Not all platforms have ENODATA
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "hash.h"
39#include "smalloc.h"
40
41unsigned long page_mask;
42unsigned long page_size;
43#define ALIGN(buf) \
44 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
45
46int groupid = 0;
47int thread_number = 0;
48int nr_process = 0;
49int nr_thread = 0;
50int shm_id = 0;
51int temp_stall_ts;
52unsigned long done_secs = 0;
53
54static struct fio_mutex *startup_mutex;
55static volatile int fio_abort;
56static int exit_value;
57static struct itimerval itimer;
58
59struct io_log *agg_io_log[2];
60
61#define TERMINATE_ALL (-1)
62#define JOB_START_TIMEOUT (5 * 1000)
63
64static inline void td_set_runstate(struct thread_data *td, int runstate)
65{
66 if (td->runstate == runstate)
67 return;
68
69 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
70 td->runstate, runstate);
71 td->runstate = runstate;
72}
73
74static void terminate_threads(int group_id)
75{
76 struct thread_data *td;
77 int i;
78
79 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
80
81 for_each_td(td, i) {
82 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
83 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
84 td->o.name, (int) td->pid);
85 td->terminate = 1;
86 td->o.start_delay = 0;
87
88 /*
89 * if the thread is running, just let it exit
90 */
91 if (td->runstate < TD_RUNNING)
92 kill(td->pid, SIGQUIT);
93 else {
94 struct ioengine_ops *ops = td->io_ops;
95
96 if (ops && (ops->flags & FIO_SIGQUIT))
97 kill(td->pid, SIGQUIT);
98 }
99 }
100 }
101}
102
103static void status_timer_arm(void)
104{
105 itimer.it_value.tv_sec = 0;
106 itimer.it_value.tv_usec = DISK_UTIL_MSEC * 1000;
107 setitimer(ITIMER_REAL, &itimer, NULL);
108}
109
110static void sig_alrm(int sig)
111{
112 if (threads) {
113 update_io_ticks();
114 print_thread_status();
115 status_timer_arm();
116 }
117}
118
119static void sig_int(int sig)
120{
121 if (threads) {
122 printf("\nfio: terminating on signal %d\n", sig);
123 fflush(stdout);
124 terminate_threads(TERMINATE_ALL);
125 }
126}
127
128/*
129 * We need to rearm on BSD/solaris. Switch this to sigaction in the future...
130 */
131static void set_sig_handlers(void)
132{
133 struct sigaction act;
134
135 memset(&act, 0, sizeof(act));
136 act.sa_handler = sig_alrm;
137 act.sa_flags = SA_RESTART;
138 sigaction(SIGALRM, &act, NULL);
139
140 memset(&act, 0, sizeof(act));
141 act.sa_handler = sig_int;
142 act.sa_flags = SA_RESTART;
143 sigaction(SIGINT, &act, NULL);
144}
145
146/*
147 * Check if we are above the minimum rate given.
148 */
149static int check_min_rate(struct thread_data *td, struct timeval *now)
150{
151 unsigned long long bytes = 0;
152 unsigned long iops = 0;
153 unsigned long spent;
154 unsigned long rate;
155
156 /*
157 * No minimum rate set, always ok
158 */
159 if (!td->o.ratemin && !td->o.rate_iops_min)
160 return 0;
161
162 /*
163 * allow a 2 second settle period in the beginning
164 */
165 if (mtime_since(&td->start, now) < 2000)
166 return 0;
167
168 if (td_read(td)) {
169 iops += td->io_blocks[DDIR_READ];
170 bytes += td->this_io_bytes[DDIR_READ];
171 }
172 if (td_write(td)) {
173 iops += td->io_blocks[DDIR_WRITE];
174 bytes += td->this_io_bytes[DDIR_WRITE];
175 }
176
177 /*
178 * if rate blocks is set, sample is running
179 */
180 if (td->rate_bytes || td->rate_blocks) {
181 spent = mtime_since(&td->lastrate, now);
182 if (spent < td->o.ratecycle)
183 return 0;
184
185 if (td->o.rate) {
186 /*
187 * check bandwidth specified rate
188 */
189 if (bytes < td->rate_bytes) {
190 log_err("%s: min rate %u not met\n", td->o.name,
191 td->o.ratemin);
192 return 1;
193 } else {
194 rate = (bytes - td->rate_bytes) / spent;
195 if (rate < td->o.ratemin ||
196 bytes < td->rate_bytes) {
197 log_err("%s: min rate %u not met, got"
198 " %luKiB/sec\n", td->o.name,
199 td->o.ratemin, rate);
200 return 1;
201 }
202 }
203 } else {
204 /*
205 * checks iops specified rate
206 */
207 if (iops < td->o.rate_iops) {
208 log_err("%s: min iops rate %u not met\n",
209 td->o.name, td->o.rate_iops);
210 return 1;
211 } else {
212 rate = (iops - td->rate_blocks) / spent;
213 if (rate < td->o.rate_iops_min ||
214 iops < td->rate_blocks) {
215 log_err("%s: min iops rate %u not met,"
216 " got %lu\n", td->o.name,
217 td->o.rate_iops_min,
218 rate);
219 }
220 }
221 }
222 }
223
224 td->rate_bytes = bytes;
225 td->rate_blocks = iops;
226 memcpy(&td->lastrate, now, sizeof(*now));
227 return 0;
228}
229
230static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
231{
232 if (!td->o.timeout)
233 return 0;
234 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
235 return 1;
236
237 return 0;
238}
239
240/*
241 * When job exits, we can cancel the in-flight IO if we are using async
242 * io. Attempt to do so.
