Use poll() for connect loop
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <sys/stat.h>
34#include <sys/wait.h>
35#include <sys/ipc.h>
36#include <sys/shm.h>
37#include <sys/mman.h>
38
39#include "fio.h"
40#include "hash.h"
41#include "smalloc.h"
42#include "verify.h"
43#include "trim.h"
44#include "diskutil.h"
45#include "cgroup.h"
46#include "profile.h"
47#include "lib/rand.h"
48#include "memalign.h"
49#include "server.h"
50
51unsigned long page_mask;
52unsigned long page_size;
53
54#define PAGE_ALIGN(buf) \
55 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
56
57int groupid = 0;
58int thread_number = 0;
59int nr_process = 0;
60int nr_thread = 0;
61int shm_id = 0;
62int temp_stall_ts;
63unsigned long done_secs = 0;
64
65static struct fio_mutex *startup_mutex;
66static struct fio_mutex *writeout_mutex;
67static volatile int fio_abort;
68static int exit_value;
69static pthread_t gtod_thread;
70static pthread_t disk_util_thread;
71static struct flist_head *cgroup_list;
72static char *cgroup_mnt;
73
74unsigned long arch_flags = 0;
75
76struct io_log *agg_io_log[2];
77
78#define TERMINATE_ALL (-1)
79#define JOB_START_TIMEOUT (5 * 1000)
80
81void td_set_runstate(struct thread_data *td, int runstate)
82{
83 if (td->runstate == runstate)
84 return;
85
86 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
87 td->runstate, runstate);
88 td->runstate = runstate;
89}
90
91static void terminate_threads(int group_id)
92{
93 struct thread_data *td;
94 int i;
95
96 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
97
98 for_each_td(td, i) {
99 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
100 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
101 td->o.name, (int) td->pid);
102 td->terminate = 1;
103 td->o.start_delay = 0;
104
105 /*
106 * if the thread is running, just let it exit
107 */
108 if (!td->pid)
109 continue;
110 else if (td->runstate < TD_RAMP)
111 kill(td->pid, SIGTERM);
112 else {
113 struct ioengine_ops *ops = td->io_ops;
114
115 if (ops && (ops->flags & FIO_SIGTERM))
116 kill(td->pid, SIGTERM);
117 }
118 }
119 }
120}
121
122static void sig_int(int sig)
123{
124 if (threads) {
125 log_info("\nfio: terminating on signal %d\n", sig);
126 exit_backend = 1;
127 fflush(stdout);
128 exit_value = 128;
129 terminate_threads(TERMINATE_ALL);
130 }
131}
132
133static void *disk_thread_main(void *data)
134{
135 fio_mutex_up(startup_mutex);
136
137 while (threads) {
138 usleep(DISK_UTIL_MSEC * 1000);
139 if (!threads)
140 break;
141 update_io_ticks();
142
143 if (!is_backend)
144 print_thread_status();
145 }
146
147 return NULL;
148}
149
150static int create_disk_util_thread(void)
151{
152 int ret;
153
154 ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
155 if (ret) {
156 log_err("Can't create disk util thread: %s\n", strerror(ret));
157 return 1;
158 }
159
160 ret = pthread_detach(disk_util_thread);
161 if (ret) {
162 log_err("Can't detatch disk util thread: %s\n", strerror(ret));
163 return 1;
164 }
165
166 dprint(FD_MUTEX, "wait on startup_mutex\n");
167 fio_mutex_down(startup_mutex);
168 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
169 return 0;
170}
171
172static void set_sig_handlers(void)
173{
174 struct sigaction act;
175
176 memset(&act, 0, sizeof(act));
177 act.sa_handler = sig_int;
178 act.sa_flags = SA_RESTART;
179 sigaction(SIGINT, &act, NULL);
180
181 memset(&act, 0, sizeof(act));
182 act.sa_handler = sig_int;
183 act.sa_flags = SA_RESTART;
184 sigaction(SIGTERM, &act, NULL);
185}
186
187/*
188 * Check if we are above the minimum rate given.
