[PATCH] Always open the files from the job itself
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <assert.h>
30#include <sys/stat.h>
31#include <sys/wait.h>
32#include <sys/ipc.h>
33#include <sys/shm.h>
34#include <sys/ioctl.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "os.h"
39
40#define MASK (4095)
41
42#define ALIGN(buf) (char *) (((unsigned long) (buf) + MASK) & ~(MASK))
43
44int groupid = 0;
45int thread_number = 0;
46int shm_id = 0;
47int temp_stall_ts;
48const char *fio_inst_prefix = _INST_PREFIX;
49
50static volatile int startup_sem;
51
52#define TERMINATE_ALL (-1)
53#define JOB_START_TIMEOUT (5 * 1000)
54
55static void terminate_threads(int group_id)
56{
57 struct thread_data *td;
58 int i;
59
60 for_each_td(td, i) {
61 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
62 td->terminate = 1;
63 td->start_delay = 0;
64 }
65 }
66}
67
68static void sig_handler(int sig)
69{
70 switch (sig) {
71 case SIGALRM:
72 update_io_ticks();
73 disk_util_timer_arm();
74 print_thread_status();
75 break;
76 default:
77 printf("\nfio: terminating on signal\n");
78 fflush(stdout);
79 terminate_threads(TERMINATE_ALL);
80 break;
81 }
82}
83
84/*
85 * Check if we are above the minimum rate given.
86 */
87static int check_min_rate(struct thread_data *td, struct timeval *now)
88{
89 unsigned long spent;
90 unsigned long rate;
91 int ddir = td->ddir;
92
93 /*
94 * allow a 2 second settle period in the beginning
95 */
96 if (mtime_since(&td->start, now) < 2000)
97 return 0;
98
99 /*
100 * if rate blocks is set, sample is running
101 */
102 if (td->rate_bytes) {
103 spent = mtime_since(&td->lastrate, now);
104 if (spent < td->ratecycle)
105 return 0;
106
107 rate = (td->this_io_bytes[ddir] - td->rate_bytes) / spent;
108 if (rate < td->ratemin) {
109 fprintf(f_out, "%s: min rate %d not met, got %ldKiB/sec\n", td->name, td->ratemin, rate);
110 return 1;
111 }
112 }
113
114 td->rate_bytes = td->this_io_bytes[ddir];
115 memcpy(&td->lastrate, now, sizeof(*now));
116 return 0;
117}
118
119static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
120{
121 if (!td->timeout)
122 return 0;
123 if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
124 return 1;
125
126 return 0;
127}
128
129static inline void td_set_runstate(struct thread_data *td, int runstate)
130{
131 td->runstate = runstate;
132}
133
134static struct fio_file *get_next_file(struct thread_data *td)
135{
136 unsigned int old_next_file = td->next_file;
137 struct fio_file *f;
138
139 do {
140 f = &td->files[td->next_file];
141
142 td->next_file++;
143 if (td->next_file >= td->nr_files)
144 td->next_file = 0;
145
146 if (f->fd != -1)
147 break;
148
149 f = NULL;
150 } while (td->next_file != old_next_file);
151
152 return f;
153}
154
155/*
156 * When job exits, we can cancel the in-flight IO if we are using async
157 * io. Attempt to do so.
158 */
159static void cleanup_pending_aio(struct thread_data *td)
160{
161 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
162 struct list_head *entry, *n;
163 struct io_completion_data icd;
164 struct io_u *io_u;
165 int r;
166
167 /*
168 * get immediately available events, if any
169 */
170 r = td_io_getevents(td, 0, td->cur_depth, &ts);
171 if (r > 0) {
172 icd.nr = r;
173 ios_completed(td, &icd);
174 }
175
176 /*
177 * now cancel remaining active events
178 */
179 if (td->io_ops->cancel) {
180 list_for_each_safe(entry, n, &td->io_u_busylist) {
181 io_u = list_entry(entry, struct io_u, list);
182
183 r = td->io_ops->cancel(td, io_u);
184 if (!r)
185 put_io_u(td, io_u);
186 }
187 }
188
189 if (td->cur_depth) {
190 r = td_io_getevents(td, td->cur_depth, td->cur_depth, NULL);
191 if (r > 0) {
192 icd.nr = r;
193 ios_completed(td, &icd);
194 }
195 }
196}
197
198/*
199 * Helper to handle the final sync of a file. Works just like the normal
200 * io path, just does everything sync.
