Forced kill is not used anymore.
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "os.h"
39
40static unsigned long page_mask;
41#define ALIGN(buf) \
42 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
43
44int groupid = 0;
45int thread_number = 0;
46int shm_id = 0;
47int temp_stall_ts;
48
49static volatile int startup_sem;
50static volatile int fio_abort;
51static int exit_value;
52
53struct io_log *agg_io_log[2];
54
55#define TERMINATE_ALL (-1)
56#define JOB_START_TIMEOUT (5 * 1000)
57
58static inline void td_set_runstate(struct thread_data *td, int runstate)
59{
60 td->runstate = runstate;
61}
62
63static void terminate_threads(int group_id)
64{
65 struct thread_data *td;
66 int i;
67
68 for_each_td(td, i) {
69 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
70 kill(td->pid, SIGQUIT);
71 td->terminate = 1;
72 td->start_delay = 0;
73 }
74 }
75}
76
77static void sig_handler(int sig)
78{
79 switch (sig) {
80 case SIGALRM:
81 update_io_ticks();
82 disk_util_timer_arm();
83 print_thread_status();
84 break;
85 default:
86 printf("\nfio: terminating on signal %d\n", sig);
87 fflush(stdout);
88 terminate_threads(TERMINATE_ALL);
89 break;
90 }
91}
92
93/*
94 * Check if we are above the minimum rate given.
95 */
96static int check_min_rate(struct thread_data *td, struct timeval *now)
97{
98 unsigned long long bytes = 0;
99 unsigned long spent;
100 unsigned long rate;
101
102 /*
103 * No minimum rate set, always ok
104 */
105 if (!td->ratemin)
106 return 0;
107
108 /*
109 * allow a 2 second settle period in the beginning
110 */
111 if (mtime_since(&td->start, now) < 2000)
112 return 0;
113
114 if (td_read(td))
115 bytes += td->this_io_bytes[DDIR_READ];
116 if (td_write(td))
117 bytes += td->this_io_bytes[DDIR_WRITE];
118
119 /*
120 * if rate blocks is set, sample is running
121 */
122 if (td->rate_bytes) {
123 spent = mtime_since(&td->lastrate, now);
124 if (spent < td->ratecycle)
125 return 0;
126
127 if (bytes < td->rate_bytes) {
128 fprintf(f_out, "%s: min rate %u not met\n", td->name, td->ratemin);
129 return 1;
130 } else {
131 rate = (bytes - td->rate_bytes) / spent;
132 if (rate < td->ratemin || bytes < td->rate_bytes) {
133 fprintf(f_out, "%s: min rate %u not met, got %luKiB/sec\n", td->name, td->ratemin, rate);
134 return 1;
135 }
136 }
137 }
138
139 td->rate_bytes = bytes;
140 memcpy(&td->lastrate, now, sizeof(*now));
141 return 0;
142}
143
144static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
145{
146 if (!td->timeout)
147 return 0;
148 if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
149 return 1;
150
151 return 0;
152}
153
154/*
155 * When job exits, we can cancel the in-flight IO if we are using async
156 * io. Attempt to do so.
157 */
158static void cleanup_pending_aio(struct thread_data *td)
159{
160 struct list_head *entry, *n;
161 struct io_u *io_u;
162 int r;
163
164 /*
165 * get immediately available events, if any
166 */
167 r = io_u_queued_complete(td, 0);
168 if (r < 0)
169 return;
170
171 /*
172 * now cancel remaining active events
173 */
174 if (td->io_ops->cancel) {
175 list_for_each_safe(entry, n, &td->io_u_busylist) {
176 io_u = list_entry(entry, struct io_u, list);
177
178 /*
179 * if the io_u isn't in flight, then that generally
180 * means someone leaked an io_u. complain but fix
181 * it up, so we don't stall here.
182 */
183 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
184 log_err("fio: non-busy IO on busy list\n");
185 put_io_u(td, io_u);
186 } else {
187 r = td->io_ops->cancel(td, io_u);
188 if (!r)
189 put_io_u(td, io_u);
190 }
191 }
192 }
193
194 if (td->cur_depth)
195 r = io_u_queued_complete(td, td->cur_depth);
196}
197
198/*
199 * Helper to handle the final sync of a file. Works just like the normal
200 * io path, just does everything sync.