189 */
190static int __check_min_rate(struct thread_data *td, struct timeval *now,
191 enum fio_ddir ddir)
192{
193 unsigned long long bytes = 0;
194 unsigned long iops = 0;
195 unsigned long spent;
196 unsigned long rate;
197 unsigned int ratemin = 0;
198 unsigned int rate_iops = 0;
199 unsigned int rate_iops_min = 0;
200
201 assert(ddir_rw(ddir));
202
203 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
204 return 0;
205
206 /*
207 * allow a 2 second settle period in the beginning
208 */
209 if (mtime_since(&td->start, now) < 2000)
210 return 0;
211
212 iops += td->io_blocks[ddir];
213 bytes += td->this_io_bytes[ddir];
214 ratemin += td->o.ratemin[ddir];
215 rate_iops += td->o.rate_iops[ddir];
216 rate_iops_min += td->o.rate_iops_min[ddir];
217
218 /*
219 * if rate blocks is set, sample is running
220 */
221 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
222 spent = mtime_since(&td->lastrate[ddir], now);
223 if (spent < td->o.ratecycle)
224 return 0;
225
226 if (td->o.rate[ddir]) {
227 /*
228 * check bandwidth specified rate
229 */
230 if (bytes < td->rate_bytes[ddir]) {
231 log_err("%s: min rate %u not met\n", td->o.name,
232 ratemin);
233 return 1;
234 } else {
235 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
236 if (rate < ratemin ||
237 bytes < td->rate_bytes[ddir]) {
238 log_err("%s: min rate %u not met, got"
239 " %luKB/sec\n", td->o.name,
240 ratemin, rate);
241 return 1;
242 }
243 }
244 } else {
245 /*
246 * checks iops specified rate
247 */
248 if (iops < rate_iops) {
249 log_err("%s: min iops rate %u not met\n",
250 td->o.name, rate_iops);
251 return 1;
252 } else {
253 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
254 if (rate < rate_iops_min ||
255 iops < td->rate_blocks[ddir]) {
256 log_err("%s: min iops rate %u not met,"
257 " got %lu\n", td->o.name,
258 rate_iops_min, rate);
259 }
260 }
261 }
262 }
263
264 td->rate_bytes[ddir] = bytes;
265 td->rate_blocks[ddir] = iops;
266 memcpy(&td->lastrate[ddir], now, sizeof(*now));
267 return 0;
268}
269
270static int check_min_rate(struct thread_data *td, struct timeval *now,
271 unsigned long *bytes_done)
272{
273 int ret = 0;
274
275 if (bytes_done[0])
276 ret |= __check_min_rate(td, now, 0);
277 if (bytes_done[1])
278 ret |= __check_min_rate(td, now, 1);
279
280 return ret;
281}
282
283static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
284{
285 if (!td->o.timeout)
286 return 0;
287 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
288 return 1;
289
290 return 0;
291}
292
293/*
294 * When job exits, we can cancel the in-flight IO if we are using async
295 * io. Attempt to do so.
296 */
297static void cleanup_pending_aio(struct thread_data *td)
298{
299 struct flist_head *entry, *n;
300 struct io_u *io_u;
301 int r;
302
303 /*
304 * get immediately available events, if any
305 */
306 r = io_u_queued_complete(td, 0, NULL);
307 if (r < 0)
308 return;
309
310 /*
311 * now cancel remaining active events
312 */
313 if (td->io_ops->cancel) {
314 flist_for_each_safe(entry, n, &td->io_u_busylist) {
315 io_u = flist_entry(entry, struct io_u, list);
316
317 /*
318 * if the io_u isn't in flight, then that generally
319 * means someone leaked an io_u. complain but fix
320 * it up, so we don't stall here.
321 */
322 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
323 log_err("fio: non-busy IO on busy list\n");
324 put_io_u(td, io_u);
325 } else {
326 r = td->io_ops->cancel(td, io_u);
327 if (!r)
328 put_io_u(td, io_u);
329 }
330 }
331 }
332
333 if (td->cur_depth)
334 r = io_u_queued_complete(td, td->cur_depth, NULL);
335}
336
337/*
338 * Helper to handle the final sync of a file. Works just like the normal
339 * io path, just does everything sync.