201 */
202static int fio_io_sync(struct thread_data *td, struct fio_file *f)
203{
204 struct io_u *io_u = __get_io_u(td);
205 struct io_completion_data icd;
206 int ret;
207
208 if (!io_u)
209 return 1;
210
211 io_u->ddir = DDIR_SYNC;
212 io_u->file = f;
213
214 if (td_io_prep(td, io_u)) {
215 put_io_u(td, io_u);
216 return 1;
217 }
218
219 ret = td_io_queue(td, io_u);
220 if (ret) {
221 td_verror(td, io_u->error);
222 put_io_u(td, io_u);
223 return 1;
224 }
225
226 ret = td_io_getevents(td, 1, td->cur_depth, NULL);
227 if (ret < 0) {
228 td_verror(td, ret);
229 return 1;
230 }
231
232 icd.nr = ret;
233 ios_completed(td, &icd);
234 if (icd.error) {
235 td_verror(td, icd.error);
236 return 1;
237 }
238
239 return 0;
240}
241
242/*
243 * The main verify engine. Runs over the writes we previusly submitted,
244 * reads the blocks back in, and checks the crc/md5 of the data.
245 */
246void do_verify(struct thread_data *td)
247{
248 struct timeval t;
249 struct io_u *io_u, *v_io_u = NULL;
250 struct io_completion_data icd;
251 struct fio_file *f;
252 int ret, i;
253
254 /*
255 * sync io first and invalidate cache, to make sure we really
256 * read from disk.
257 */
258 for_each_file(td, f, i) {
259 fio_io_sync(td, f);
260 file_invalidate_cache(td, f);
261 }
262
263 td_set_runstate(td, TD_VERIFYING);
264
265 do {
266 if (td->terminate)
267 break;
268
269 gettimeofday(&t, NULL);
270 if (runtime_exceeded(td, &t))
271 break;
272
273 io_u = __get_io_u(td);
274 if (!io_u)
275 break;
276
277 if (get_next_verify(td, io_u)) {
278 put_io_u(td, io_u);
279 break;
280 }
281
282 f = get_next_file(td);
283 if (!f)
284 break;
285
286 io_u->file = f;
287
288 if (td_io_prep(td, io_u)) {
289 put_io_u(td, io_u);
290 break;
291 }
292
293 ret = td_io_queue(td, io_u);
294 if (ret) {
295 td_verror(td, io_u->error);
296 put_io_u(td, io_u);
297 break;
298 }
299
300 /*
301 * we have one pending to verify, do that while
302 * we are doing io on the next one
303 */
304 if (do_io_u_verify(td, &v_io_u))
305 break;
306
307 ret = td_io_getevents(td, 1, 1, NULL);
308 if (ret != 1) {
309 if (ret < 0)
310 td_verror(td, ret);
311 break;
312 }
313
314 v_io_u = td->io_ops->event(td, 0);
315 icd.nr = 1;
316 icd.error = 0;
317 io_completed(td, v_io_u, &icd);
318
319 if (icd.error) {
320 td_verror(td, icd.error);
321 put_io_u(td, v_io_u);
322 v_io_u = NULL;
323 break;
324 }
325
326 /*
327 * if we can't submit more io, we need to verify now
328 */
329 if (queue_full(td) && do_io_u_verify(td, &v_io_u))
330 break;
331
332 } while (1);
333
334 do_io_u_verify(td, &v_io_u);
335
336 if (td->cur_depth)
337 cleanup_pending_aio(td);
338
339 td_set_runstate(td, TD_RUNNING);
340}
341
342/*
343 * Not really an io thread, all it does is burn CPU cycles in the specified
344 * manner.