201 */
202static int fio_io_sync(struct thread_data *td, struct fio_file *f)
203{
204 struct io_u *io_u = __get_io_u(td);
205 int ret;
206
207 if (!io_u)
208 return 1;
209
210 io_u->ddir = DDIR_SYNC;
211 io_u->file = f;
212
213 if (td_io_prep(td, io_u)) {
214 put_io_u(td, io_u);
215 return 1;
216 }
217
218requeue:
219 ret = td_io_queue(td, io_u);
220 if (ret < 0) {
221 td_verror(td, io_u->error, "td_io_queue");
222 put_io_u(td, io_u);
223 return 1;
224 } else if (ret == FIO_Q_QUEUED) {
225 if (io_u_queued_complete(td, 1) < 0)
226 return 1;
227 } else if (ret == FIO_Q_COMPLETED) {
228 if (io_u->error) {
229 td_verror(td, io_u->error, "td_io_queue");
230 return 1;
231 }
232
233 if (io_u_sync_complete(td, io_u) < 0)
234 return 1;
235 } else if (ret == FIO_Q_BUSY) {
236 if (td_io_commit(td))
237 return 1;
238 goto requeue;
239 }
240
241 return 0;
242}
243
244/*
245 * The main verify engine. Runs over the writes we previously submitted,
246 * reads the blocks back in, and checks the crc/md5 of the data.
247 */
248static void do_verify(struct thread_data *td)
249{
250 struct fio_file *f;
251 struct io_u *io_u;
252 int ret, i, min_events;
253
254 /*
255 * sync io first and invalidate cache, to make sure we really
256 * read from disk.
257 */
258 for_each_file(td, f, i) {
259 if (fio_io_sync(td, f))
260 break;
261 if (file_invalidate_cache(td, f))
262 break;
263 }
264
265 if (td->error)
266 return;
267
268 td_set_runstate(td, TD_VERIFYING);
269
270 io_u = NULL;
271 while (!td->terminate) {
272 int ret2;
273
274 io_u = __get_io_u(td);
275 if (!io_u)
276 break;
277
278 if (runtime_exceeded(td, &io_u->start_time)) {
279 put_io_u(td, io_u);
280 break;
281 }
282
283 if (get_next_verify(td, io_u)) {
284 put_io_u(td, io_u);
285 break;
286 }
287
288 if (td_io_prep(td, io_u)) {
289 put_io_u(td, io_u);
290 break;
291 }
292
293 io_u->end_io = verify_io_u;
294requeue:
295 ret = td_io_queue(td, io_u);
296
297 switch (ret) {
298 case FIO_Q_COMPLETED:
299 if (io_u->error)
300 ret = -io_u->error;
301 else if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
302 int bytes = io_u->xfer_buflen - io_u->resid;
303
304 io_u->xfer_buflen = io_u->resid;
305 io_u->xfer_buf += bytes;
306 goto requeue;
307 }
308 ret = io_u_sync_complete(td, io_u);
309 if (ret < 0)
310 break;
311 continue;
312 case FIO_Q_QUEUED:
313 break;
314 case FIO_Q_BUSY:
315 requeue_io_u(td, &io_u);
316 ret2 = td_io_commit(td);
317 if (ret2 < 0)
318 ret = ret2;
319 break;
320 default:
321 assert(ret < 0);
322 td_verror(td, -ret, "td_io_queue");
323 break;
324 }
325
326 if (ret < 0 || td->error)
327 break;
328
329 /*
330 * if we can queue more, do so. but check if there are
331 * completed io_u's first.
332 */
333 min_events = 0;
334 if (queue_full(td) || ret == FIO_Q_BUSY) {
335 min_events = 1;
336
337 if (td->cur_depth > td->iodepth_low)
338 min_events = td->cur_depth - td->iodepth_low;
339 }
340
341 /*
342 * Reap required number of io units, if any, and do the
343 * verification on them through the callback handler
344 */
345 if (io_u_queued_complete(td, min_events) < 0)
346 break;
347 }
348
349 if (!td->error) {
350 min_events = td->cur_depth;
351
352 if (min_events)
353 ret = io_u_queued_complete(td, min_events);
354 } else
355 cleanup_pending_aio(td);
356
357 td_set_runstate(td, TD_RUNNING);
358}
359
360/*
361 * Not really an io thread, all it does is burn CPU cycles in the specified
362 * manner.