340 */
341static int fio_io_sync(struct thread_data *td, struct fio_file *f)
342{
343 struct io_u *io_u = __get_io_u(td);
344 int ret;
345
346 if (!io_u)
347 return 1;
348
349 io_u->ddir = DDIR_SYNC;
350 io_u->file = f;
351
352 if (td_io_prep(td, io_u)) {
353 put_io_u(td, io_u);
354 return 1;
355 }
356
357requeue:
358 ret = td_io_queue(td, io_u);
359 if (ret < 0) {
360 td_verror(td, io_u->error, "td_io_queue");
361 put_io_u(td, io_u);
362 return 1;
363 } else if (ret == FIO_Q_QUEUED) {
364 if (io_u_queued_complete(td, 1, NULL) < 0)
365 return 1;
366 } else if (ret == FIO_Q_COMPLETED) {
367 if (io_u->error) {
368 td_verror(td, io_u->error, "td_io_queue");
369 return 1;
370 }
371
372 if (io_u_sync_complete(td, io_u, NULL) < 0)
373 return 1;
374 } else if (ret == FIO_Q_BUSY) {
375 if (td_io_commit(td))
376 return 1;
377 goto requeue;
378 }
379
380 return 0;
381}
382
383static inline void __update_tv_cache(struct thread_data *td)
384{
385 fio_gettime(&td->tv_cache, NULL);
386}
387
388static inline void update_tv_cache(struct thread_data *td)
389{
390 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
391 __update_tv_cache(td);
392}
393
394static int break_on_this_error(struct thread_data *td, int *retptr)
395{
396 int ret = *retptr;
397
398 if (ret < 0 || td->error) {
399 int err;
400
401 if (!td->o.continue_on_error)
402 return 1;
403
404 if (ret < 0)
405 err = -ret;
406 else
407 err = td->error;
408
409 if (td_non_fatal_error(err)) {
410 /*
411 * Continue with the I/Os in case of
412 * a non fatal error.
413 */
414 update_error_count(td, err);
415 td_clear_error(td);
416 *retptr = 0;
417 return 0;
418 } else if (td->o.fill_device && err == ENOSPC) {
419 /*
420 * We expect to hit this error if
421 * fill_device option is set.
422 */
423 td_clear_error(td);
424 td->terminate = 1;
425 return 1;
426 } else {
427 /*
428 * Stop the I/O in case of a fatal
429 * error.
430 */
431 update_error_count(td, err);
432 return 1;
433 }
434 }
435
436 return 0;
437}
438
439/*
440 * The main verify engine. Runs over the writes we previously submitted,
441 * reads the blocks back in, and checks the crc/md5 of the data.
442 */
443static void do_verify(struct thread_data *td)
444{
445 struct fio_file *f;
446 struct io_u *io_u;
447 int ret, min_events;
448 unsigned int i;
449
450 dprint(FD_VERIFY, "starting loop\n");
451
452 /*
453 * sync io first and invalidate cache, to make sure we really
454 * read from disk.
455 */
456 for_each_file(td, f, i) {
457 if (!fio_file_open(f))
458 continue;
459 if (fio_io_sync(td, f))
460 break;
461 if (file_invalidate_cache(td, f))
462 break;
463 }
464
465 if (td->error)
466 return;
467
468 td_set_runstate(td, TD_VERIFYING);
469
470 io_u = NULL;
471 while (!td->terminate) {
472 int ret2, full;
473
474 update_tv_cache(td);
475
476 if (runtime_exceeded(td, &td->tv_cache)) {
477 __update_tv_cache(td);
478 if (runtime_exceeded(td, &td->tv_cache)) {
479 td->terminate = 1;
480 break;
481 }
482 }
483
484 io_u = __get_io_u(td);
485 if (!io_u)
486 break;
487
488 if (get_next_verify(td, io_u)) {
489 put_io_u(td, io_u);
490 break;
491 }
492
493 if (td_io_prep(td, io_u)) {
494 put_io_u(td, io_u);
495 break;
496 }
497
498 if (td->o.verify_async)
499 io_u->end_io = verify_io_u_async;
500 else
501 io_u->end_io = verify_io_u;
502
503 ret = td_io_queue(td, io_u);
504 switch (ret) {
505 case FIO_Q_COMPLETED:
506 if (io_u->error) {
507 ret = -io_u->error;
508 clear_io_u(td, io_u);
509 } else if (io_u->resid) {
510 int bytes = io_u->xfer_buflen - io_u->resid;
511
512 /*
513 * zero read, fail
514 */
515 if (!bytes) {
516 td_verror(td, EIO, "full resid");
517 put_io_u(td, io_u);
518 break;
519 }
520
521 io_u->xfer_buflen = io_u->resid;
522 io_u->xfer_buf += bytes;
523 io_u->offset += bytes;
524
525 if (ddir_rw(io_u->ddir))
526 td->ts.short_io_u[io_u->ddir]++;
527
528 f = io_u->file;
529 if (io_u->offset == f->real_file_size)
530 goto sync_done;
531
532 requeue_io_u(td, &io_u);
533 } else {
534sync_done:
535 ret = io_u_sync_complete(td, io_u, NULL);
536 if (ret < 0)
537 break;
538 }
539 continue;
540 case FIO_Q_QUEUED:
541 break;
542 case FIO_Q_BUSY:
543 requeue_io_u(td, &io_u);
544 ret2 = td_io_commit(td);
545 if (ret2 < 0)
546 ret = ret2;
547 break;
548 default:
549 assert(ret < 0);
550 td_verror(td, -ret, "td_io_queue");
551 break;
552 }
553
554 if (break_on_this_error(td, &ret))
555 break;
556
557 /*
558 * if we can queue more, do so. but check if there are
559 * completed io_u's first. Note that we can get BUSY even
560 * without IO queued, if the system is resource starved.
