Change IO engine queuing
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "os.h"
39
40static unsigned long page_mask;
41#define ALIGN(buf) \
42 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
43
44int groupid = 0;
45int thread_number = 0;
46int shm_id = 0;
47int temp_stall_ts;
48
49static volatile int startup_sem;
50static volatile int fio_abort;
51static int exit_value;
52
53struct io_log *agg_io_log[2];
54
55#define TERMINATE_ALL (-1)
56#define JOB_START_TIMEOUT (5 * 1000)
57
58static inline void td_set_runstate(struct thread_data *td, int runstate)
59{
60 td->runstate = runstate;
61}
62
63static void terminate_threads(int group_id, int forced_kill)
64{
65 struct thread_data *td;
66 int i;
67
68 for_each_td(td, i) {
69 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
70 td->terminate = 1;
71 td->start_delay = 0;
72 if (forced_kill)
73 td_set_runstate(td, TD_EXITED);
74 }
75 }
76}
77
78static void sig_handler(int sig)
79{
80 switch (sig) {
81 case SIGALRM:
82 update_io_ticks();
83 disk_util_timer_arm();
84 print_thread_status();
85 break;
86 default:
87 printf("\nfio: terminating on signal %d\n", sig);
88 fflush(stdout);
89 terminate_threads(TERMINATE_ALL, 0);
90 break;
91 }
92}
93
94/*
95 * Check if we are above the minimum rate given.
96 */
97static int check_min_rate(struct thread_data *td, struct timeval *now)
98{
99 unsigned long spent;
100 unsigned long rate;
101 int ddir = td->ddir;
102
103 /*
104 * allow a 2 second settle period in the beginning
105 */
106 if (mtime_since(&td->start, now) < 2000)
107 return 0;
108
109 /*
110 * if rate blocks is set, sample is running
111 */
112 if (td->rate_bytes) {
113 spent = mtime_since(&td->lastrate, now);
114 if (spent < td->ratecycle)
115 return 0;
116
117 rate = (td->this_io_bytes[ddir] - td->rate_bytes) / spent;
118 if (rate < td->ratemin) {
119 fprintf(f_out, "%s: min rate %u not met, got %luKiB/sec\n", td->name, td->ratemin, rate);
120 return 1;
121 }
122 }
123
124 td->rate_bytes = td->this_io_bytes[ddir];
125 memcpy(&td->lastrate, now, sizeof(*now));
126 return 0;
127}
128
129static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
130{
131 if (!td->timeout)
132 return 0;
133 if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
134 return 1;
135
136 return 0;
137}
138
139static struct fio_file *get_next_file(struct thread_data *td)
140{
141 unsigned int old_next_file = td->next_file;
142 struct fio_file *f;
143
144 do {
145 f = &td->files[td->next_file];
146
147 td->next_file++;
148 if (td->next_file >= td->nr_files)
149 td->next_file = 0;
150
151 if (f->fd != -1)
152 break;
153
154 f = NULL;
155 } while (td->next_file != old_next_file);
156
157 return f;
158}
159
160/*
161 * When job exits, we can cancel the in-flight IO if we are using async
162 * io. Attempt to do so.
163 */
164static void cleanup_pending_aio(struct thread_data *td)
165{
166 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
167 struct list_head *entry, *n;
168 struct io_completion_data icd;
169 struct io_u *io_u;
170 int r;
171
172 /*
173 * get immediately available events, if any
174 */
175 r = td_io_getevents(td, 0, td->cur_depth, &ts);
176 if (r > 0) {
177 icd.nr = r;
178 ios_completed(td, &icd);
179 }
180
181 /*
182 * now cancel remaining active events
183 */
184 if (td->io_ops->cancel) {
185 list_for_each_safe(entry, n, &td->io_u_busylist) {
186 io_u = list_entry(entry, struct io_u, list);
187
188 r = td->io_ops->cancel(td, io_u);
189 if (!r)
190 put_io_u(td, io_u);
191 }
192 }
193
194 if (td->cur_depth) {
195 r = td_io_getevents(td, td->cur_depth, td->cur_depth, NULL);
196 if (r > 0) {
197 icd.nr = r;
198 ios_completed(td, &icd);
199 }
200 }
201}
202
203/*
204 * Helper to handle the final sync of a file. Works just like the normal
205 * io path, just does everything sync.