243 */
244static void cleanup_pending_aio(struct thread_data *td)
245{
246 struct flist_head *entry, *n;
247 struct io_u *io_u;
248 int r;
249
250 /*
251 * get immediately available events, if any
252 */
253 r = io_u_queued_complete(td, 0);
254 if (r < 0)
255 return;
256
257 /*
258 * now cancel remaining active events
259 */
260 if (td->io_ops->cancel) {
261 flist_for_each_safe(entry, n, &td->io_u_busylist) {
262 io_u = flist_entry(entry, struct io_u, list);
263
264 /*
265 * if the io_u isn't in flight, then that generally
266 * means someone leaked an io_u. complain but fix
267 * it up, so we don't stall here.
268 */
269 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
270 log_err("fio: non-busy IO on busy list\n");
271 put_io_u(td, io_u);
272 } else {
273 r = td->io_ops->cancel(td, io_u);
274 if (!r)
275 put_io_u(td, io_u);
276 }
277 }
278 }
279
280 if (td->cur_depth)
281 r = io_u_queued_complete(td, td->cur_depth);
282}
283
284/*
285 * Helper to handle the final sync of a file. Works just like the normal
286 * io path, just does everything sync.
287 */
288static int fio_io_sync(struct thread_data *td, struct fio_file *f)
289{
290 struct io_u *io_u = __get_io_u(td);
291 int ret;
292
293 if (!io_u)
294 return 1;
295
296 io_u->ddir = DDIR_SYNC;
297 io_u->file = f;
298
299 if (td_io_prep(td, io_u)) {
300 put_io_u(td, io_u);
301 return 1;
302 }
303
304requeue:
305 ret = td_io_queue(td, io_u);
306 if (ret < 0) {
307 td_verror(td, io_u->error, "td_io_queue");
308 put_io_u(td, io_u);
309 return 1;
310 } else if (ret == FIO_Q_QUEUED) {
311 if (io_u_queued_complete(td, 1) < 0)
312 return 1;
313 } else if (ret == FIO_Q_COMPLETED) {
314 if (io_u->error) {
315 td_verror(td, io_u->error, "td_io_queue");
316 return 1;
317 }
318
319 if (io_u_sync_complete(td, io_u) < 0)
320 return 1;
321 } else if (ret == FIO_Q_BUSY) {
322 if (td_io_commit(td))
323 return 1;
324 goto requeue;
325 }
326
327 return 0;
328}
329
330/*
331 * The main verify engine. Runs over the writes we previously submitted,
332 * reads the blocks back in, and checks the crc/md5 of the data.
333 */
334static void do_verify(struct thread_data *td)
335{
336 struct fio_file *f;
337 struct io_u *io_u;
338 int ret, min_events;
339 unsigned int i;
340
341 /*
342 * sync io first and invalidate cache, to make sure we really
343 * read from disk.
