[PATCH] rusage stat
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <assert.h>
30#include <sys/stat.h>
31#include <sys/wait.h>
32#include <sys/ipc.h>
33#include <sys/shm.h>
34#include <sys/ioctl.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "os.h"
39
40#define MASK (4095)
41
42#define ALIGN(buf) (char *) (((unsigned long) (buf) + MASK) & ~(MASK))
43
44int groupid = 0;
45int thread_number = 0;
46int shm_id = 0;
47int temp_stall_ts;
48
49static volatile int startup_sem;
50
51#define TERMINATE_ALL (-1)
52#define JOB_START_TIMEOUT (5 * 1000)
53
54static void terminate_threads(int group_id)
55{
56 struct thread_data *td;
57 int i;
58
59 for_each_td(td, i) {
60 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
61 td->terminate = 1;
62 td->start_delay = 0;
63 }
64 }
65}
66
67static void sig_handler(int sig)
68{
69 switch (sig) {
70 case SIGALRM:
71 update_io_ticks();
72 disk_util_timer_arm();
73 print_thread_status();
74 break;
75 default:
76 printf("\nfio: terminating on signal\n");
77 fflush(stdout);
78 terminate_threads(TERMINATE_ALL);
79 break;
80 }
81}
82
83/*
84 * Check if we are above the minimum rate given.
85 */
86static int check_min_rate(struct thread_data *td, struct timeval *now)
87{
88 unsigned long spent;
89 unsigned long rate;
90 int ddir = td->ddir;
91
92 /*
93 * allow a 2 second settle period in the beginning
94 */
95 if (mtime_since(&td->start, now) < 2000)
96 return 0;
97
98 /*
99 * if rate blocks is set, sample is running
100 */
101 if (td->rate_bytes) {
102 spent = mtime_since(&td->lastrate, now);
103 if (spent < td->ratecycle)
104 return 0;
105
106 rate = (td->this_io_bytes[ddir] - td->rate_bytes) / spent;
107 if (rate < td->ratemin) {
108 fprintf(f_out, "%s: min rate %d not met, got %ldKiB/sec\n", td->name, td->ratemin, rate);
109 return 1;
110 }
111 }
112
113 td->rate_bytes = td->this_io_bytes[ddir];
114 memcpy(&td->lastrate, now, sizeof(*now));
115 return 0;
116}
117
118static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
119{
120 if (!td->timeout)
121 return 0;
122 if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
123 return 1;
124
125 return 0;
126}
127
128static inline void td_set_runstate(struct thread_data *td, int runstate)
129{
130 td->runstate = runstate;
131}
132
133static struct fio_file *get_next_file(struct thread_data *td)
134{
135 unsigned int old_next_file = td->next_file;
136 struct fio_file *f;
137
138 do {
139 f = &td->files[td->next_file];
140
141 td->next_file++;
142 if (td->next_file >= td->nr_files)
143 td->next_file = 0;
144
145 if (f->fd != -1)
146 break;
147
148 f = NULL;
149 } while (td->next_file != old_next_file);
150
151 return f;
152}
153
154/*
155 * When job exits, we can cancel the in-flight IO if we are using async
156 * io. Attempt to do so.
157 */
158static void cleanup_pending_aio(struct thread_data *td)
159{
160 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
161 struct list_head *entry, *n;
162 struct io_completion_data icd;
163 struct io_u *io_u;
164 int r;
165
166 /*
167 * get immediately available events, if any
168 */
169 r = td_io_getevents(td, 0, td->cur_depth, &ts);
170 if (r > 0) {
171 icd.nr = r;
172 ios_completed(td, &icd);
173 }
174
175 /*
176 * now cancel remaining active events
177 */
178 if (td->io_ops->cancel) {
179 list_for_each_safe(entry, n, &td->io_u_busylist) {
180 io_u = list_entry(entry, struct io_u, list);
181
182 r = td->io_ops->cancel(td, io_u);
183 if (!r)
184 put_io_u(td, io_u);
185 }
186 }
187
188 if (td->cur_depth) {
189 r = td_io_getevents(td, td->cur_depth, td->cur_depth, NULL);
190 if (r > 0) {
191 icd.nr = r;
192 ios_completed(td, &icd);
193 }
194 }
195}
196
197/*
198 * Helper to handle the final sync of a file. Works just like the normal
199 * io path, just does everything sync.