363 */
364static void do_cpuio(struct thread_data *td)
365{
366 struct timeval e;
367 int split = 100 / td->cpuload;
368 int i = 0;
369
370 while (!td->terminate) {
371 fio_gettime(&e, NULL);
372
373 if (runtime_exceeded(td, &e))
374 break;
375
376 if (!(i % split))
377 __usec_sleep(10000);
378 else
379 usec_sleep(td, 10000);
380
381 i++;
382 }
383}
384
385/*
386 * Main IO worker function. It retrieves io_u's to process and queues
387 * and reaps them, checking for rate and errors along the way.
388 */
389static void do_io(struct thread_data *td)
390{
391 struct timeval s;
392 unsigned long usec;
393 int i, ret = 0;
394
395 td_set_runstate(td, TD_RUNNING);
396
397 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->io_size) {
398 struct timeval comp_time;
399 long bytes_done = 0;
400 int min_evts = 0;
401 struct io_u *io_u;
402 int ret2;
403
404 if (td->terminate)
405 break;
406
407 io_u = get_io_u(td);
408 if (!io_u)
409 break;
410
411 memcpy(&s, &io_u->start_time, sizeof(s));
412
413 if (runtime_exceeded(td, &s)) {
414 put_io_u(td, io_u);
415 break;
416 }
417requeue:
418 ret = td_io_queue(td, io_u);
419
420 switch (ret) {
421 case FIO_Q_COMPLETED:
422 if (io_u->error)
423 ret = -io_u->error;
424 else if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
425 int bytes = io_u->xfer_buflen - io_u->resid;
426
427 io_u->xfer_buflen = io_u->resid;
428 io_u->xfer_buf += bytes;
429 goto requeue;
430 }
431 fio_gettime(&comp_time, NULL);
432 bytes_done = io_u_sync_complete(td, io_u);
433 if (bytes_done < 0)
434 ret = bytes_done;
435 break;
436 case FIO_Q_QUEUED:
437 /*
438 * if the engine doesn't have a commit hook,
439 * the io_u is really queued. if it does have such
440 * a hook, it has to call io_u_queued() itself.
441 */
442 if (td->io_ops->commit == NULL)
443 io_u_queued(td, io_u);
444 break;
445 case FIO_Q_BUSY:
446 requeue_io_u(td, &io_u);
447 ret2 = td_io_commit(td);
448 if (ret2 < 0)
449 ret = ret2;
450 break;
451 default:
452 assert(ret < 0);
453 put_io_u(td, io_u);
454 break;
455 }
456
457 if (ret < 0 || td->error)
458 break;
459
460 /*
461 * See if we need to complete some commands
462 */
463 if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) {
464 min_evts = 0;
465 if (queue_full(td) || ret == FIO_Q_BUSY) {
466 min_evts = 1;
467
468 if (td->cur_depth > td->iodepth_low)
469 min_evts = td->cur_depth - td->iodepth_low;
470 }
471
472 fio_gettime(&comp_time, NULL);
473 bytes_done = io_u_queued_complete(td, min_evts);
474 if (bytes_done < 0)
475 break;
476 }
477
478 if (!bytes_done)
479 continue;
480
481 /*
482 * the rate is batched for now, it should work for batches
483 * of completions except the very first one which may look
484 * a little bursty
485 */
486 usec = utime_since(&s, &comp_time);
487
488 rate_throttle(td, usec, bytes_done);
489
490 if (check_min_rate(td, &comp_time)) {
491 if (exitall_on_terminate)
492 terminate_threads(td->groupid);
493 td_verror(td, ENODATA, "check_min_rate");
494 break;
495 }
496
497 if (td->thinktime) {
498 unsigned long long b;
499
500 b = td->io_blocks[0] + td->io_blocks[1];
501 if (!(b % td->thinktime_blocks)) {
502 int left;
503
504 if (td->thinktime_spin)
505 __usec_sleep(td->thinktime_spin);
506
507 left = td->thinktime - td->thinktime_spin;
508 if (left)
509 usec_sleep(td, left);
510 }
511 }
512 }
513
514 if (!td->error) {
515 struct fio_file *f;
516
517 i = td->cur_depth;
518 if (i)
519 ret = io_u_queued_complete(td, i);
520
521 if (should_fsync(td) && td->end_fsync) {
522 td_set_runstate(td, TD_FSYNCING);