344 */
345 for_each_file(td, f, i) {
346 if (!(f->flags & FIO_FILE_OPEN))
347 continue;
348 if (fio_io_sync(td, f))
349 break;
350 if (file_invalidate_cache(td, f))
351 break;
352 }
353
354 if (td->error)
355 return;
356
357 td_set_runstate(td, TD_VERIFYING);
358
359 io_u = NULL;
360 while (!td->terminate) {
361 int ret2;
362
363 io_u = __get_io_u(td);
364 if (!io_u)
365 break;
366
367 if (runtime_exceeded(td, &io_u->start_time)) {
368 put_io_u(td, io_u);
369 td->terminate = 1;
370 break;
371 }
372
373 if (get_next_verify(td, io_u)) {
374 put_io_u(td, io_u);
375 break;
376 }
377
378 if (td_io_prep(td, io_u)) {
379 put_io_u(td, io_u);
380 break;
381 }
382
383 io_u->end_io = verify_io_u;
384
385 ret = td_io_queue(td, io_u);
386 switch (ret) {
387 case FIO_Q_COMPLETED:
388 if (io_u->error)
389 ret = -io_u->error;
390 else if (io_u->resid) {
391 int bytes = io_u->xfer_buflen - io_u->resid;
392 struct fio_file *f = io_u->file;
393
394 /*
395 * zero read, fail
396 */
397 if (!bytes) {
398 td_verror(td, EIO, "full resid");
399 put_io_u(td, io_u);
400 break;
401 }
402
403 io_u->xfer_buflen = io_u->resid;
404 io_u->xfer_buf += bytes;
405 io_u->offset += bytes;
406
407 td->ts.short_io_u[io_u->ddir]++;
408
409 if (io_u->offset == f->real_file_size)
410 goto sync_done;
411
412 requeue_io_u(td, &io_u);
413 } else {
414sync_done:
415 ret = io_u_sync_complete(td, io_u);
416 if (ret < 0)
417 break;
418 }
419 continue;
420 case FIO_Q_QUEUED:
421 break;
422 case FIO_Q_BUSY:
423 requeue_io_u(td, &io_u);
424 ret2 = td_io_commit(td);
425 if (ret2 < 0)
426 ret = ret2;
427 break;
428 default:
429 assert(ret < 0);
430 td_verror(td, -ret, "td_io_queue");
431 break;
432 }
433
434 if (ret < 0 || td->error)
435 break;
436
437 /*
438 * if we can queue more, do so. but check if there are
439 * completed io_u's first.
440 */
441 min_events = 0;
442 if (queue_full(td) || ret == FIO_Q_BUSY) {
443 if (td->cur_depth >= td->o.iodepth_low)
444 min_events = td->cur_depth - td->o.iodepth_low;
445 if (!min_events)
446 min_events = 1;
447 }
448
449 /*
450 * Reap required number of io units, if any, and do the
451 * verification on them through the callback handler
452 */
453 if (io_u_queued_complete(td, min_events) < 0)
454 break;
455 }
456
457 if (!td->error) {
458 min_events = td->cur_depth;
459
460 if (min_events)
461 ret = io_u_queued_complete(td, min_events);
462 } else
463 cleanup_pending_aio(td);
464
465 td_set_runstate(td, TD_RUNNING);
466}
467
468/*
469 * Main IO worker function. It retrieves io_u's to process and queues
470 * and reaps them, checking for rate and errors along the way.
471 */
472static void do_io(struct thread_data *td)
473{
474 struct timeval s;
475 unsigned long usec;
476 unsigned int i;
477 int ret = 0;
478
479 td_set_runstate(td, TD_RUNNING);
480
481 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) {
482 struct timeval comp_time;
483 long bytes_done = 0;
484 int min_evts = 0;
485 struct io_u *io_u;
486 int ret2;
487
488 if (td->terminate)
489 break;
490
491 io_u = get_io_u(td);
492 if (!io_u)
493 break;
494
495 memcpy(&s, &io_u->start_time, sizeof(s));
496
497 if (runtime_exceeded(td, &s)) {
498 put_io_u(td, io_u);
499 td->terminate = 1;
500 break;
501 }
502
503 /*
504 * Add verification end_io handler, if asked to verify
505 * a previously written file.
506 */
507 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ) {
508 io_u->end_io = verify_io_u;
509 td_set_runstate(td, TD_VERIFYING);
510 } else
511 td_set_runstate(td, TD_RUNNING);
512
513 ret = td_io_queue(td, io_u);
514 switch (ret) {
515 case FIO_Q_COMPLETED:
516 if (io_u->error)
517 ret = -io_u->error;
518 else if (io_u->resid) {
519 int bytes = io_u->xfer_buflen - io_u->resid;
520 struct fio_file *f = io_u->file;
521
522 /*
523 * zero read, fail
524 */
525 if (!bytes) {
526 td_verror(td, EIO, "full resid");
527 put_io_u(td, io_u);
528 break;
529 }
530
531 io_u->xfer_buflen = io_u->resid;
532 io_u->xfer_buf += bytes;
533 io_u->offset += bytes;
534
535 td->ts.short_io_u[io_u->ddir]++;
536
537 if (io_u->offset == f->real_file_size)
538 goto sync_done;
539
540 requeue_io_u(td, &io_u);
541 } else {
542sync_done:
543 fio_gettime(&comp_time, NULL);
544 bytes_done = io_u_sync_complete(td, io_u);
545 if (bytes_done < 0)
546 ret = bytes_done;
547 }
548 break;
549 case FIO_Q_QUEUED:
550 /*
551 * if the engine doesn't have a commit hook,
552 * the io_u is really queued. if it does have such
553 * a hook, it has to call io_u_queued() itself.