206 */
207static int fio_io_sync(struct thread_data *td, struct fio_file *f)
208{
209 struct io_u *io_u = __get_io_u(td);
210 struct io_completion_data icd;
211 int ret;
212
213 if (!io_u)
214 return 1;
215
216 io_u->ddir = DDIR_SYNC;
217 io_u->file = f;
218
219 if (td_io_prep(td, io_u)) {
220 put_io_u(td, io_u);
221 return 1;
222 }
223
224 ret = td_io_queue(td, io_u);
225 if (ret < 0) {
226 td_verror(td, io_u->error);
227 put_io_u(td, io_u);
228 return 1;
229 } else if (ret == FIO_Q_QUEUED) {
230 ret = td_io_getevents(td, 1, td->cur_depth, NULL);
231 if (ret < 0) {
232 td_verror(td, ret);
233 return 1;
234 }
235
236 icd.nr = ret;
237 ios_completed(td, &icd);
238 if (icd.error) {
239 td_verror(td, icd.error);
240 return 1;
241 }
242 } else if (ret == FIO_Q_COMPLETED) {
243 if (io_u->error) {
244 td_verror(td, io_u->error);
245 return 1;
246 }
247
248 init_icd(&icd);
249 io_completed(td, io_u, &icd);
250 put_io_u(td, io_u);
251 }
252
253 return 0;
254}
255
256/*
257 * The main verify engine. Runs over the writes we previusly submitted,
258 * reads the blocks back in, and checks the crc/md5 of the data.
259 */
260static void do_verify(struct thread_data *td)
261{
262 struct fio_file *f;
263 struct io_u *io_u;
264 int ret, i;
265
266 /*
267 * sync io first and invalidate cache, to make sure we really
268 * read from disk.
269 */
270 for_each_file(td, f, i) {
271 fio_io_sync(td, f);
272 file_invalidate_cache(td, f);
273 }
274
275 td_set_runstate(td, TD_VERIFYING);
276
277 io_u = NULL;
278 while (!td->terminate) {
279 io_u = __get_io_u(td);
280 if (!io_u)
281 break;
282
283 if (runtime_exceeded(td, &io_u->start_time))
284 break;
285
286 if (get_next_verify(td, io_u))
287 break;
288
289 if (td_io_prep(td, io_u))
290 break;
291
292requeue:
293 ret = td_io_queue(td, io_u);
294
295 switch (ret) {
296 case FIO_Q_COMPLETED:
297 if (io_u->error)
298 ret = io_u->error;
299 if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
300 int bytes = io_u->xfer_buflen - io_u->resid;
301
302 io_u->xfer_buflen = io_u->resid;
303 io_u->xfer_buf += bytes;
304 goto requeue;
305 }
306 if (do_io_u_verify(td, &io_u)) {
307 ret = -EIO;
308 break;
309 }
310 continue;
311 case FIO_Q_QUEUED:
312 break;
313 default:
314 assert(ret < 0);
315 td_verror(td, ret);
316 break;
317 }
318
319 /*
320 * We get here for a queued request, in the future we
321 * want to later make this take full advantage of
322 * keeping IO in flight while verifying others.
323 */
324 ret = td_io_getevents(td, 1, 1, NULL);
325 if (ret < 0)
326 break;
327
328 assert(ret == 1);
329 io_u = td->io_ops->event(td, 0);
330
331 if (do_io_u_verify(td, &io_u))
332 break;
333 }
334
335 if (io_u)
336 put_io_u(td, io_u);
337
338 if (td->cur_depth)
339 cleanup_pending_aio(td);
340
341 td_set_runstate(td, TD_RUNNING);
342}
343
344/*
345 * Not really an io thread, all it does is burn CPU cycles in the specified
346 * manner.