523 for_each_file(td, f, i)
524 fio_io_sync(td, f);
525 }
526 } else
527 cleanup_pending_aio(td);
528}
529
530static void cleanup_io_u(struct thread_data *td)
531{
532 struct list_head *entry, *n;
533 struct io_u *io_u;
534
535 list_for_each_safe(entry, n, &td->io_u_freelist) {
536 io_u = list_entry(entry, struct io_u, list);
537
538 list_del(&io_u->list);
539 free(io_u);
540 }
541
542 free_io_mem(td);
543}
544
545/*
546 * "randomly" fill the buffer contents
547 */
548static void fill_rand_buf(struct io_u *io_u, int max_bs)
549{
550 int *ptr = io_u->buf;
551
552 while ((void *) ptr - io_u->buf < max_bs) {
553 *ptr = rand() * 0x9e370001;
554 ptr++;
555 }
556}
557
558static int init_io_u(struct thread_data *td)
559{
560 struct io_u *io_u;
561 unsigned int max_bs;
562 int i, max_units;
563 char *p;
564
565 if (td->io_ops->flags & FIO_CPUIO)
566 return 0;
567
568 if (td->io_ops->flags & FIO_SYNCIO)
569 max_units = 1;
570 else
571 max_units = td->iodepth;
572
573 max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
574 td->orig_buffer_size = max_bs * max_units;
575
576 if (td->mem_type == MEM_SHMHUGE || td->mem_type == MEM_MMAPHUGE)
577 td->orig_buffer_size = (td->orig_buffer_size + td->hugepage_size - 1) & ~(td->hugepage_size - 1);
578 else
579 td->orig_buffer_size += page_mask;
580
581 if (allocate_io_mem(td))
582 return 1;
583
584 p = ALIGN(td->orig_buffer);
585 for (i = 0; i < max_units; i++) {
586 io_u = malloc(sizeof(*io_u));
587 memset(io_u, 0, sizeof(*io_u));
588 INIT_LIST_HEAD(&io_u->list);
589
590 io_u->buf = p + max_bs * i;
591 if (td_write(td) || td_rw(td))
592 fill_rand_buf(io_u, max_bs);
593
594 io_u->index = i;
595 io_u->flags = IO_U_F_FREE;
596 list_add(&io_u->list, &td->io_u_freelist);
597 }
598
599 io_u_init_timeout();
600
601 return 0;
602}
603
604static int switch_ioscheduler(struct thread_data *td)
605{
606 char tmp[256], tmp2[128];
607 FILE *f;
608 int ret;
609
610 if (td->io_ops->flags & FIO_CPUIO)
611 return 0;
612
613 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
614
615 f = fopen(tmp, "r+");
616 if (!f) {
617 td_verror(td, errno, "fopen");
618 return 1;
619 }
620
621 /*
622 * Set io scheduler.
623 */
624 ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
625 if (ferror(f) || ret != 1) {
626 td_verror(td, errno, "fwrite");
627 fclose(f);
628 return 1;
629 }
630
631 rewind(f);
632
633 /*
634 * Read back and check that the selected scheduler is now the default.
635 */
636 ret = fread(tmp, 1, sizeof(tmp), f);
637 if (ferror(f) || ret < 0) {
638 td_verror(td, errno, "fread");
639 fclose(f);
640 return 1;
641 }
642
643 sprintf(tmp2, "[%s]", td->ioscheduler);
644 if (!strstr(tmp, tmp2)) {
645 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
646 td_verror(td, EINVAL, "iosched_switch");
647 fclose(f);
648 return 1;
649 }
650
651 fclose(f);
652 return 0;
653}
654
655static void clear_io_state(struct thread_data *td)
656{
657 struct fio_file *f;
658 int i;
659
660 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
661 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
662 td->zone_bytes = 0;
663
664 td->last_was_sync = 0;
665
666 for_each_file(td, f, i) {
667 f->last_completed_pos = 0;
668
669 f->last_pos = 0;
670 if (td->io_ops->flags & FIO_SYNCIO)
671 lseek(f->fd, SEEK_SET, 0);
672
673 if (f->file_map)
674 memset(f->file_map, 0, f->num_maps * sizeof(long));
675 }
676}
677
678/*
679 * Entry point for the thread based jobs. The process based jobs end up
680 * here as well, after a little setup.