554 */
555 if (td->io_ops->commit == NULL)
556 io_u_queued(td, io_u);
557 break;
558 case FIO_Q_BUSY:
559 requeue_io_u(td, &io_u);
560 ret2 = td_io_commit(td);
561 if (ret2 < 0)
562 ret = ret2;
563 break;
564 default:
565 assert(ret < 0);
566 put_io_u(td, io_u);
567 break;
568 }
569
570 if (ret < 0 || td->error)
571 break;
572
573 /*
574 * See if we need to complete some commands
575 */
576 if (queue_full(td) || ret == FIO_Q_BUSY) {
577 min_evts = 0;
578 if (td->cur_depth >= td->o.iodepth_low)
579 min_evts = td->cur_depth - td->o.iodepth_low;
580 if (!min_evts)
581 min_evts = 1;
582 fio_gettime(&comp_time, NULL);
583 bytes_done = io_u_queued_complete(td, min_evts);
584 if (bytes_done < 0)
585 break;
586 }
587
588 if (!bytes_done)
589 continue;
590
591 /*
592 * the rate is batched for now, it should work for batches
593 * of completions except the very first one which may look
594 * a little bursty
595 */
596 usec = utime_since(&s, &comp_time);
597
598 rate_throttle(td, usec, bytes_done);
599
600 if (check_min_rate(td, &comp_time)) {
601 if (exitall_on_terminate)
602 terminate_threads(td->groupid);
603 td_verror(td, EIO, "check_min_rate");
604 break;
605 }
606
607 if (td->o.thinktime) {
608 unsigned long long b;
609
610 b = td->io_blocks[0] + td->io_blocks[1];
611 if (!(b % td->o.thinktime_blocks)) {
612 int left;
613
614 if (td->o.thinktime_spin)
615 __usec_sleep(td->o.thinktime_spin);
616
617 left = td->o.thinktime - td->o.thinktime_spin;
618 if (left)
619 usec_sleep(td, left);
620 }
621 }
622 }
623
624 if (td->o.fill_device && td->error == ENOSPC) {
625 td->error = 0;
626 td->terminate = 1;
627 }
628 if (!td->error) {
629 struct fio_file *f;
630
631 i = td->cur_depth;
632 if (i)
633 ret = io_u_queued_complete(td, i);
634
635 if (should_fsync(td) && td->o.end_fsync) {
636 td_set_runstate(td, TD_FSYNCING);
637
638 for_each_file(td, f, i) {
639 if (!(f->flags & FIO_FILE_OPEN))
640 continue;
641 fio_io_sync(td, f);
642 }
643 }
644 } else
645 cleanup_pending_aio(td);
646
647 /*
648 * stop job if we failed doing any IO
649 */
650 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
651 td->done = 1;
652}
653
654static void cleanup_io_u(struct thread_data *td)
655{
656 struct flist_head *entry, *n;
657 struct io_u *io_u;
658
659 flist_for_each_safe(entry, n, &td->io_u_freelist) {
660 io_u = flist_entry(entry, struct io_u, list);
661
662 flist_del(&io_u->list);
663 free(io_u);
664 }
665
666 free_io_mem(td);
667}
668
669static int init_io_u(struct thread_data *td)
670{
671 struct io_u *io_u;
672 unsigned int max_bs;
673 int i, max_units;
674 char *p;
675
676 max_units = td->o.iodepth;
677 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
678 td->orig_buffer_size = (unsigned long long) max_bs
679 * (unsigned long long) max_units;
680
681 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
682 unsigned long bs;
683
684 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
685 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
686 }
687
688 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
689 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
690 return 1;
691 }
692
693 if (allocate_io_mem(td))
694 return 1;
695
696 if (td->o.odirect)
697 p = ALIGN(td->orig_buffer);
698 else
699 p = td->orig_buffer;
700
701 for (i = 0; i < max_units; i++) {
702 if (td->terminate)
703 return 1;
704 io_u = malloc(sizeof(*io_u));
705 memset(io_u, 0, sizeof(*io_u));
706 INIT_FLIST_HEAD(&io_u->list);
707
708 if (!(td->io_ops->flags & FIO_NOIO)) {
709 io_u->buf = p + max_bs * i;
710
711 if (td_write(td) && !td->o.refill_buffers)
712 io_u_fill_buffer(td, io_u, max_bs);
713 }
714
715 io_u->index = i;
716 io_u->flags = IO_U_F_FREE;
717 flist_add(&io_u->list, &td->io_u_freelist);
718 }
719
720 io_u_init_timeout();
721
722 return 0;
723}
724
725static int switch_ioscheduler(struct thread_data *td)
726{
727 char tmp[256], tmp2[128];
728 FILE *f;
729 int ret;
730
731 if (td->io_ops->flags & FIO_DISKLESSIO)
732 return 0;
733
734 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
735
736 f = fopen(tmp, "r+");
737 if (!f) {
738 if (errno == ENOENT) {
739 log_err("fio: os or kernel doesn't support IO scheduler"
740 " switching\n");
741 return 0;
742 }
743 td_verror(td, errno, "fopen iosched");
744 return 1;
745 }
746
747 /*
748 * Set io scheduler.