345 */
346static void do_cpuio(struct thread_data *td)
347{
348 struct timeval e;
349 int split = 100 / td->cpuload;
350 int i = 0;
351
352 while (!td->terminate) {
353 gettimeofday(&e, NULL);
354
355 if (runtime_exceeded(td, &e))
356 break;
357
358 if (!(i % split))
359 __usec_sleep(10000);
360 else
361 usec_sleep(td, 10000);
362
363 i++;
364 }
365}
366
367/*
368 * Main IO worker function. It retrieves io_u's to process and queues
369 * and reaps them, checking for rate and errors along the way.
370 */
371static void do_io(struct thread_data *td)
372{
373 struct io_completion_data icd;
374 struct timeval s, e;
375 unsigned long usec;
376 struct fio_file *f;
377 int i, ret = 0;
378
379 td_set_runstate(td, TD_RUNNING);
380
381 while (td->this_io_bytes[td->ddir] < td->io_size) {
382 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
383 struct timespec *timeout;
384 int min_evts = 0;
385 struct io_u *io_u;
386
387 if (td->terminate)
388 break;
389
390 f = get_next_file(td);
391 if (!f)
392 break;
393
394 io_u = get_io_u(td, f);
395 if (!io_u)
396 break;
397
398 memcpy(&s, &io_u->start_time, sizeof(s));
399
400 ret = td_io_queue(td, io_u);
401 if (ret) {
402 td_verror(td, io_u->error);
403 put_io_u(td, io_u);
404 break;
405 }
406
407 add_slat_sample(td, io_u->ddir, mtime_since(&io_u->start_time, &io_u->issue_time));
408
409 if (td->cur_depth < td->iodepth) {
410 timeout = &ts;
411 min_evts = 0;
412 } else {
413 timeout = NULL;
414 min_evts = 1;
415 }
416
417 ret = td_io_getevents(td, min_evts, td->cur_depth, timeout);
418 if (ret < 0) {
419 td_verror(td, ret);
420 break;
421 } else if (!ret)
422 continue;
423
424 icd.nr = ret;
425 ios_completed(td, &icd);
426 if (icd.error) {
427 td_verror(td, icd.error);
428 break;
429 }
430
431 /*
432 * the rate is batched for now, it should work for batches
433 * of completions except the very first one which may look
434 * a little bursty
435 */
436 gettimeofday(&e, NULL);
437 usec = utime_since(&s, &e);
438
439 rate_throttle(td, usec, icd.bytes_done[td->ddir], td->ddir);
440
441 if (check_min_rate(td, &e)) {
442 if (exitall_on_terminate)
443 terminate_threads(td->groupid);
444 td_verror(td, ENOMEM);
445 break;
446 }
447
448 if (runtime_exceeded(td, &e))
449 break;
450
451 if (td->thinktime)
452 usec_sleep(td, td->thinktime);
453 }
454
455 if (!td->error) {
456 if (td->cur_depth)
457 cleanup_pending_aio(td);
458
459 if (should_fsync(td) && td->end_fsync) {
460 td_set_runstate(td, TD_FSYNCING);
461 for_each_file(td, f, i)
462 fio_io_sync(td, f);
463 }
464 }
465}
466
467static void cleanup_io_u(struct thread_data *td)
468{
469 struct list_head *entry, *n;
470 struct io_u *io_u;
471
472 list_for_each_safe(entry, n, &td->io_u_freelist) {
473 io_u = list_entry(entry, struct io_u, list);
474
475 list_del(&io_u->list);
476 free(io_u);
477 }
478
479 free_io_mem(td);
480}
481
482/*
483 * "randomly" fill the buffer contents
484 */
485static void fill_rand_buf(struct io_u *io_u, int max_bs)
486{
487 int *ptr = io_u->buf;
488
489 while ((void *) ptr - io_u->buf < max_bs) {
490 *ptr = rand() * 0x9e370001;
491 ptr++;
492 }
493}
494
495static int init_io_u(struct thread_data *td)
496{
497 struct io_u *io_u;
498 unsigned int max_bs;
499 int i, max_units;
500 char *p;
501
502 if (td->io_ops->flags & FIO_CPUIO)
503 return 0;
504
505 if (td->io_ops->flags & FIO_SYNCIO)
506 max_units = 1;
507 else
508 max_units = td->iodepth;
509
510 max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
511 td->orig_buffer_size = max_bs * max_units + MASK;
512
513 if (allocate_io_mem(td))
514 return 1;
515
516 p = ALIGN(td->orig_buffer);
517 for (i = 0; i < max_units; i++) {
518 io_u = malloc(sizeof(*io_u));
519 memset(io_u, 0, sizeof(*io_u));
520 INIT_LIST_HEAD(&io_u->list);
521
522 io_u->buf = p + max_bs * i;
523 if (td_write(td) || td_rw(td))
524 fill_rand_buf(io_u, max_bs);
525
526 io_u->index = i;
527 list_add(&io_u->list, &td->io_u_freelist);
528 }
529
530 return 0;
531}
532
533static int switch_ioscheduler(struct thread_data *td)
534{
535 char tmp[256], tmp2[128];
536 FILE *f;
537 int ret;
538
539 if (td->io_ops->flags & FIO_CPUIO)
540 return 0;
541
542 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
543
544 f = fopen(tmp, "r+");
545 if (!f) {
546 td_verror(td, errno);
547 return 1;
548 }
549
550 /*
551 * Set io scheduler.