347 */
348static void do_cpuio(struct thread_data *td)
349{
350 struct timeval e;
351 int split = 100 / td->cpuload;
352 int i = 0;
353
354 while (!td->terminate) {
355 fio_gettime(&e, NULL);
356
357 if (runtime_exceeded(td, &e))
358 break;
359
360 if (!(i % split))
361 __usec_sleep(10000);
362 else
363 usec_sleep(td, 10000);
364
365 i++;
366 }
367}
368
369/*
370 * Main IO worker function. It retrieves io_u's to process and queues
371 * and reaps them, checking for rate and errors along the way.
372 */
373static void do_io(struct thread_data *td)
374{
375 struct io_completion_data icd;
376 struct timeval s;
377 unsigned long usec;
378 struct fio_file *f;
379 int i, ret = 0;
380
381 td_set_runstate(td, TD_RUNNING);
382
383 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->io_size) {
384 struct timespec *timeout;
385 int min_evts = 0;
386 struct io_u *io_u;
387
388 if (td->terminate)
389 break;
390
391 f = get_next_file(td);
392 if (!f)
393 break;
394
395 io_u = get_io_u(td, f);
396 if (!io_u)
397 break;
398
399 memcpy(&s, &io_u->start_time, sizeof(s));
400requeue:
401 ret = td_io_queue(td, io_u);
402
403 switch (ret) {
404 case FIO_Q_COMPLETED:
405 if (io_u->error) {
406 ret = io_u->error;
407 break;
408 }
409 if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
410 int bytes = io_u->xfer_buflen - io_u->resid;
411
412 io_u->xfer_buflen = io_u->resid;
413 io_u->xfer_buf += bytes;
414 goto requeue;
415 }
416 init_icd(&icd);
417 io_completed(td, io_u, &icd);
418 put_io_u(td, io_u);
419 break;
420 case FIO_Q_QUEUED:
421 break;
422 default:
423 assert(ret < 0);
424 put_io_u(td, io_u);
425 break;
426 }
427
428 if (ret < 0)
429 break;
430
431 add_slat_sample(td, io_u->ddir, mtime_since(&io_u->start_time, &io_u->issue_time));
432
433 if (ret == FIO_Q_QUEUED) {
434 if (td->cur_depth < td->iodepth) {
435 struct timespec ts;
436
437 ts.tv_sec = 0;
438 ts.tv_nsec = 0;
439 timeout = &ts;
440 min_evts = 0;
441 } else {
442 timeout = NULL;
443 min_evts = 1;
444 }
445
446 ret = td_io_getevents(td, min_evts, td->cur_depth, timeout);
447 if (ret < 0) {
448 td_verror(td, ret);
449 break;
450 } else if (!ret)
451 continue;
452
453 icd.nr = ret;
454 ios_completed(td, &icd);
455 if (icd.error) {
456 td_verror(td, icd.error);
457 break;
458 }
459 }
460
461 /*
462 * the rate is batched for now, it should work for batches
463 * of completions except the very first one which may look
464 * a little bursty
465 */
466 usec = utime_since(&s, &icd.time);
467
468 rate_throttle(td, usec, icd.bytes_done[td->ddir], td->ddir);
469
470 if (check_min_rate(td, &icd.time)) {
471 if (exitall_on_terminate)
472 terminate_threads(td->groupid, 0);
473 td_verror(td, ENODATA);
474 break;
475 }
476
477 if (runtime_exceeded(td, &icd.time))
478 break;
479
480 if (td->thinktime) {
481 unsigned long long b;
482
483 b = td->io_blocks[0] + td->io_blocks[1];
484 if (!(b % td->thinktime_blocks)) {
485 int left;
486
487 if (td->thinktime_spin)
488 __usec_sleep(td->thinktime_spin);
489
490 left = td->thinktime - td->thinktime_spin;
491 if (left)
492 usec_sleep(td, left);
493 }
494 }
495 }
496
497 if (!td->error) {
498 if (td->cur_depth)
499 cleanup_pending_aio(td);
500
501 if (should_fsync(td) && td->end_fsync) {
502 td_set_runstate(td, TD_FSYNCING);