749 */
750 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
751 if (ferror(f) || ret != 1) {
752 td_verror(td, errno, "fwrite");
753 fclose(f);
754 return 1;
755 }
756
757 rewind(f);
758
759 /*
760 * Read back and check that the selected scheduler is now the default.
761 */
762 ret = fread(tmp, 1, sizeof(tmp), f);
763 if (ferror(f) || ret < 0) {
764 td_verror(td, errno, "fread");
765 fclose(f);
766 return 1;
767 }
768
769 sprintf(tmp2, "[%s]", td->o.ioscheduler);
770 if (!strstr(tmp, tmp2)) {
771 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
772 td_verror(td, EINVAL, "iosched_switch");
773 fclose(f);
774 return 1;
775 }
776
777 fclose(f);
778 return 0;
779}
780
781static int keep_running(struct thread_data *td)
782{
783 unsigned long long io_done;
784
785 if (td->done)
786 return 0;
787 if (td->o.time_based)
788 return 1;
789 if (td->o.loops) {
790 td->o.loops--;
791 return 1;
792 }
793
794 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
795 + td->io_skip_bytes;
796 if (io_done < td->o.size)
797 return 1;
798
799 return 0;
800}
801
802static int clear_io_state(struct thread_data *td)
803{
804 struct fio_file *f;
805 unsigned int i;
806 int ret;
807
808 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
809 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
810 td->zone_bytes = 0;
811 td->rate_bytes = 0;
812 td->rate_blocks = 0;
813 td->rw_end_set[0] = td->rw_end_set[1] = 0;
814
815 td->last_was_sync = 0;
816
817 /*
818 * reset file done count if we are to start over
819 */
820 if (td->o.time_based || td->o.loops)
821 td->nr_done_files = 0;
822
823 close_files(td);
824
825 ret = 0;
826 for_each_file(td, f, i) {
827 f->flags &= ~FIO_FILE_DONE;
828 ret = td_io_open_file(td, f);
829 if (ret)
830 break;
831 }
832
833 return ret;
834}
835
836/*
837 * Entry point for the thread based jobs. The process based jobs end up
838 * here as well, after a little setup.
839 */
840static void *thread_main(void *data)
841{
842 unsigned long long runtime[2], elapsed;
843 struct thread_data *td = data;
844 int clear_state;
845
846 if (!td->o.use_thread)
847 setsid();
848
849 td->pid = getpid();
850
851 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
852
853 INIT_FLIST_HEAD(&td->io_u_freelist);
854 INIT_FLIST_HEAD(&td->io_u_busylist);
855 INIT_FLIST_HEAD(&td->io_u_requeues);
856 INIT_FLIST_HEAD(&td->io_log_list);
857 INIT_FLIST_HEAD(&td->io_hist_list);
858 td->io_hist_tree = RB_ROOT;
859
860 td_set_runstate(td, TD_INITIALIZED);
861 fio_mutex_up(startup_mutex);
862 fio_mutex_down(td->mutex);
863
864 /*
865 * the ->mutex mutex is now no longer used, close it to avoid
866 * eating a file descriptor
867 */
868 fio_mutex_remove(td->mutex);
869
870 /*
871 * May alter parameters that init_io_u() will use, so we need to
872 * do this first.