552 */
553 ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
554 if (ferror(f) || ret != 1) {
555 td_verror(td, errno);
556 fclose(f);
557 return 1;
558 }
559
560 rewind(f);
561
562 /*
563 * Read back and check that the selected scheduler is now the default.
564 */
565 ret = fread(tmp, 1, sizeof(tmp), f);
566 if (ferror(f) || ret < 0) {
567 td_verror(td, errno);
568 fclose(f);
569 return 1;
570 }
571
572 sprintf(tmp2, "[%s]", td->ioscheduler);
573 if (!strstr(tmp, tmp2)) {
574 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
575 td_verror(td, EINVAL);
576 fclose(f);
577 return 1;
578 }
579
580 fclose(f);
581 return 0;
582}
583
584static void clear_io_state(struct thread_data *td)
585{
586 struct fio_file *f;
587 int i;
588
589 td->stat_io_bytes[0] = td->stat_io_bytes[1] = 0;
590 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
591 td->zone_bytes = 0;
592
593 for_each_file(td, f, i) {
594 f->last_pos = 0;
595 if (td->io_ops->flags & FIO_SYNCIO)
596 lseek(f->fd, SEEK_SET, 0);
597
598 if (f->file_map)
599 memset(f->file_map, 0, f->num_maps * sizeof(long));
600 }
601}
602
603/*
604 * Entry point for the thread based jobs. The process based jobs end up
605 * here as well, after a little setup.
606 */
607static void *thread_main(void *data)
608{
609 struct thread_data *td = data;
610
611 if (!td->use_thread)
612 setsid();
613
614 td->pid = getpid();
615
616 INIT_LIST_HEAD(&td->io_u_freelist);
617 INIT_LIST_HEAD(&td->io_u_busylist);
618 INIT_LIST_HEAD(&td->io_hist_list);
619 INIT_LIST_HEAD(&td->io_log_list);
620
621 if (init_io_u(td))
622 goto err;
623
624 if (fio_setaffinity(td) == -1) {
625 td_verror(td, errno);
626 goto err;
627 }
628
629 if (td_io_init(td))
630 goto err;
631
632 if (init_iolog(td))
633 goto err;
634
635 if (td->ioprio) {
636 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
637 td_verror(td, errno);
638 goto err;
639 }
640 }
641
642 if (nice(td->nice) == -1) {
643 td_verror(td, errno);
644 goto err;
645 }
646
647 if (init_random_state(td))
648 goto err;
649
650 if (td->ioscheduler && switch_ioscheduler(td))
651 goto err;
652
653 td_set_runstate(td, TD_INITIALIZED);
654 fio_sem_up(&startup_sem);
655 fio_sem_down(&td->mutex);
656
657 if (!td->create_serialize && setup_files(td))
658 goto err;
659 if (open_files(td))
660 goto err;
661
662 gettimeofday(&td->epoch, NULL);
663
664 if (td->exec_prerun)
665 system(td->exec_prerun);
666
667 while (td->loops--) {
668 getrusage(RUSAGE_SELF, &td->ru_start);
669 gettimeofday(&td->start, NULL);
670 memcpy(&td->stat_sample_time, &td->start, sizeof(td->start));
671
672 if (td->ratemin)
673 memcpy(&td->lastrate, &td->stat_sample_time, sizeof(td->lastrate));
674