200 */
201static int fio_io_sync(struct thread_data *td, struct fio_file *f)
202{
203 struct io_u *io_u = __get_io_u(td);
204 struct io_completion_data icd;
205 int ret;
206
207 if (!io_u)
208 return 1;
209
210 io_u->ddir = DDIR_SYNC;
211 io_u->file = f;
212
213 if (td_io_prep(td, io_u)) {
214 put_io_u(td, io_u);
215 return 1;
216 }
217
218 ret = td_io_queue(td, io_u);
219 if (ret) {
220 td_verror(td, io_u->error);
221 put_io_u(td, io_u);
222 return 1;
223 }
224
225 ret = td_io_getevents(td, 1, td->cur_depth, NULL);
226 if (ret < 0) {
227 td_verror(td, ret);
228 return 1;
229 }
230
231 icd.nr = ret;
232 ios_completed(td, &icd);
233 if (icd.error) {
234 td_verror(td, icd.error);
235 return 1;
236 }
237
238 return 0;
239}
240
241/*
242 * The main verify engine. Runs over the writes we previusly submitted,
243 * reads the blocks back in, and checks the crc/md5 of the data.
244 */
245void do_verify(struct thread_data *td)
246{
247 struct io_u *io_u, *v_io_u = NULL;
248 struct io_completion_data icd;
249 struct fio_file *f;
250 int ret, i;
251
252 /*
253 * sync io first and invalidate cache, to make sure we really
254 * read from disk.
255 */
256 for_each_file(td, f, i) {
257 fio_io_sync(td, f);
258 file_invalidate_cache(td, f);
259 }
260
261 td_set_runstate(td, TD_VERIFYING);
262
263 do {
264 if (td->terminate)
265 break;
266
267 io_u = __get_io_u(td);
268 if (!io_u)
269 break;
270
271 if (runtime_exceeded(td, &io_u->start_time)) {
272 put_io_u(td, io_u);
273 break;
274 }
275
276 if (get_next_verify(td, io_u)) {
277 put_io_u(td, io_u);
278 break;
279 }
280
281 f = get_next_file(td);
282 if (!f)
283 break;
284
285 io_u->file = f;
286
287 if (td_io_prep(td, io_u)) {
288 put_io_u(td, io_u);
289 break;
290 }
291
292 ret = td_io_queue(td, io_u);
293 if (ret) {
294 td_verror(td, io_u->error);
295 put_io_u(td, io_u);
296 break;
297 }
298
299 /*
300 * we have one pending to verify, do that while
301 * we are doing io on the next one
302 */
303 if (do_io_u_verify(td, &v_io_u))
304 break;
305
306 ret = td_io_getevents(td, 1, 1, NULL);
307 if (ret != 1) {
308 if (ret < 0)
309 td_verror(td, ret);
310 break;
311 }
312
313 v_io_u = td->io_ops->event(td, 0);
314 icd.nr = 1;
315 icd.error = 0;
316 fio_gettime(&icd.time, NULL);
317 io_completed(td, v_io_u, &icd);
318
319 if (icd.error) {
320 td_verror(td, icd.error);
321 put_io_u(td, v_io_u);
322 v_io_u = NULL;
323 break;
324 }
325
326 /*
327 * if we can't submit more io, we need to verify now
328 */
329 if (queue_full(td) && do_io_u_verify(td, &v_io_u))
330 break;
331
332 } while (1);
333
334 do_io_u_verify(td, &v_io_u);
335
336 if (td->cur_depth)
337 cleanup_pending_aio(td);
338
339 td_set_runstate(td, TD_RUNNING);
340}
341
342/*
343 * Not really an io thread, all it does is burn CPU cycles in the specified
344 * manner.
