_gettime(&td->start, NULL);
1006 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
1007 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1008
1009 if (td->o.ratemin)
1010 memcpy(&td->lastrate, &td->ts.stat_sample_time,
1011 sizeof(td->lastrate));
1012
1013 if (clear_state && clear_io_state(td))
1014 break;
1015
1016 prune_io_piece_log(td);
1017
1018 do_io(td);
1019
1020 clear_state = 1;
1021
1022 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1023 if (td->rw_end_set[DDIR_READ])
1024 elapsed = utime_since(&td->start,
1025 &td->rw_end[DDIR_READ]);
1026 else
1027 elapsed = utime_since_now(&td->start);
1028
1029 runtime[DDIR_READ] += elapsed;
1030 }
1031 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1032 if (td->rw_end_set[DDIR_WRITE])
1033 elapsed = utime_since(&td->start,
1034 &td->rw_end[DDIR_WRITE]);
1035 else
1036 elapsed = utime_since_now(&td->start);
1037
1038 runtime[DDIR_WRITE] += elapsed;
1039 }
1040
1041 if (td->error || td->terminate)
1042 break;
1043
1044 if (!td->o.do_verify ||
1045 td->o.verify == VERIFY_NONE ||
1046 (td->io_ops->flags & FIO_UNIDIR))
1047 continue;
1048
1049 if (clear_io_state(td))
1050 break;
1051
1052 fio_gettime(&td->start, NULL);
1053
1054 do_verify(td);
1055
1056 runtime[DDIR_READ] += utime_since_now(&td->start);
1057
1058 if (td->error || td->terminate)
1059 break;
1060 }
1061
1062 update_rusage_stat(td);
1063 td->ts.runtime[0] = (runtime[0] + 999) / 1000;
1064 td->ts.runtime[1] = (runtime[1] + 999) / 1000;
1065 td->ts.total_run_time = mtime_since_now(&td->epoch);
1066 td->ts.io_bytes[0] = td->io_bytes[0];
1067 td->ts.io_bytes[1] = td->io_bytes[1];
1068
1069 if (td->ts.bw_log) {
1070 if (td->o.bw_log_file)
1071 finish_log_named(td, td->ts.bw_log, td->o.bw_log_file, "bw");
1072 else
1073 finish_log(td, td->ts.bw_log, "bw");
1074 }
1075 if (td->ts.slat_log) {
1076 if (td->o.lat_log_file)
1077 finish_log_named(td, td->ts.slat_log, td->o.lat_log_file, "clat");
1078 else
1079 finish_log(td, td->ts.slat_log, "slat");
1080 }
1081 if (td->ts.clat_log) {
1082 if (td->o.lat_log_file)
1083 finish_log_named(td, td->ts.clat_log, td->o.lat_log_file, "clat");
1084 else
1085 finish_log(td, td->ts.clat_log, "clat");
1086 }
1087 if (td->o.exec_postrun) {
1088 if (system(td->o.exec_postrun) < 0)
1089 log_err("fio: postrun %s failed\n", td->o.exec_postrun);
1090 }
1091
1092 if (exitall_on_terminate)
1093 terminate_threads(td->groupid);
1094
1095err:
1096 if (td->error)
1097 printf("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1098 td->verror);
1099 close_and_free_files(td);
1100 close_ioengine(td);
1101 cleanup_io_u(td);
1102
1103 /*
1104 * do this very late, it will log file closing as well
1105 */
1106 if (td->o.write_iolog_file)
1107 write_iolog_close(td);
1108
1109 options_mem_free(td);
1110 td_set_runstate(td, TD_EXITED);
1111 return (void *) (unsigned long) td->error;
1112}
1113
1114/*
1115 * We cannot pass the td data into a forked process, so attach the td and
1116 * pass it to the thread worker.
1117 */
1118static int fork_main(int shmid, int offset)
1119{
1120 struct thread_data *td;
1121 void *data, *ret;
1122
1123 data = shmat(shmid, NULL, 0);
1124 if (data == (void *) -1) {
1125 int __err = errno;
1126
1127 perror("shmat");
1128 return __err;
1129 }
1130
1131 td = data + offset * sizeof(struct thread_data);
1132 ret = thread_main(td);
1133 shmdt(data);
1134 return (int) (unsigned long) ret;
1135}
1136
1137/*
1138 * Run over the job map and reap the threads that have exited, if any.