503 for_each_file(td, f, i)
504 fio_io_sync(td, f);
505 }
506 }
507}
508
509static void cleanup_io_u(struct thread_data *td)
510{
511 struct list_head *entry, *n;
512 struct io_u *io_u;
513
514 list_for_each_safe(entry, n, &td->io_u_freelist) {
515 io_u = list_entry(entry, struct io_u, list);
516
517 list_del(&io_u->list);
518 free(io_u);
519 }
520
521 free_io_mem(td);
522}
523
524/*
525 * "randomly" fill the buffer contents
526 */
527static void fill_rand_buf(struct io_u *io_u, int max_bs)
528{
529 int *ptr = io_u->buf;
530
531 while ((void *) ptr - io_u->buf < max_bs) {
532 *ptr = rand() * 0x9e370001;
533 ptr++;
534 }
535}
536
537static int init_io_u(struct thread_data *td)
538{
539 struct io_u *io_u;
540 unsigned int max_bs;
541 int i, max_units;
542 char *p;
543
544 if (td->io_ops->flags & FIO_CPUIO)
545 return 0;
546
547 if (td->io_ops->flags & FIO_SYNCIO)
548 max_units = 1;
549 else
550 max_units = td->iodepth;
551
552 max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
553 td->orig_buffer_size = max_bs * max_units;
554
555 if (td->mem_type == MEM_SHMHUGE || td->mem_type == MEM_MMAPHUGE)
556 td->orig_buffer_size = (td->orig_buffer_size + td->hugepage_size - 1) & ~(td->hugepage_size - 1);
557 else
558 td->orig_buffer_size += page_mask;
559
560 if (allocate_io_mem(td))
561 return 1;
562
563 p = ALIGN(td->orig_buffer);
564 for (i = 0; i < max_units; i++) {
565 io_u = malloc(sizeof(*io_u));
566 memset(io_u, 0, sizeof(*io_u));
567 INIT_LIST_HEAD(&io_u->list);
568
569 io_u->buf = p + max_bs * i;
570 if (td_write(td) || td_rw(td))
571 fill_rand_buf(io_u, max_bs);
572
573 io_u->index = i;
574 list_add(&io_u->list, &td->io_u_freelist);
575 }
576
577 return 0;
578}
579
580static int switch_ioscheduler(struct thread_data *td)
581{
582 char tmp[256], tmp2[128];
583 FILE *f;
584 int ret;
585
586 if (td->io_ops->flags & FIO_CPUIO)
587 return 0;
588
589 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
590
591 f = fopen(tmp, "r+");
592 if (!f) {
593 td_verror(td, errno);
594 return 1;
595 }
596
597 /*
598 * Set io scheduler.
599 */
600 ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
601 if (ferror(f) || ret != 1) {
602 td_verror(td, errno);
603 fclose(f);
604 return 1;
605 }
606
607 rewind(f);
608
609 /*
610 * Read back and check that the selected scheduler is now the default.
611 */
612 ret = fread(tmp, 1, sizeof(tmp), f);
613 if (ferror(f) || ret < 0) {
614 td_verror(td, errno);
615 fclose(f);
616 return 1;
617 }
618
619 sprintf(tmp2, "[%s]", td->ioscheduler);
620 if (!strstr(tmp, tmp2)) {
621 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
622 td_verror(td, EINVAL);
623 fclose(f);
624 return 1;
625 }
626
627 fclose(f);
628 return 0;
629}
630
631static void clear_io_state(struct thread_data *td)
632{
633 struct fio_file *f;
634 int i;
635
636 td->stat_io_bytes[0] = td->stat_io_bytes[1] = 0;
637 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
638 td->zone_bytes = 0;
639
640 for_each_file(td, f, i) {
641 f->last_pos = 0;
642 if (td->io_ops->flags & FIO_SYNCIO)
643 lseek(f->fd, SEEK_SET, 0);
644
645 if (f->file_map)
646 memset(f->file_map, 0, f->num_maps * sizeof(long));
647 }
648}
649
650/*
651 * Entry point for the thread based jobs. The process based jobs end up
652 * here as well, after a little setup.