561 */
562 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
563 if (full || !td->o.iodepth_batch_complete) {
564 min_events = min(td->o.iodepth_batch_complete,
565 td->cur_depth);
566 if (full && !min_events && td->o.iodepth_batch_complete != 0)
567 min_events = 1;
568
569 do {
570 /*
571 * Reap required number of io units, if any,
572 * and do the verification on them through
573 * the callback handler
574 */
575 if (io_u_queued_complete(td, min_events, NULL) < 0) {
576 ret = -1;
577 break;
578 }
579 } while (full && (td->cur_depth > td->o.iodepth_low));
580 }
581 if (ret < 0)
582 break;
583 }
584
585 if (!td->error) {
586 min_events = td->cur_depth;
587
588 if (min_events)
589 ret = io_u_queued_complete(td, min_events, NULL);
590 } else
591 cleanup_pending_aio(td);
592
593 td_set_runstate(td, TD_RUNNING);
594
595 dprint(FD_VERIFY, "exiting loop\n");
596}
597
598/*
599 * Main IO worker function. It retrieves io_u's to process and queues
600 * and reaps them, checking for rate and errors along the way.
601 */
602static void do_io(struct thread_data *td)
603{
604 unsigned int i;
605 int ret = 0;
606
607 if (in_ramp_time(td))
608 td_set_runstate(td, TD_RAMP);
609 else
610 td_set_runstate(td, TD_RUNNING);
611
612 while ( (td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
613 (!flist_empty(&td->trim_list)) ||
614 ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) ) {
615 struct timeval comp_time;
616 unsigned long bytes_done[2] = { 0, 0 };
617 int min_evts = 0;
618 struct io_u *io_u;
619 int ret2, full;
620
621 if (td->terminate)
622 break;
623
624 update_tv_cache(td);
625
626 if (runtime_exceeded(td, &td->tv_cache)) {
627 __update_tv_cache(td);
628 if (runtime_exceeded(td, &td->tv_cache)) {
629 td->terminate = 1;
630 break;
631 }
632 }
633
634 io_u = get_io_u(td);
635 if (!io_u)
636 break;
637
638 /*
639 * Add verification end_io handler, if asked to verify
640 * a previously written file.
641 */
642 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
643 !td_rw(td)) {
644 if (td->o.verify_async)
645 io_u->end_io = verify_io_u_async;
646 else
647 io_u->end_io = verify_io_u;
648 td_set_runstate(td, TD_VERIFYING);
649 } else if (in_ramp_time(td))
650 td_set_runstate(td, TD_RAMP);
651 else
652 td_set_runstate(td, TD_RUNNING);
653
654 ret = td_io_queue(td, io_u);
655 switch (ret) {
656 case FIO_Q_COMPLETED:
657 if (io_u->error) {
658 ret = -io_u->error;
659 clear_io_u(td, io_u);
660 } else if (io_u->resid) {
661 int bytes = io_u->xfer_buflen - io_u->resid;
662 struct fio_file *f = io_u->file;
663
664 /*
665 * zero read, fail
666 */
667 if (!bytes) {
668 td_verror(td, EIO, "full resid");
669 put_io_u(td, io_u);
670 break;
671 }
672
673 io_u->xfer_buflen = io_u->resid;
674 io_u->xfer_buf += bytes;
675 io_u->offset += bytes;
676
677 if (ddir_rw(io_u->ddir))
678 td->ts.short_io_u[io_u->ddir]++;
679
680 if (io_u->offset == f->real_file_size)
681 goto sync_done;
682
683 requeue_io_u(td, &io_u);
684 } else {
685sync_done:
686 if (__should_check_rate(td, 0) ||
687 __should_check_rate(td, 1))
688 fio_gettime(&comp_time, NULL);
689
690 ret = io_u_sync_complete(td, io_u, bytes_done);
691 if (ret < 0)
692 break;
693 }
694 break;
695 case FIO_Q_QUEUED:
696 /*
697 * if the engine doesn't have a commit hook,
698 * the io_u is really queued. if it does have such
699 * a hook, it has to call io_u_queued() itself.