345 */
346static void do_cpuio(struct thread_data *td)
347{
348 struct timeval e;
349 int split = 100 / td->cpuload;
350 int i = 0;
351
352 while (!td->terminate) {
353 fio_gettime(&e, NULL);
354
355 if (runtime_exceeded(td, &e))
356 break;
357
358 if (!(i % split))
359 __usec_sleep(10000);
360 else
361 usec_sleep(td, 10000);
362
363 i++;
364 }
365}
366
367/*
368 * Main IO worker function. It retrieves io_u's to process and queues
369 * and reaps them, checking for rate and errors along the way.
370 */
371static void do_io(struct thread_data *td)
372{
373 struct io_completion_data icd;
374 struct timeval s;
375 unsigned long usec;
376 struct fio_file *f;
377 int i, ret = 0;
378
379 td_set_runstate(td, TD_RUNNING);
380
381 while (td->this_io_bytes[td->ddir] < td->io_size) {
382 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
383 struct timespec *timeout;
384 int min_evts = 0;
385 struct io_u *io_u;
386
387 if (td->terminate)
388 break;
389
390 f = get_next_file(td);
391 if (!f)
392 break;
393
394 io_u = get_io_u(td, f);
395 if (!io_u)
396 break;
397
398 memcpy(&s, &io_u->start_time, sizeof(s));
399
400 ret = td_io_queue(td, io_u);
401 if (ret) {
402 td_verror(td, io_u->error);
403 put_io_u(td, io_u);
404 break;
405 }
406
407 add_slat_sample(td, io_u->ddir, mtime_since(&io_u->start_time, &io_u->issue_time));
408
409 if (td->cur_depth < td->iodepth) {
410 timeout = &ts;
411 min_evts = 0;
412 } else {
413 timeout = NULL;
414 min_evts = 1;
415 }
416
417 ret = td_io_getevents(td, min_evts, td->cur_depth, timeout);
418 if (ret < 0) {
419 td_verror(td, ret);
420 break;
421 } else if (!ret)
422 continue;
423
424 icd.nr = ret;
425 ios_completed(td, &icd);
426 if (icd.error) {
427 td_verror(td, icd.error);
428 break;
429 }
430
431 /*
432 * the rate is batched for now, it should work for batches
433 * of completions except the very first one which may look
434 * a little bursty
435 */
436 usec = utime_since(&s, &icd.time);
437
438 rate_throttle(td, usec, icd.bytes_done[td->ddir], td->ddir);
439
440 if (check_min_rate(td, &icd.time)) {
441 if (exitall_on_terminate)
442 terminate_threads(td->groupid);
443 td_verror(td, ENOMEM);
444 break;
445 }
446
447 if (runtime_exceeded(td, &icd.time))
448 break;
449
450 if (td->thinktime)
451 usec_sleep(td, td->thinktime);
452 }
453
454 if (!td->error) {
455 if (td->cur_depth)
456 cleanup_pending_aio(td);
457
458 if (should_fsync(td) && td->end_fsync) {
459 td_set_runstate(td, TD_FSYNCING);
460 for_each_file(td, f, i)
461 fio_io_sync(td, f);
462 }
463 }
464}
465
466static void cleanup_io_u(struct thread_data *td)
467{
468 struct list_head *entry, *n;
469 struct io_u *io_u;
470
471 list_for_each_safe(entry, n, &td->io_u_freelist) {
472 io_u = list_entry(entry, struct io_u, list);
473
474 list_del(&io_u->list);
475 free(io_u);
476 }
477
478 free_io_mem(td);
479}
480
481/*
482 * "randomly" fill the buffer contents
483 */
484static void fill_rand_buf(struct io_u *io_u, int max_bs)
485{
486 int *ptr = io_u->buf;
487
488 while ((void *) ptr - io_u->buf < max_bs) {
489 *ptr = rand() * 0x9e370001;
490 ptr++;
491 }
492}
493
494static int init_io_u(struct thread_data *td)
495{
496 struct io_u *io_u;
497 unsigned int max_bs;
498 int i, max_units;
499 char *p;
500
501 if (td->io_ops->flags & FIO_CPUIO)
502 return 0;
503
504 if (td->io_ops->flags & FIO_SYNCIO)
505 max_units = 1;
506 else
507 max_units = td->iodepth;
508
509 max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
510 td->orig_buffer_size = max_bs * max_units + MASK;
511
512 if (allocate_io_mem(td))
513 return 1;
514
515 p = ALIGN(td->orig_buffer);
516 for (i = 0; i < max_units; i++) {
517 io_u = malloc(sizeof(*io_u));
518 memset(io_u, 0, sizeof(*io_u));
519 INIT_LIST_HEAD(&io_u->list);
520
521 io_u->buf = p + max_bs * i;
522 if (td_write(td) || td_rw(td))
523 fill_rand_buf(io_u, max_bs);
524
525 io_u->index = i;
526 list_add(&io_u->list, &td->io_u_freelist);
527 }
528
529 return 0;
530}
531
532static int switch_ioscheduler(struct thread_data *td)
533{
534 char tmp[256], tmp2[128];
535 FILE *f;
536 int ret;
537
538 if (td->io_ops->flags & FIO_CPUIO)
539 return 0;
540
541 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
542
543 f = fopen(tmp, "r+");
544 if (!f) {
545 td_verror(td, errno);
546 return 1;
547 }
548
549 /*
550 * Set io scheduler.