873 */
874 if (init_iolog(td))
875 goto err;
876
877 if (init_io_u(td))
878 goto err;
879
880 if (td->o.cpumask_set && fio_setaffinity(td) == -1) {
881 td_verror(td, errno, "cpu_set_affinity");
882 goto err;
883 }
884
885 if (td->ioprio_set) {
886 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
887 td_verror(td, errno, "ioprio_set");
888 goto err;
889 }
890 }
891
892 if (nice(td->o.nice) == -1) {
893 td_verror(td, errno, "nice");
894 goto err;
895 }
896
897 if (td->o.ioscheduler && switch_ioscheduler(td))
898 goto err;
899
900 if (!td->o.create_serialize && setup_files(td))
901 goto err;
902
903 if (td_io_init(td))
904 goto err;
905
906 if (open_files(td))
907 goto err;
908
909 if (init_random_map(td))
910 goto err;
911
912 if (td->o.exec_prerun) {
913 if (system(td->o.exec_prerun) < 0)
914 goto err;
915 }
916
917 fio_gettime(&td->epoch, NULL);
918 memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch));
919 getrusage(RUSAGE_SELF, &td->ts.ru_start);
920
921 runtime[0] = runtime[1] = 0;
922 clear_state = 0;
923 while (keep_running(td)) {
924 fio_gettime(&td->start, NULL);
925 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
926
927 if (td->o.ratemin)
928 memcpy(&td->lastrate, &td->ts.stat_sample_time,
929 sizeof(td->lastrate));
930
931 if (clear_state && clear_io_state(td))
932 break;
933
934 prune_io_piece_log(td);
935
936 do_io(td);
937
938 clear_state = 1;
939
940 if (td_read(td) && td->io_bytes[DDIR_READ]) {
941 if (td->rw_end_set[DDIR_READ])
942 elapsed = utime_since(&td->start,
943 &td->rw_end[DDIR_READ]);
944 else
945 elapsed = utime_since_now(&td->start);
946
947 runtime[DDIR_READ] += elapsed;
948 }
949 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
950 if (td->rw_end_set[DDIR_WRITE])
951 elapsed = utime_since(&td->start,
952 &td->rw_end[DDIR_WRITE]);
953 else
954 elapsed = utime_since_now(&td->start);
955
956 runtime[DDIR_WRITE] += elapsed;
957 }
958
959 if (td->error || td->terminate)
960 break;
961
962 if (!td->o.do_verify ||
963 td->o.verify == VERIFY_NONE ||
964 (td->io_ops->flags & FIO_UNIDIR))
965 continue;
966
967 if (clear_io_state(td))
968 break;
969
970 fio_gettime(&td->start, NULL);
971
972 do_verify(td);
973
974 runtime[DDIR_READ] += utime_since_now(&td->start);
975
976 if (td->error || td->terminate)
977 break;
978 }
979
980 update_rusage_stat(td);
981 td->ts.runtime[0] = (runtime[0] + 999) / 1000;
982 td->ts.runtime[1] = (runtime[1] + 999) / 1000;
983 td->ts.total_run_time = mtime_since_now(&td->epoch);
984 td->ts.io_bytes[0] = td->io_bytes[0];
985 td->ts.io_bytes[1] = td->io_bytes[1];
986
987 if (td->ts.bw_log)
988 finish_log(td, td->ts.bw_log, "bw");
989 if (td->ts.slat_log)
990 finish_log(td, td->ts.slat_log, "slat");
991 if (td->ts.clat_log)
992 finish_log(td, td->ts.clat_log, "clat");
993 if (td->o.exec_postrun) {
994 if (system(td->o.exec_postrun) < 0)
995 log_err("fio: postrun %s failed\n", td->o.exec_postrun);
996 }
997
998 if (exitall_on_terminate)
999 terminate_threads(td->groupid);
1000
1001err:
1002 if (td->error)
1003 printf("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1004 td->verror);
1005 close_and_free_files(td);
1006 close_ioengine(td);
1007 cleanup_io_u(td);
1008
1009 /*
1010 * do this very late, it will log file closing as well
1011 */
1012 if (td->o.write_iolog_file)
1013 write_iolog_close(td);
1014
1015 options_mem_free(td);
1016 td_set_runstate(td, TD_EXITED);
1017 return (void *) (unsigned long) td->error;
1018}
1019
1020/*
1021 * We cannot pass the td data into a forked process, so attach the td and
1022 * pass it to the thread worker.
1023 */
1024static int fork_main(int shmid, int offset)
1025{
1026 struct thread_data *td;
1027 void *data, *ret;
1028
1029 data = shmat(shmid, NULL, 0);
1030 if (data == (void *) -1) {
1031 int __err = errno;
1032
1033 perror("shmat");
1034 return __err;
1035 }
1036
1037 td = data + offset * sizeof(struct thread_data);
1038 ret = thread_main(td);
1039 shmdt(data);
1040 return (int) (unsigned long) ret;
1041}
1042
1043/*
1044 * Run over the job map and reap the threads that have exited, if any.