653 */
654static void *thread_main(void *data)
655{
656 unsigned long long runtime[2];
657 struct thread_data *td = data;
658
659 if (!td->use_thread)
660 setsid();
661
662 td->pid = getpid();
663
664 INIT_LIST_HEAD(&td->io_u_freelist);
665 INIT_LIST_HEAD(&td->io_u_busylist);
666 INIT_LIST_HEAD(&td->io_hist_list);
667 INIT_LIST_HEAD(&td->io_log_list);
668
669 if (init_io_u(td))
670 goto err;
671
672 if (fio_setaffinity(td) == -1) {
673 td_verror(td, errno);
674 goto err;
675 }
676
677 if (init_iolog(td))
678 goto err;
679
680 if (td->ioprio) {
681 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
682 td_verror(td, errno);
683 goto err;
684 }
685 }
686
687 if (nice(td->nice) == -1) {
688 td_verror(td, errno);
689 goto err;
690 }
691
692 if (init_random_state(td))
693 goto err;
694
695 if (td->ioscheduler && switch_ioscheduler(td))
696 goto err;
697
698 td_set_runstate(td, TD_INITIALIZED);
699 fio_sem_up(&startup_sem);
700 fio_sem_down(&td->mutex);
701
702 if (!td->create_serialize && setup_files(td))
703 goto err;
704 if (open_files(td))
705 goto err;
706
707 /*
708 * Do this late, as some IO engines would like to have the
709 * files setup prior to initializing structures.
710 */
711 if (td_io_init(td))
712 goto err;
713
714 if (td->exec_prerun) {
715 if (system(td->exec_prerun) < 0)
716 goto err;
717 }
718
719 fio_gettime(&td->epoch, NULL);
720 getrusage(RUSAGE_SELF, &td->ru_start);
721
722 runtime[0] = runtime[1] = 0;
723 while (td->loops--) {
724 fio_gettime(&td->start, NULL);
725 memcpy(&td->stat_sample_time, &td->start, sizeof(td->start));
726
727 if (td->ratemin)
728 memcpy(&td->lastrate, &td->stat_sample_time, sizeof(td->lastrate));
729
730 clear_io_state(td);
731 prune_io_piece_log(td);
732
733 if (td->io_ops->flags & FIO_CPUIO)
734 do_cpuio(td);
735 else
736 do_io(td);
737
738 runtime[td->ddir] += utime_since_now(&td->start);
739 if (td_rw(td) && td->io_bytes[td->ddir ^ 1])
740 runtime[td->ddir ^ 1] = runtime[td->ddir];
741
742 if (td->error || td->terminate)
743 break;
744
745 if (td->verify == VERIFY_NONE)
746 continue;
747
748 clear_io_state(td);
749 fio_gettime(&td->start, NULL);
750
751 do_verify(td);
752
753 runtime[DDIR_READ] += utime_since_now(&td->start);
754
755 if (td->error || td->terminate)
756 break;
757 }
758
759 update_rusage_stat(td);
760 fio_gettime(&td->end_time, NULL);
761 td->runtime[0] = runtime[0] / 1000;
762 td->runtime[1] = runtime[1] / 1000;
763
764 if (td->bw_log)
765 finish_log(td, td->bw_log, "bw");
766 if (td->slat_log)
767 finish_log(td, td->slat_log, "slat");
768 if (td->clat_log)
769 finish_log(td, td->clat_log, "clat");
770 if (td->write_iolog_file)
771 write_iolog_close(td);
772 if (td->exec_postrun) {
773 if (system(td->exec_postrun) < 0)
774 log_err("fio: postrun %s failed\n", td->exec_postrun);
775 }
776
777 if (exitall_on_terminate)
778 terminate_threads(td->groupid, 0);
779
780err:
781 if (td->error)
782 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
783 close_files(td);
784 close_ioengine(td);
785 cleanup_io_u(td);
786 td_set_runstate(td, TD_EXITED);
787 return (void *) td->error;
788}
789
790/*
791 * We cannot pass the td data into a forked process, so attach the td and
792 * pass it to the thread worker.