675 clear_io_state(td);
676 prune_io_piece_log(td);
677
678 if (td->io_ops->flags & FIO_CPUIO)
679 do_cpuio(td);
680 else
681 do_io(td);
682
683 td->runtime[td->ddir] += mtime_since_now(&td->start);
684 if (td_rw(td) && td->io_bytes[td->ddir ^ 1])
685 td->runtime[td->ddir ^ 1] = td->runtime[td->ddir];
686
687 update_rusage_stat(td);
688
689 if (td->error || td->terminate)
690 break;
691
692 if (td->verify == VERIFY_NONE)
693 continue;
694
695 clear_io_state(td);
696 gettimeofday(&td->start, NULL);
697
698 do_verify(td);
699
700 td->runtime[DDIR_READ] += mtime_since_now(&td->start);
701
702 if (td->error || td->terminate)
703 break;
704 }
705
706 if (td->bw_log)
707 finish_log(td, td->bw_log, "bw");
708 if (td->slat_log)
709 finish_log(td, td->slat_log, "slat");
710 if (td->clat_log)
711 finish_log(td, td->clat_log, "clat");
712 if (td->write_iolog_file)
713 write_iolog_close(td);
714 if (td->exec_postrun)
715 system(td->exec_postrun);
716
717 if (exitall_on_terminate)
718 terminate_threads(td->groupid);
719
720err:
721 close_files(td);
722 close_ioengine(td);
723 cleanup_io_u(td);
724 td_set_runstate(td, TD_EXITED);
725 return NULL;
726
727}
728
729/*
730 * We cannot pass the td data into a forked process, so attach the td and
731 * pass it to the thread worker.
732 */
733static void *fork_main(int shmid, int offset)
734{
735 struct thread_data *td;
736 void *data;
737
738 data = shmat(shmid, NULL, 0);
739 if (data == (void *) -1) {
740 perror("shmat");
741 return NULL;
742 }
743
744 td = data + offset * sizeof(struct thread_data);
745 thread_main(td);
746 shmdt(data);
747 return NULL;
748}
749
750/*
751 * Run over the job map and reap the threads that have exited, if any.
752 */
753static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
754{
755 struct thread_data *td;
756 int i, cputhreads, pending;
757
758 /*
759 * reap exited threads (TD_EXITED -> TD_REAPED)
760 */
761 pending = cputhreads = 0;
762 for_each_td(td, i) {
763 /*
764 * ->io_ops is NULL for a thread that has closed its
765 * io engine
766 */
767 if (td->io_ops && td->io_ops->flags & FIO_CPUIO)
768 cputhreads++;
769
770 if (td->runstate != TD_EXITED) {
771 if (td->runstate < TD_RUNNING)
772 pending++;
773
774 continue;
775 }
776
777 td_set_runstate(td, TD_REAPED);
778
779 if (td->use_thread) {
780 long ret;
781
782 if (pthread_join(td->thread, (void *) &ret))
783 perror("thread_join");
784 } else
785 waitpid(td->pid, NULL, 0);
786
787 (*nr_running)--;
788 (*m_rate) -= td->ratemin;
789 (*t_rate) -= td->rate;
790 }
791
792 if (*nr_running == cputhreads && !pending)
793 terminate_threads(TERMINATE_ALL);
794}
795
796/*
797 * Main function for kicking off and reaping jobs, as needed.