681 */
682static void *thread_main(void *data)
683{
684 unsigned long long runtime[2];
685 struct thread_data *td = data;
686
687 if (!td->use_thread)
688 setsid();
689
690 td->pid = getpid();
691
692 INIT_LIST_HEAD(&td->io_u_freelist);
693 INIT_LIST_HEAD(&td->io_u_busylist);
694 INIT_LIST_HEAD(&td->io_u_requeues);
695 INIT_LIST_HEAD(&td->io_hist_list);
696 INIT_LIST_HEAD(&td->io_log_list);
697
698 if (init_io_u(td))
699 goto err;
700
701 if (fio_setaffinity(td) == -1) {
702 td_verror(td, errno, "cpu_set_affinity");
703 goto err;
704 }
705
706 if (init_iolog(td))
707 goto err;
708
709 if (td->ioprio) {
710 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
711 td_verror(td, errno, "ioprio_set");
712 goto err;
713 }
714 }
715
716 if (nice(td->nice) == -1) {
717 td_verror(td, errno, "nice");
718 goto err;
719 }
720
721 if (init_random_state(td))
722 goto err;
723
724 if (td->ioscheduler && switch_ioscheduler(td))
725 goto err;
726
727 td_set_runstate(td, TD_INITIALIZED);
728 fio_sem_up(&startup_sem);
729 fio_sem_down(&td->mutex);
730
731 if (!td->create_serialize && setup_files(td))
732 goto err;
733 if (open_files(td))
734 goto err;
735
736 /*
737 * Do this late, as some IO engines would like to have the
738 * files setup prior to initializing structures.
739 */
740 if (td_io_init(td))
741 goto err;
742
743 if (td->exec_prerun) {
744 if (system(td->exec_prerun) < 0)
745 goto err;
746 }
747
748 fio_gettime(&td->epoch, NULL);
749 memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch));
750 getrusage(RUSAGE_SELF, &td->ts.ru_start);
751
752 runtime[0] = runtime[1] = 0;
753 while (td->loops--) {
754 fio_gettime(&td->start, NULL);
755 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
756
757 if (td->ratemin)
758 memcpy(&td->lastrate, &td->ts.stat_sample_time, sizeof(td->lastrate));
759
760 clear_io_state(td);
761 prune_io_piece_log(td);
762
763 if (td->io_ops->flags & FIO_CPUIO)
764 do_cpuio(td);
765 else
766 do_io(td);
767
768 if (td_read(td) && td->io_bytes[DDIR_READ])
769 runtime[DDIR_READ] += utime_since_now(&td->start);
770 if (td_write(td) && td->io_bytes[DDIR_WRITE])
771 runtime[DDIR_WRITE] += utime_since_now(&td->start);
772
773 if (td->error || td->terminate)
774 break;
775
776 if (td->verify == VERIFY_NONE)
777 continue;
778
779 clear_io_state(td);
780 fio_gettime(&td->start, NULL);
781
782 do_verify(td);
783
784 runtime[DDIR_READ] += utime_since_now(&td->start);
785
786 if (td->error || td->terminate)
787 break;
788 }
789
790 update_rusage_stat(td);
791 fio_gettime(&td->end_time, NULL);
792 td->runtime[0] = runtime[0] / 1000;
793 td->runtime[1] = runtime[1] / 1000;
794
795 if (td->ts.bw_log)
796 finish_log(td, td->ts.bw_log, "bw");
797 if (td->ts.slat_log)
798 finish_log(td, td->ts.slat_log, "slat");
799 if (td->ts.clat_log)
800 finish_log(td, td->ts.clat_log, "clat");
801 if (td->write_iolog_file)
802 write_iolog_close(td);
803 if (td->exec_postrun) {
804 if (system(td->exec_postrun) < 0)
805 log_err("fio: postrun %s failed\n", td->exec_postrun);
806 }
807
808 if (exitall_on_terminate)
809 terminate_threads(td->groupid);
810
811err:
812 if (td->error)
813 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
814 close_files(td);
815 close_ioengine(td);
816 cleanup_io_u(td);
817 td_set_runstate(td, TD_EXITED);
818 return (void *) (unsigned long) td->error;
819}
820
821/*
822 * We cannot pass the td data into a forked process, so attach the td and
823 * pass it to the thread worker.