551 */
552 ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
553 if (ferror(f) || ret != 1) {
554 td_verror(td, errno);
555 fclose(f);
556 return 1;
557 }
558
559 rewind(f);
560
561 /*
562 * Read back and check that the selected scheduler is now the default.
563 */
564 ret = fread(tmp, 1, sizeof(tmp), f);
565 if (ferror(f) || ret < 0) {
566 td_verror(td, errno);
567 fclose(f);
568 return 1;
569 }
570
571 sprintf(tmp2, "[%s]", td->ioscheduler);
572 if (!strstr(tmp, tmp2)) {
573 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
574 td_verror(td, EINVAL);
575 fclose(f);
576 return 1;
577 }
578
579 fclose(f);
580 return 0;
581}
582
583static void clear_io_state(struct thread_data *td)
584{
585 struct fio_file *f;
586 int i;
587
588 td->stat_io_bytes[0] = td->stat_io_bytes[1] = 0;
589 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
590 td->zone_bytes = 0;
591
592 for_each_file(td, f, i) {
593 f->last_pos = 0;
594 if (td->io_ops->flags & FIO_SYNCIO)
595 lseek(f->fd, SEEK_SET, 0);
596
597 if (f->file_map)
598 memset(f->file_map, 0, f->num_maps * sizeof(long));
599 }
600}
601
602/*
603 * Entry point for the thread based jobs. The process based jobs end up
604 * here as well, after a little setup.
605 */
606static void *thread_main(void *data)
607{
608 unsigned long long runtime[2];
609 struct thread_data *td = data;
610
611 if (!td->use_thread)
612 setsid();
613
614 td->pid = getpid();
615
616 INIT_LIST_HEAD(&td->io_u_freelist);
617 INIT_LIST_HEAD(&td->io_u_busylist);
618 INIT_LIST_HEAD(&td->io_hist_list);
619 INIT_LIST_HEAD(&td->io_log_list);
620
621 if (init_io_u(td))
622 goto err;
623
624 if (fio_setaffinity(td) == -1) {
625 td_verror(td, errno);
626 goto err;
627 }
628
629 if (td_io_init(td))
630 goto err;
631
632 if (init_iolog(td))
633 goto err;
634
635 if (td->ioprio) {
636 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
637 td_verror(td, errno);
638 goto err;
639 }
640 }
641
642 if (nice(td->nice) == -1) {
643 td_verror(td, errno);
644 goto err;
645 }
646
647 if (init_random_state(td))
648 goto err;
649
650 if (td->ioscheduler && switch_ioscheduler(td))
651 goto err;
652
653 td_set_runstate(td, TD_INITIALIZED);
654 fio_sem_up(&startup_sem);
655 fio_sem_down(&td->mutex);
656
657 if (!td->create_serialize && setup_files(td))
658 goto err;
659 if (open_files(td))
660 goto err;
661
662 if (td->exec_prerun)
663 system(td->exec_prerun);
664
665 fio_gettime(&td->epoch, NULL);
666 getrusage(RUSAGE_SELF, &td->ru_start);
667
668 runtime[0] = runtime[1] = 0;
669 while (td->loops--) {
670 fio_gettime(&td->start, NULL);
671 memcpy(&td->stat_sample_time, &td->start, sizeof(td->start));
672
673 if (td->ratemin)
674 memcpy(&td->lastrate, &td->stat_sample_time, sizeof(td->lastrate));
675
676 clear_io_state(td);