798 */
799static void run_threads(void)
800{
801 struct thread_data *td;
802 unsigned long spent;
803 int i, todo, nr_running, m_rate, t_rate, nr_started;
804
805 if (fio_pin_memory())
806 return;
807
808 if (!terse_output) {
809 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
810 fflush(stdout);
811 }
812
813 signal(SIGINT, sig_handler);
814 signal(SIGALRM, sig_handler);
815
816 todo = thread_number;
817 nr_running = 0;
818 nr_started = 0;
819 m_rate = t_rate = 0;
820
821 for_each_td(td, i) {
822 print_status_init(td->thread_number - 1);
823
824 init_disk_util(td);
825
826 if (!td->create_serialize)
827 continue;
828
829 /*
830 * do file setup here so it happens sequentially,
831 * we don't want X number of threads getting their
832 * client data interspersed on disk
833 */
834 if (setup_files(td)) {
835 td_set_runstate(td, TD_REAPED);
836 todo--;
837 }
838 }
839
840 time_init();
841
842 while (todo) {
843 struct thread_data *map[MAX_JOBS];
844 struct timeval this_start;
845 int this_jobs = 0, left;
846
847 /*
848 * create threads (TD_NOT_CREATED -> TD_CREATED)
849 */
850 for_each_td(td, i) {
851 if (td->runstate != TD_NOT_CREATED)
852 continue;
853
854 /*
855 * never got a chance to start, killed by other
856 * thread for some reason
857 */
858 if (td->terminate) {
859 todo--;
860 continue;
861 }
862
863 if (td->start_delay) {
864 spent = mtime_since_genesis();
865
866 if (td->start_delay * 1000 > spent)
867 continue;
868 }
869
870 if (td->stonewall && (nr_started || nr_running))
871 break;
872
873 /*
874 * Set state to created. Thread will transition
875 * to TD_INITIALIZED when it's done setting up.
876 */
877 td_set_runstate(td, TD_CREATED);
878 map[this_jobs++] = td;
879 fio_sem_init(&startup_sem, 1);
880 nr_started++;
881
882 if (td->use_thread) {
883 if (pthread_create(&td->thread, NULL, thread_main, td)) {
884 perror("thread_create");
885 nr_started--;
886 }
887 } else {
888 if (fork())
889 fio_sem_down(&startup_sem);
890 else {
891 fork_main(shm_id, i);
892 exit(0);
893 }
894 }
895 }
896
897 /*
898 * Wait for the started threads to transition to
899 * TD_INITIALIZED.
900 */
901 gettimeofday(&this_start, NULL);
902 left = this_jobs;
903 while (left) {
904 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
905 break;
906
907 usleep(100000);
908
909 for (i = 0; i < this_jobs; i++) {
910 td = map[i];
911 if (!td)
912 continue;
913 if (td->runstate == TD_INITIALIZED) {
914 map[i] = NULL;
915 left--;
916 } else if (td->runstate >= TD_EXITED) {
917 map[i] = NULL;
918 left--;
919 todo--;
920 nr_running++; /* work-around... */
921 }
922 }
923 }
924
925 if (left) {
926 log_err("fio: %d jobs failed to start\n", left);
927 for (i = 0; i < this_jobs; i++) {
928 td = map[i];
929 if (!td)
930 continue;
931 kill(td->pid, SIGTERM);
932 }
933 break;
934 }
935
936 /*
937 * start created threads (TD_INITIALIZED -> TD_RUNNING).
938 */
939 for_each_td(td, i) {
940 if (td->runstate != TD_INITIALIZED)
941 continue;
942
943 td_set_runstate(td, TD_RUNNING);
944 nr_running++;
945 nr_started--;
946 m_rate += td->ratemin;
947 t_rate += td->rate;
948 todo--;
949 fio_sem_up(&td->mutex);
950 }
951
952 reap_threads(&nr_running, &t_rate, &m_rate);
953
954 if (todo)
955 usleep(100000);
956 }
957
958 while (nr_running) {
959 reap_threads(&nr_running, &t_rate, &m_rate);
960 usleep(10000);
961 }
962
963 update_io_ticks();
964 fio_unpin_memory();
965}
966
967int main(int argc, char *argv[])
968{
969 if (parse_options(argc, argv))
970 return 1;
971
972 if (!thread_number) {
973 log_err("Nothing to do\n");
974 return 1;
975 }
976
977 disk_util_timer_arm();
978
979 run_threads();
980 show_run_stats();
981
982 return 0;
983}