793 */
794static int fork_main(int shmid, int offset)
795{
796 struct thread_data *td;
797 void *data, *ret;
798
799 data = shmat(shmid, NULL, 0);
800 if (data == (void *) -1) {
801 int __err = errno;
802
803 perror("shmat");
804 return __err;
805 }
806
807 td = data + offset * sizeof(struct thread_data);
808 ret = thread_main(td);
809 shmdt(data);
810 return (int) ret;
811}
812
813/*
814 * Run over the job map and reap the threads that have exited, if any.
815 */
816static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
817{
818 struct thread_data *td;
819 int i, cputhreads, pending, status, ret;
820
821 /*
822 * reap exited threads (TD_EXITED -> TD_REAPED)
823 */
824 pending = cputhreads = 0;
825 for_each_td(td, i) {
826 /*
827 * ->io_ops is NULL for a thread that has closed its
828 * io engine
829 */
830 if (td->io_ops && td->io_ops->flags & FIO_CPUIO)
831 cputhreads++;
832
833 if (td->runstate < TD_EXITED) {
834 /*
835 * check if someone quit or got killed in an unusual way
836 */
837 ret = waitpid(td->pid, &status, WNOHANG);
838 if (ret < 0)
839 perror("waitpid");
840 else if ((ret == td->pid) && WIFSIGNALED(status)) {
841 int sig = WTERMSIG(status);
842
843 log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
844 td_set_runstate(td, TD_REAPED);
845 goto reaped;
846 }
847 }
848
849 if (td->runstate != TD_EXITED) {
850 if (td->runstate < TD_RUNNING)
851 pending++;
852
853 continue;
854 }
855
856 if (td->error)
857 exit_value++;
858
859 td_set_runstate(td, TD_REAPED);
860
861 if (td->use_thread) {
862 long ret;
863
864 if (pthread_join(td->thread, (void *) &ret))
865 perror("thread_join");
866 } else {
867 int status;
868
869 ret = waitpid(td->pid, &status, 0);
870 if (ret < 0)
871 perror("waitpid");
872 else if (WIFEXITED(status) && WEXITSTATUS(status)) {
873 if (!exit_value)
874 exit_value++;
875 }
876 }
877
878reaped:
879 (*nr_running)--;
880 (*m_rate) -= td->ratemin;
881 (*t_rate) -= td->rate;
882 }
883
884 if (*nr_running == cputhreads && !pending)
885 terminate_threads(TERMINATE_ALL, 0);
886}
887
888/*
889 * Main function for kicking off and reaping jobs, as needed.
890 */
891static void run_threads(void)
892{
893 struct thread_data *td;
894 unsigned long spent;
895 int i, todo, nr_running, m_rate, t_rate, nr_started;
896
897 if (fio_pin_memory())
898 return;
899
900 if (!terse_output) {
901 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
902 fflush(stdout);
903 }
904
905 signal(SIGINT, sig_handler);
906 signal(SIGALRM, sig_handler);
907
908 todo = thread_number;
909 nr_running = 0;
910 nr_started = 0;
911 m_rate = t_rate = 0;
912
913 for_each_td(td, i) {
914 print_status_init(td->thread_number - 1);
915
916 if (!td->create_serialize) {
917 init_disk_util(td);
918 continue;
919 }
920
921 /*
922 * do file setup here so it happens sequentially,
923 * we don't want X number of threads getting their
924 * client data interspersed on disk
925 */
926 if (setup_files(td)) {
927 exit_value++;
928 if (td->error)
929 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
930 td_set_runstate(td, TD_REAPED);
931 todo--;
932 }
933
934 init_disk_util(td);
935 }
936
937 while (todo) {
938 struct thread_data *map[MAX_JOBS];
939 struct timeval this_start;
940 int this_jobs = 0, left;
941
942 /*
943 * create threads (TD_NOT_CREATED -> TD_CREATED)
944 */
945 for_each_td(td, i) {
946 if (td->runstate != TD_NOT_CREATED)
947 continue;
948
949 /*
950 * never got a chance to start, killed by other
951 * thread for some reason
952 */
953 if (td->terminate) {
954 todo--;
955 continue;
956 }
957
958 if (td->start_delay) {
959 spent = mtime_since_genesis();
960
961 if (td->start_delay * 1000 > spent)
962 continue;
963 }
964
965 if (td->stonewall && (nr_started || nr_running))
966 break;
967
968 /*
969 * Set state to created. Thread will transition
970 * to TD_INITIALIZED when it's done setting up.