677 prune_io_piece_log(td);
678
679 if (td->io_ops->flags & FIO_CPUIO)
680 do_cpuio(td);
681 else
682 do_io(td);
683
684 runtime[td->ddir] += utime_since_now(&td->start);
685 if (td_rw(td) && td->io_bytes[td->ddir ^ 1])
686 runtime[td->ddir ^ 1] = runtime[td->ddir];
687
688 if (td->error || td->terminate)
689 break;
690
691 if (td->verify == VERIFY_NONE)
692 continue;
693
694 clear_io_state(td);
695 fio_gettime(&td->start, NULL);
696
697 do_verify(td);
698
699 runtime[DDIR_READ] += utime_since_now(&td->start);
700
701 if (td->error || td->terminate)
702 break;
703 }
704
705 update_rusage_stat(td);
706 fio_gettime(&td->end_time, NULL);
707 td->runtime[0] = runtime[0] / 1000;
708 td->runtime[1] = runtime[1] / 1000;
709
710 if (td->bw_log)
711 finish_log(td, td->bw_log, "bw");
712 if (td->slat_log)
713 finish_log(td, td->slat_log, "slat");
714 if (td->clat_log)
715 finish_log(td, td->clat_log, "clat");
716 if (td->write_iolog_file)
717 write_iolog_close(td);
718 if (td->exec_postrun)
719 system(td->exec_postrun);
720
721 if (exitall_on_terminate)
722 terminate_threads(td->groupid);
723
724err:
725 close_files(td);
726 close_ioengine(td);
727 cleanup_io_u(td);
728 td_set_runstate(td, TD_EXITED);
729 return NULL;
730
731}
732
733/*
734 * We cannot pass the td data into a forked process, so attach the td and
735 * pass it to the thread worker.
736 */
737static void *fork_main(int shmid, int offset)
738{
739 struct thread_data *td;
740 void *data;
741
742 data = shmat(shmid, NULL, 0);
743 if (data == (void *) -1) {
744 perror("shmat");
745 return NULL;
746 }
747
748 td = data + offset * sizeof(struct thread_data);
749 thread_main(td);
750 shmdt(data);
751 return NULL;
752}
753
754/*
755 * Run over the job map and reap the threads that have exited, if any.
756 */
757static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
758{
759 struct thread_data *td;
760 int i, cputhreads, pending;
761
762 /*
763 * reap exited threads (TD_EXITED -> TD_REAPED)
764 */
765 pending = cputhreads = 0;
766 for_each_td(td, i) {
767 /*
768 * ->io_ops is NULL for a thread that has closed its
769 * io engine
770 */
771 if (td->io_ops && td->io_ops->flags & FIO_CPUIO)
772 cputhreads++;
773
774 if (td->runstate != TD_EXITED) {
775 if (td->runstate < TD_RUNNING)
776 pending++;
777
778 continue;
779 }
780
781 td_set_runstate(td, TD_REAPED);
782
783 if (td->use_thread) {
784 long ret;
785
786 if (pthread_join(td->thread, (void *) &ret))
787 perror("thread_join");
788 } else
789 waitpid(td->pid, NULL, 0);
790
791 (*nr_running)--;
792 (*m_rate) -= td->ratemin;
793 (*t_rate) -= td->rate;
794 }
795
796 if (*nr_running == cputhreads && !pending)
797 terminate_threads(TERMINATE_ALL);
798}
799
800/*
801 * Main function for kicking off and reaping jobs, as needed.