824 */
825static int fork_main(int shmid, int offset)
826{
827 struct thread_data *td;
828 void *data, *ret;
829
830 data = shmat(shmid, NULL, 0);
831 if (data == (void *) -1) {
832 int __err = errno;
833
834 perror("shmat");
835 return __err;
836 }
837
838 td = data + offset * sizeof(struct thread_data);
839 ret = thread_main(td);
840 shmdt(data);
841 return (int) (unsigned long) ret;
842}
843
844/*
845 * Run over the job map and reap the threads that have exited, if any.
846 */
847static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
848{
849 struct thread_data *td;
850 int i, cputhreads, pending, status, ret;
851
852 /*
853 * reap exited threads (TD_EXITED -> TD_REAPED)
854 */
855 pending = cputhreads = 0;
856 for_each_td(td, i) {
857 int flags = 0;
858
859 /*
860 * ->io_ops is NULL for a thread that has closed its
861 * io engine
862 */
863 if (td->io_ops && td->io_ops->flags & FIO_CPUIO)
864 cputhreads++;
865
866 if (!td->pid || td->runstate == TD_REAPED)
867 continue;
868 if (td->use_thread) {
869 if (td->runstate == TD_EXITED) {
870 td_set_runstate(td, TD_REAPED);
871 goto reaped;
872 }
873 continue;
874 }
875
876 flags = WNOHANG;
877 if (td->runstate == TD_EXITED)
878 flags = 0;
879
880 /*
881 * check if someone quit or got killed in an unusual way
882 */
883 ret = waitpid(td->pid, &status, flags);
884 if (ret < 0) {
885 if (errno == ECHILD) {
886 log_err("fio: pid=%d disappeared %d\n", td->pid, td->runstate);
887 td_set_runstate(td, TD_REAPED);
888 goto reaped;
889 }
890 perror("waitpid");
891 } else if (ret == td->pid) {
892 if (WIFSIGNALED(status)) {
893 int sig = WTERMSIG(status);
894
895 if (sig != SIGQUIT)
896 log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
897 td_set_runstate(td, TD_REAPED);
898 goto reaped;
899 }
900 if (WIFEXITED(status)) {
901 if (WEXITSTATUS(status) && !td->error)
902 td->error = WEXITSTATUS(status);
903
904 td_set_runstate(td, TD_REAPED);
905 goto reaped;
906 }
907 }
908
909 /*
910 * thread is not dead, continue
911 */
912 continue;
913reaped:
914 if (td->use_thread) {
915 long ret;
916
917 if (pthread_join(td->thread, (void *) &ret))
918 perror("pthread_join");
919 }
920
921 (*nr_running)--;
922 (*m_rate) -= td->ratemin;
923 (*t_rate) -= td->rate;
924
925 if (td->error)
926 exit_value++;
927 }
928
929 if (*nr_running == cputhreads && !pending)
930 terminate_threads(TERMINATE_ALL);
931}
932
933/*
934 * Main function for kicking off and reaping jobs, as needed.
935 */
936static void run_threads(void)
937{
938 struct thread_data *td;
939 unsigned long spent;
940 int i, todo, nr_running, m_rate, t_rate, nr_started;
941
942 if (fio_pin_memory())
943 return;
944
945 if (!terse_output) {
946 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
947 fflush(stdout);
948 }
949
950 signal(SIGINT, sig_handler);
951 signal(SIGALRM, sig_handler);
952
953 todo = thread_number;
954 nr_running = 0;
955 nr_started = 0;
956 m_rate = t_rate = 0;
957
958 for_each_td(td, i) {
959 print_status_init(td->thread_number - 1);
960
961 if (!td->create_serialize) {
962 init_disk_util(td);
963 continue;
964 }
965
966 /*
967 * do file setup here so it happens sequentially,
968 * we don't want X number of threads getting their
969 * client data interspersed on disk
970 */
971 if (setup_files(td)) {
972 exit_value++;
973 if (td->error)
974 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
975 td_set_runstate(td, TD_REAPED);
976 todo--;
977 }
978
979 init_disk_util(td);
980 }
981
982 set_genesis_time();
983
984 while (todo) {
985 struct thread_data *map[MAX_JOBS];
986 struct timeval this_start;
987 int this_jobs = 0, left;
988
989 /*
990 * create threads (TD_NOT_CREATED -> TD_CREATED)
991 */
992 for_each_td(td, i) {
993 if (td->runstate != TD_NOT_CREATED)
994 continue;
995
996 /*
997 * never got a chance to start, killed by other
998 * thread for some reason
999 */
1000 if (td->terminate) {
1001 todo--;
1002 continue;
1003 }
1004
1005 if (td->start_delay) {
1006 spent = mtime_since_genesis();
1007
1008 if (td->start_delay * 1000 > spent)
1009 continue;
1010 }
1011
1012 if (td->stonewall && (nr_started || nr_running))
1013 break;
1014
1015 /*
1016 * Set state to created. Thread will transition
1017 * to TD_INITIALIZED when it's done setting up.