971 */
972 td_set_runstate(td, TD_CREATED);
973 map[this_jobs++] = td;
974 fio_sem_init(&startup_sem, 1);
975 nr_started++;
976
977 if (td->use_thread) {
978 if (pthread_create(&td->thread, NULL, thread_main, td)) {
979 perror("thread_create");
980 nr_started--;
981 }
982 } else {
983 if (fork())
984 fio_sem_down(&startup_sem);
985 else {
986 int ret = fork_main(shm_id, i);
987
988 exit(ret);
989 }
990 }
991 }
992
993 /*
994 * Wait for the started threads to transition to
995 * TD_INITIALIZED.
996 */
997 fio_gettime(&this_start, NULL);
998 left = this_jobs;
999 while (left && !fio_abort) {
1000 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1001 break;
1002
1003 usleep(100000);
1004
1005 for (i = 0; i < this_jobs; i++) {
1006 td = map[i];
1007 if (!td)
1008 continue;
1009 if (td->runstate == TD_INITIALIZED) {
1010 map[i] = NULL;
1011 left--;
1012 } else if (td->runstate >= TD_EXITED) {
1013 map[i] = NULL;
1014 left--;
1015 todo--;
1016 nr_running++; /* work-around... */
1017 }
1018 }
1019 }
1020
1021 if (left) {
1022 log_err("fio: %d jobs failed to start\n", left);
1023 for (i = 0; i < this_jobs; i++) {
1024 td = map[i];
1025 if (!td)
1026 continue;
1027 kill(td->pid, SIGTERM);
1028 }
1029 break;
1030 }
1031
1032 /*
1033 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1034 */
1035 for_each_td(td, i) {
1036 if (td->runstate != TD_INITIALIZED)
1037 continue;
1038
1039 td_set_runstate(td, TD_RUNNING);
1040 nr_running++;
1041 nr_started--;
1042 m_rate += td->ratemin;
1043 t_rate += td->rate;
1044 todo--;
1045 fio_sem_up(&td->mutex);
1046 }
1047
1048 reap_threads(&nr_running, &t_rate, &m_rate);
1049
1050 if (todo)
1051 usleep(100000);
1052 }
1053
1054 while (nr_running) {
1055 reap_threads(&nr_running, &t_rate, &m_rate);
1056 usleep(10000);
1057 }
1058
1059 update_io_ticks();
1060 fio_unpin_memory();
1061}
1062
1063int main(int argc, char *argv[])
1064{
1065 long ps;
1066
1067 /*
1068 * We need locale for number printing, if it isn't set then just
1069 * go with the US format.
1070 */
1071 if (!getenv("LC_NUMERIC"))
1072 setlocale(LC_NUMERIC, "en_US");
1073
1074 if (parse_options(argc, argv))
1075 return 1;
1076
1077 if (!thread_number) {
1078 log_err("Nothing to do\n");
1079 return 1;
1080 }
1081
1082 ps = sysconf(_SC_PAGESIZE);
1083 if (ps < 0) {
1084 log_err("Failed to get page size\n");
1085 return 1;
1086 }
1087
1088 page_mask = ps - 1;
1089
1090 if (write_bw_log) {
1091 setup_log(&agg_io_log[DDIR_READ]);
1092 setup_log(&agg_io_log[DDIR_WRITE]);
1093 }
1094
1095 disk_util_timer_arm();
1096
1097 run_threads();
1098
1099 if (!fio_abort) {
1100 show_run_stats();
1101 if (write_bw_log) {
1102 __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1103 __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1104 }
1105 }
1106
1107 return exit_value;
1108}