1139 */
1140static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1141{
1142 struct thread_data *td;
1143 int i, cputhreads, realthreads, pending, status, ret;
1144
1145 /*
1146 * reap exited threads (TD_EXITED -> TD_REAPED)
1147 */
1148 realthreads = pending = cputhreads = 0;
1149 for_each_td(td, i) {
1150 int flags = 0;
1151
1152 /*
1153 * ->io_ops is NULL for a thread that has closed its
1154 * io engine
1155 */
1156 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1157 cputhreads++;
1158 else
1159 realthreads++;
1160
1161 if (!td->pid) {
1162 pending++;
1163 continue;
1164 }
1165 if (td->runstate == TD_REAPED)
1166 continue;
1167 if (td->o.use_thread) {
1168 if (td->runstate == TD_EXITED) {
1169 td_set_runstate(td, TD_REAPED);
1170 goto reaped;
1171 }
1172 continue;
1173 }
1174
1175 flags = WNOHANG;
1176 if (td->runstate == TD_EXITED)
1177 flags = 0;
1178
1179 /*
1180 * check if someone quit or got killed in an unusual way
1181 */
1182 ret = waitpid(td->pid, &status, flags);
1183 if (ret < 0) {
1184 if (errno == ECHILD) {
1185 log_err("fio: pid=%d disappeared %d\n",
1186 (int) td->pid, td->runstate);
1187 td_set_runstate(td, TD_REAPED);
1188 goto reaped;
1189 }
1190 perror("waitpid");
1191 } else if (ret == td->pid) {
1192 if (WIFSIGNALED(status)) {
1193 int sig = WTERMSIG(status);
1194
1195 if (sig != SIGQUIT)
1196 log_err("fio: pid=%d, got signal=%d\n",
1197 (int) td->pid, sig);
1198 td_set_runstate(td, TD_REAPED);
1199 goto reaped;
1200 }
1201 if (WIFEXITED(status)) {
1202 if (WEXITSTATUS(status) && !td->error)
1203 td->error = WEXITSTATUS(status);
1204
1205 td_set_runstate(td, TD_REAPED);
1206 goto reaped;
1207 }
1208 }
1209
1210 /*
1211 * thread is not dead, continue
1212 */
1213 pending++;
1214 continue;
1215reaped:
1216 (*nr_running)--;
1217 (*m_rate) -= td->o.ratemin;
1218 (*t_rate) -= td->o.rate;
1219 if (!td->pid)
1220 pending--;
1221
1222 if (td->error)
1223 exit_value++;
1224
1225 done_secs += mtime_since_now(&td->epoch) / 1000;
1226 }
1227
1228 if (*nr_running == cputhreads && !pending && realthreads)
1229 terminate_threads(TERMINATE_ALL);
1230}
1231
1232/*
1233 * Main function for kicking off and reaping jobs, as needed.
1234 */
1235static void run_threads(void)
1236{
1237 struct thread_data *td;
1238 unsigned long spent;
1239 int i, todo, nr_running, m_rate, t_rate, nr_started;
1240
1241 if (fio_pin_memory())
1242 return;
1243
1244 if (!terse_output) {
1245 printf("Starting ");
1246 if (nr_thread)
1247 printf("%d thread%s", nr_thread,
1248 nr_thread > 1 ? "s" : "");
1249 if (nr_process) {
1250 if (nr_thread)
1251 printf(" and ");
1252 printf("%d process%s", nr_process,
1253 nr_process > 1 ? "es" : "");
1254 }
1255 printf("\n");
1256 fflush(stdout);
1257 }
1258
1259 set_sig_handlers();
1260
1261 todo = thread_number;
1262 nr_running = 0;
1263 nr_started = 0;
1264 m_rate = t_rate = 0;
1265
1266 for_each_td(td, i) {
1267 print_status_init(td->thread_number - 1);
1268
1269 if (!td->o.create_serialize) {
1270 init_disk_util(td);
1271 continue;
1272 }
1273
1274 /*
1275 * do file setup here so it happens sequentially,
1276 * we don't want X number of threads getting their
1277 * client data interspersed on disk
1278 */
1279 if (setup_files(td)) {
1280 exit_value++;
1281 if (td->error)
1282 log_err("fio: pid=%d, err=%d/%s\n",
1283 (int) td->pid, td->error, td->verror);
1284 td_set_runstate(td, TD_REAPED);
1285 todo--;
1286 } else {
1287 struct fio_file *f;
1288 unsigned int i;
1289
1290 /*
1291 * for sharing to work, each job must always open
1292 * its own files. so close them, if we opened them
1293 * for creation
1294 */
1295 for_each_file(td, f, i)
1296 td_io_close_file(td, f);
1297 }
1298
1299 init_disk_util(td);
1300 }
1301
1302 set_genesis_time();
1303
1304 while (todo) {
1305 struct thread_data *map[MAX_JOBS];
1306 struct timeval this_start;
1307 int this_jobs = 0, left;
1308
1309 /*
1310 * create threads (TD_NOT_CREATED -> TD_CREATED)
1311 */
1312 for_each_td(td, i) {
1313 if (td->runstate != TD_NOT_CREATED)
1314 continue;
1315
1316 /*
1317 * never got a chance to start, killed by other
1318 * thread for some reason
1319 */
1320 if (td->terminate) {
1321 todo--;
1322 continue;
1323 }
1324
1325 if (td->o.start_delay) {
1326 spent = mtime_since_genesis();
1327
1328 if (td->o.start_delay * 1000 > spent)
1329 continue;
1330 }
1331
1332 if (td->o.stonewall && (nr_started || nr_running)) {
1333 dprint(FD_PROCESS, "%s: stonewall wait\n",
1334 td->o.name);
1335 break;
1336 }
1337
1338 /*
1339 * Set state to created. Thread will transition
1340 * to TD_INITIALIZED when it's done setting up.