802 */
803static void run_threads(void)
804{
805 struct thread_data *td;
806 unsigned long spent;
807 int i, todo, nr_running, m_rate, t_rate, nr_started;
808
809 if (fio_pin_memory())
810 return;
811
812 if (!terse_output) {
813 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
814 fflush(stdout);
815 }
816
817 signal(SIGINT, sig_handler);
818 signal(SIGALRM, sig_handler);
819
820 todo = thread_number;
821 nr_running = 0;
822 nr_started = 0;
823 m_rate = t_rate = 0;
824
825 for_each_td(td, i) {
826 print_status_init(td->thread_number - 1);
827
828 init_disk_util(td);
829
830 if (!td->create_serialize)
831 continue;
832
833 /*
834 * do file setup here so it happens sequentially,
835 * we don't want X number of threads getting their
836 * client data interspersed on disk
837 */
838 if (setup_files(td)) {
839 td_set_runstate(td, TD_REAPED);
840 todo--;
841 }
842 }
843
844 while (todo) {
845 struct thread_data *map[MAX_JOBS];
846 struct timeval this_start;
847 int this_jobs = 0, left;
848
849 /*
850 * create threads (TD_NOT_CREATED -> TD_CREATED)
851 */
852 for_each_td(td, i) {
853 if (td->runstate != TD_NOT_CREATED)
854 continue;
855
856 /*
857 * never got a chance to start, killed by other
858 * thread for some reason
859 */
860 if (td->terminate) {
861 todo--;
862 continue;
863 }
864
865 if (td->start_delay) {
866 spent = mtime_since_genesis();
867
868 if (td->start_delay * 1000 > spent)
869 continue;
870 }
871
872 if (td->stonewall && (nr_started || nr_running))
873 break;
874
875 /*
876 * Set state to created. Thread will transition
877 * to TD_INITIALIZED when it's done setting up.
878 */
879 td_set_runstate(td, TD_CREATED);
880 map[this_jobs++] = td;
881 fio_sem_init(&startup_sem, 1);
882 nr_started++;
883
884 if (td->use_thread) {
885 if (pthread_create(&td->thread, NULL, thread_main, td)) {
886 perror("thread_create");
887 nr_started--;
888 }
889 } else {
890 if (fork())
891 fio_sem_down(&startup_sem);
892 else {
893 fork_main(shm_id, i);
894 exit(0);
895 }
896 }
897 }
898
899 /*
900 * Wait for the started threads to transition to
901 * TD_INITIALIZED.
902 */
903 fio_gettime(&this_start, NULL);
904 left = this_jobs;
905 while (left) {
906 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
907 break;
908
909 usleep(100000);
910
911 for (i = 0; i < this_jobs; i++) {
912 td = map[i];
913 if (!td)
914 continue;
915 if (td->runstate == TD_INITIALIZED) {
916 map[i] = NULL;
917 left--;
918 } else if (td->runstate >= TD_EXITED) {
919 map[i] = NULL;
920 left--;
921 todo--;
922 nr_running++; /* work-around... */
923 }
924 }
925 }
926
927 if (left) {
928 log_err("fio: %d jobs failed to start\n", left);
929 for (i = 0; i < this_jobs; i++) {
930 td = map[i];
931 if (!td)
932 continue;
933 kill(td->pid, SIGTERM);
934 }
935 break;
936 }
937
938 /*
939 * start created threads (TD_INITIALIZED -> TD_RUNNING).
940 */
941 for_each_td(td, i) {
942 if (td->runstate != TD_INITIALIZED)
943 continue;
944
945 td_set_runstate(td, TD_RUNNING);
946 nr_running++;
947 nr_started--;
948 m_rate += td->ratemin;
949 t_rate += td->rate;
950 todo--;
951 fio_sem_up(&td->mutex);
952 }
953
954 reap_threads(&nr_running, &t_rate, &m_rate);
955
956 if (todo)
957 usleep(100000);
958 }
959
960 while (nr_running) {
961 reap_threads(&nr_running, &t_rate, &m_rate);
962 usleep(10000);
963 }
964
965 update_io_ticks();
966 fio_unpin_memory();
967}
968
969int main(int argc, char *argv[])
970{
971 if (parse_options(argc, argv))
972 return 1;
973
974 if (!thread_number) {
975 log_err("Nothing to do\n");
976 return 1;
977 }
978
979 disk_util_timer_arm();
980
981 run_threads();
982 show_run_stats();
983
984 return 0;
985}