1018 */
1019 td_set_runstate(td, TD_CREATED);
1020 map[this_jobs++] = td;
1021 fio_sem_init(&startup_sem, 1);
1022 nr_started++;
1023
1024 if (td->use_thread) {
1025 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1026 perror("thread_create");
1027 nr_started--;
1028 }
1029 } else {
1030 if (fork())
1031 fio_sem_down(&startup_sem);
1032 else {
1033 int ret = fork_main(shm_id, i);
1034
1035 exit(ret);
1036 }
1037 }
1038 }
1039
1040 /*
1041 * Wait for the started threads to transition to
1042 * TD_INITIALIZED.
1043 */
1044 fio_gettime(&this_start, NULL);
1045 left = this_jobs;
1046 while (left && !fio_abort) {
1047 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1048 break;
1049
1050 usleep(100000);
1051
1052 for (i = 0; i < this_jobs; i++) {
1053 td = map[i];
1054 if (!td)
1055 continue;
1056 if (td->runstate == TD_INITIALIZED) {
1057 map[i] = NULL;
1058 left--;
1059 } else if (td->runstate >= TD_EXITED) {
1060 map[i] = NULL;
1061 left--;
1062 todo--;
1063 nr_running++; /* work-around... */
1064 }
1065 }
1066 }
1067
1068 if (left) {
1069 log_err("fio: %d jobs failed to start\n", left);
1070 for (i = 0; i < this_jobs; i++) {
1071 td = map[i];
1072 if (!td)
1073 continue;
1074 kill(td->pid, SIGTERM);
1075 }
1076 break;
1077 }
1078
1079 /*
1080 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1081 */
1082 for_each_td(td, i) {
1083 if (td->runstate != TD_INITIALIZED)
1084 continue;
1085
1086 td_set_runstate(td, TD_RUNNING);
1087 nr_running++;
1088 nr_started--;
1089 m_rate += td->ratemin;
1090 t_rate += td->rate;
1091 todo--;
1092 fio_sem_up(&td->mutex);
1093 }
1094
1095 reap_threads(&nr_running, &t_rate, &m_rate);
1096
1097 if (todo)
1098 usleep(100000);
1099 }
1100
1101 while (nr_running) {
1102 reap_threads(&nr_running, &t_rate, &m_rate);
1103 usleep(10000);
1104 }
1105
1106 update_io_ticks();
1107 fio_unpin_memory();
1108}
1109
1110int main(int argc, char *argv[])
1111{
1112 long ps;
1113
1114 /*
1115 * We need locale for number printing, if it isn't set then just
1116 * go with the US format.
1117 */
1118 if (!getenv("LC_NUMERIC"))
1119 setlocale(LC_NUMERIC, "en_US");
1120
1121 if (parse_options(argc, argv))
1122 return 1;
1123
1124 if (!thread_number) {
1125 log_err("Nothing to do\n");
1126 return 1;
1127 }
1128
1129 ps = sysconf(_SC_PAGESIZE);
1130 if (ps < 0) {
1131 log_err("Failed to get page size\n");
1132 return 1;
1133 }
1134
1135 page_mask = ps - 1;
1136
1137 if (write_bw_log) {
1138 setup_log(&agg_io_log[DDIR_READ]);
1139 setup_log(&agg_io_log[DDIR_WRITE]);
1140 }
1141
1142 set_genesis_time();
1143
1144 disk_util_timer_arm();
1145
1146 run_threads();
1147
1148 if (!fio_abort) {
1149 show_run_stats();
1150 if (write_bw_log) {
1151 __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1152 __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1153 }
1154 }
1155
1156 return exit_value;
1157}