1045 */
1046static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1047{
1048 struct thread_data *td;
1049 int i, cputhreads, realthreads, pending, status, ret;
1050
1051 /*
1052 * reap exited threads (TD_EXITED -> TD_REAPED)
1053 */
1054 realthreads = pending = cputhreads = 0;
1055 for_each_td(td, i) {
1056 int flags = 0;
1057
1058 /*
1059 * ->io_ops is NULL for a thread that has closed its
1060 * io engine
1061 */
1062 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1063 cputhreads++;
1064 else
1065 realthreads++;
1066
1067 if (!td->pid) {
1068 pending++;
1069 continue;
1070 }
1071 if (td->runstate == TD_REAPED)
1072 continue;
1073 if (td->o.use_thread) {
1074 if (td->runstate == TD_EXITED) {
1075 td_set_runstate(td, TD_REAPED);
1076 goto reaped;
1077 }
1078 continue;
1079 }
1080
1081 flags = WNOHANG;
1082 if (td->runstate == TD_EXITED)
1083 flags = 0;
1084
1085 /*
1086 * check if someone quit or got killed in an unusual way
1087 */
1088 ret = waitpid(td->pid, &status, flags);
1089 if (ret < 0) {
1090 if (errno == ECHILD) {
1091 log_err("fio: pid=%d disappeared %d\n",
1092 (int) td->pid, td->runstate);
1093 td_set_runstate(td, TD_REAPED);
1094 goto reaped;
1095 }
1096 perror("waitpid");
1097 } else if (ret == td->pid) {
1098 if (WIFSIGNALED(status)) {
1099 int sig = WTERMSIG(status);
1100
1101 if (sig != SIGQUIT)
1102 log_err("fio: pid=%d, got signal=%d\n",
1103 (int) td->pid, sig);
1104 td_set_runstate(td, TD_REAPED);
1105 goto reaped;
1106 }
1107 if (WIFEXITED(status)) {
1108 if (WEXITSTATUS(status) && !td->error)
1109 td->error = WEXITSTATUS(status);
1110
1111 td_set_runstate(td, TD_REAPED);
1112 goto reaped;
1113 }
1114 }
1115
1116 /*
1117 * thread is not dead, continue
1118 */
1119 pending++;
1120 continue;
1121reaped:
1122 (*nr_running)--;
1123 (*m_rate) -= td->o.ratemin;
1124 (*t_rate) -= td->o.rate;
1125 if (!td->pid)
1126 pending--;
1127
1128 if (td->error)
1129 exit_value++;
1130
1131 done_secs += mtime_since_now(&td->epoch) / 1000;
1132 }
1133
1134 if (*nr_running == cputhreads && !pending && realthreads)
1135 terminate_threads(TERMINATE_ALL);
1136}
1137
1138/*
1139 * Main function for kicking off and reaping jobs, as needed.
1140 */
1141static void run_threads(void)
1142{
1143 struct thread_data *td;
1144 unsigned long spent;
1145 int i, todo, nr_running, m_rate, t_rate, nr_started;
1146
1147 if (fio_pin_memory())
1148 return;
1149
1150 if (!terse_output) {
1151 printf("Starting ");
1152 if (nr_thread)
1153 printf("%d thread%s", nr_thread,
1154 nr_thread > 1 ? "s" : "");
1155 if (nr_process) {
1156 if (nr_thread)
1157 printf(" and ");
1158 printf("%d process%s", nr_process,
1159 nr_process > 1 ? "es" : "");
1160 }
1161 printf("\n");
1162 fflush(stdout);
1163 }
1164
1165 set_sig_handlers();
1166
1167 todo = thread_number;
1168 nr_running = 0;
1169 nr_started = 0;
1170 m_rate = t_rate = 0;
1171
1172 for_each_td(td, i) {
1173 print_status_init(td->thread_number - 1);
1174
1175 if (!td->o.create_serialize) {
1176 init_disk_util(td);
1177 continue;
1178 }
1179
1180 /*
1181 * do file setup here so it happens sequentially,
1182 * we don't want X number of threads getting their
1183 * client data interspersed on disk
1184 */
1185 if (setup_files(td)) {
1186 exit_value++;
1187 if (td->error)
1188 log_err("fio: pid=%d, err=%d/%s\n",
1189 (int) td->pid, td->error, td->verror);
1190 td_set_runstate(td, TD_REAPED);
1191 todo--;
1192 } else {
1193 struct fio_file *f;
1194 unsigned int i;
1195
1196 /*
1197 * for sharing to work, each job must always open
1198 * its own files. so close them, if we opened them
1199 * for creation
1200 */
1201 for_each_file(td, f, i)
1202 td_io_close_file(td, f);
1203 }
1204
1205 init_disk_util(td);
1206 }
1207
1208 set_genesis_time();
1209
1210 while (todo) {
1211 struct thread_data *map[MAX_JOBS];
1212 struct timeval this_start;
1213 int this_jobs = 0, left;
1214
1215 /*
1216 * create threads (TD_NOT_CREATED -> TD_CREATED)
1217 */
1218 for_each_td(td, i) {
1219 if (td->runstate != TD_NOT_CREATED)
1220 continue;
1221
1222 /*
1223 * never got a chance to start, killed by other
1224 * thread for some reason
1225 */
1226 if (td->terminate) {
1227 todo--;
1228 continue;
1229 }
1230
1231 if (td->o.start_delay) {
1232 spent = mtime_since_genesis();
1233
1234 if (td->o.start_delay * 1000 > spent)
1235 continue;
1236 }
1237
1238 if (td->o.stonewall && (nr_started || nr_running)) {
1239 dprint(FD_PROCESS, "%s: stonewall wait\n",
1240 td->o.name);
1241 break;
1242 }
1243
1244 /*
1245 * Set state to created. Thread will transition
1246 * to TD_INITIALIZED when it's done setting up.