1341 */
1342 td_set_runstate(td, TD_CREATED);
1343 map[this_jobs++] = td;
1344 nr_started++;
1345
1346 if (td->o.use_thread) {
1347 dprint(FD_PROCESS, "will pthread_create\n");
1348 if (pthread_create(&td->thread, NULL,
1349 thread_main, td)) {
1350 perror("pthread_create");
1351 nr_started--;
1352 break;
1353 }
1354 if (pthread_detach(td->thread) < 0)
1355 perror("pthread_detach");
1356 } else {
1357 pid_t pid;
1358 dprint(FD_PROCESS, "will fork\n");
1359 pid = fork();
1360 if (!pid) {
1361 int ret = fork_main(shm_id, i);
1362
1363 _exit(ret);
1364 } else if (i == fio_debug_jobno)
1365 *fio_debug_jobp = pid;
1366 }
1367 fio_mutex_down(startup_mutex);
1368 }
1369
1370 /*
1371 * Wait for the started threads to transition to
1372 * TD_INITIALIZED.
1373 */
1374 fio_gettime(&this_start, NULL);
1375 left = this_jobs;
1376 while (left && !fio_abort) {
1377 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1378 break;
1379
1380 usleep(100000);
1381
1382 for (i = 0; i < this_jobs; i++) {
1383 td = map[i];
1384 if (!td)
1385 continue;
1386 if (td->runstate == TD_INITIALIZED) {
1387 map[i] = NULL;
1388 left--;
1389 } else if (td->runstate >= TD_EXITED) {
1390 map[i] = NULL;
1391 left--;
1392 todo--;
1393 nr_running++; /* work-around... */
1394 }
1395 }
1396 }
1397
1398 if (left) {
1399 log_err("fio: %d jobs failed to start\n", left);
1400 for (i = 0; i < this_jobs; i++) {
1401 td = map[i];
1402 if (!td)
1403 continue;
1404 kill(td->pid, SIGTERM);
1405 }
1406 break;
1407 }
1408
1409 /*
1410 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1411 */
1412 for_each_td(td, i) {
1413 if (td->runstate != TD_INITIALIZED)
1414 continue;
1415
1416 if (in_ramp_time(td))
1417 td_set_runstate(td, TD_RAMP);
1418 else
1419 td_set_runstate(td, TD_RUNNING);
1420 nr_running++;
1421 nr_started--;
1422 m_rate += td->o.ratemin;
1423 t_rate += td->o.rate;
1424 todo--;
1425 fio_mutex_up(td->mutex);
1426 }
1427
1428 reap_threads(&nr_running, &t_rate, &m_rate);
1429
1430 if (todo)
1431 usleep(100000);
1432 }
1433
1434 while (nr_running) {
1435 reap_threads(&nr_running, &t_rate, &m_rate);
1436 usleep(10000);
1437 }
1438
1439 update_io_ticks();
1440 fio_unpin_memory();
1441}
1442
1443int main(int argc, char *argv[])
1444{
1445 long ps;
1446
1447 sinit();
1448
1449 /*
1450 * We need locale for number printing, if it isn't set then just
1451 * go with the US format.
1452 */
1453 if (!getenv("LC_NUMERIC"))
1454 setlocale(LC_NUMERIC, "en_US");
1455
1456 if (parse_options(argc, argv))
1457 return 1;
1458
1459 if (!thread_number)
1460 return 0;
1461
1462 ps = sysconf(_SC_PAGESIZE);
1463 if (ps < 0) {
1464 log_err("Failed to get page size\n");
1465 return 1;
1466 }
1467
1468 page_size = ps;
1469 page_mask = ps - 1;
1470
1471 if (write_bw_log) {
1472 setup_log(&agg_io_log[DDIR_READ]);
1473 setup_log(&agg_io_log[DDIR_WRITE]);
1474 }
1475
1476 startup_mutex = fio_mutex_init(0);
1477
1478 set_genesis_time();
1479
1480 status_timer_arm();
1481
1482 run_threads();
1483
1484 if (!fio_abort) {
1485 show_run_stats();
1486 if (write_bw_log) {
1487 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1488 __finish_log(agg_io_log[DDIR_WRITE],
1489 "agg-write_bw.log");
1490 }
1491 }
1492
1493 fio_mutex_remove(startup_mutex);
1494 return exit_value;
1495}