1247 */
1248 td_set_runstate(td, TD_CREATED);
1249 map[this_jobs++] = td;
1250 nr_started++;
1251
1252 if (td->o.use_thread) {
1253 dprint(FD_PROCESS, "will pthread_create\n");
1254 if (pthread_create(&td->thread, NULL,
1255 thread_main, td)) {
1256 perror("pthread_create");
1257 nr_started--;
1258 break;
1259 }
1260 if (pthread_detach(td->thread) < 0)
1261 perror("pthread_detach");
1262 } else {
1263 pid_t pid;
1264 dprint(FD_PROCESS, "will fork\n");
1265 pid = fork();
1266 if (!pid) {
1267 int ret = fork_main(shm_id, i);
1268
1269 _exit(ret);
1270 } else if (i == fio_debug_jobno)
1271 *fio_debug_jobp = pid;
1272 }
1273 fio_mutex_down(startup_mutex);
1274 }
1275
1276 /*
1277 * Wait for the started threads to transition to
1278 * TD_INITIALIZED.
1279 */
1280 fio_gettime(&this_start, NULL);
1281 left = this_jobs;
1282 while (left && !fio_abort) {
1283 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1284 break;
1285
1286 usleep(100000);
1287
1288 for (i = 0; i < this_jobs; i++) {
1289 td = map[i];
1290 if (!td)
1291 continue;
1292 if (td->runstate == TD_INITIALIZED) {
1293 map[i] = NULL;
1294 left--;
1295 } else if (td->runstate >= TD_EXITED) {
1296 map[i] = NULL;
1297 left--;
1298 todo--;
1299 nr_running++; /* work-around... */
1300 }
1301 }
1302 }
1303
1304 if (left) {
1305 log_err("fio: %d jobs failed to start\n", left);
1306 for (i = 0; i < this_jobs; i++) {
1307 td = map[i];
1308 if (!td)
1309 continue;
1310 kill(td->pid, SIGTERM);
1311 }
1312 break;
1313 }
1314
1315 /*
1316 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1317 */
1318 for_each_td(td, i) {
1319 if (td->runstate != TD_INITIALIZED)
1320 continue;
1321
1322 td_set_runstate(td, TD_RUNNING);
1323 nr_running++;
1324 nr_started--;
1325 m_rate += td->o.ratemin;
1326 t_rate += td->o.rate;
1327 todo--;
1328 fio_mutex_up(td->mutex);
1329 }
1330
1331 reap_threads(&nr_running, &t_rate, &m_rate);
1332
1333 if (todo)
1334 usleep(100000);
1335 }
1336
1337 while (nr_running) {
1338 reap_threads(&nr_running, &t_rate, &m_rate);
1339 usleep(10000);
1340 }
1341
1342 update_io_ticks();
1343 fio_unpin_memory();
1344}
1345
1346int main(int argc, char *argv[])
1347{
1348 long ps;
1349
1350 sinit();
1351
1352 /*
1353 * We need locale for number printing, if it isn't set then just
1354 * go with the US format.
1355 */
1356 if (!getenv("LC_NUMERIC"))
1357 setlocale(LC_NUMERIC, "en_US");
1358
1359 if (parse_options(argc, argv))
1360 return 1;
1361
1362 if (!thread_number)
1363 return 0;
1364
1365 ps = sysconf(_SC_PAGESIZE);
1366 if (ps < 0) {
1367 log_err("Failed to get page size\n");
1368 return 1;
1369 }
1370
1371 page_size = ps;
1372 page_mask = ps - 1;
1373
1374 if (write_bw_log) {
1375 setup_log(&agg_io_log[DDIR_READ]);
1376 setup_log(&agg_io_log[DDIR_WRITE]);
1377 }
1378
1379 startup_mutex = fio_mutex_init(0);
1380
1381 set_genesis_time();
1382
1383 status_timer_arm();
1384
1385 run_threads();
1386
1387 if (!fio_abort) {
1388 show_run_stats();
1389 if (write_bw_log) {
1390 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1391 __finish_log(agg_io_log[DDIR_WRITE],
1392 "agg-write_bw.log");
1393 }
1394 }
1395
1396 fio_mutex_remove(startup_mutex);
1397 return exit_value;
1398}