700 */
701 if (td->io_ops->commit == NULL)
702 io_u_queued(td, io_u);
703 break;
704 case FIO_Q_BUSY:
705 requeue_io_u(td, &io_u);
706 ret2 = td_io_commit(td);
707 if (ret2 < 0)
708 ret = ret2;
709 break;
710 default:
711 assert(ret < 0);
712 put_io_u(td, io_u);
713 break;
714 }
715
716 if (break_on_this_error(td, &ret))
717 break;
718
719 /*
720 * See if we need to complete some commands. Note that we
721 * can get BUSY even without IO queued, if the system is
722 * resource starved.
723 */
724 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
725 if (full || !td->o.iodepth_batch_complete) {
726 min_evts = min(td->o.iodepth_batch_complete,
727 td->cur_depth);
728 if (full && !min_evts && td->o.iodepth_batch_complete != 0)
729 min_evts = 1;
730
731 if (__should_check_rate(td, 0) ||
732 __should_check_rate(td, 1))
733 fio_gettime(&comp_time, NULL);
734
735 do {
736 ret = io_u_queued_complete(td, min_evts, bytes_done);
737 if (ret < 0)
738 break;
739
740 } while (full && (td->cur_depth > td->o.iodepth_low));
741 }
742
743 if (ret < 0)
744 break;
745 if (!(bytes_done[0] + bytes_done[1]))
746 continue;
747
748 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
749 if (check_min_rate(td, &comp_time, bytes_done)) {
750 if (exitall_on_terminate)
751 terminate_threads(td->groupid);
752 td_verror(td, EIO, "check_min_rate");
753 break;
754 }
755 }
756
757 if (td->o.thinktime) {
758 unsigned long long b;
759
760 b = td->io_blocks[0] + td->io_blocks[1];
761 if (!(b % td->o.thinktime_blocks)) {
762 int left;
763
764 if (td->o.thinktime_spin)
765 usec_spin(td->o.thinktime_spin);
766
767 left = td->o.thinktime - td->o.thinktime_spin;
768 if (left)
769 usec_sleep(td, left);
770 }
771 }
772 }
773
774 if (td->trim_entries)
775 printf("trim entries %ld\n", td->trim_entries);
776
777 if (td->o.fill_device && td->error == ENOSPC) {
778 td->error = 0;
779 td->terminate = 1;
780 }
781 if (!td->error) {
782 struct fio_file *f;
783
784 i = td->cur_depth;
785 if (i) {
786 ret = io_u_queued_complete(td, i, NULL);
787 if (td->o.fill_device && td->error == ENOSPC)
788 td->error = 0;
789 }
790
791 if (should_fsync(td) && td->o.end_fsync) {
792 td_set_runstate(td, TD_FSYNCING);
793
794 for_each_file(td, f, i) {
795 if (!fio_file_open(f))
796 continue;
797 fio_io_sync(td, f);
798 }
799 }
800 } else
801 cleanup_pending_aio(td);
802
803 /*
804 * stop job if we failed doing any IO
805 */
806 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
807 td->done = 1;
808}
809
810static void cleanup_io_u(struct thread_data *td)
811{
812 struct flist_head *entry, *n;
813 struct io_u *io_u;
814
815 flist_for_each_safe(entry, n, &td->io_u_freelist) {
816 io_u = flist_entry(entry, struct io_u, list);
817
818 flist_del(&io_u->list);
819 fio_memfree(io_u, sizeof(*io_u));
820 }
821
822 free_io_mem(td);
823}
824
825static int init_io_u(struct thread_data *td)
826{
827 struct io_u *io_u;
828 unsigned int max_bs;
829 int cl_align, i, max_units;
830 char *p;
831
832 max_units = td->o.iodepth;
833 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
834 td->orig_buffer_size = (unsigned long long) max_bs
835 * (unsigned long long) max_units;
836
837 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
838 unsigned long bs;
839
840 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
841 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
842 }
843
844 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
845 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
846 return 1;
847 }
848
849 if (allocate_io_mem(td))
850 return 1;
851
852 if (td->o.odirect || td->o.mem_align ||
853 (td->io_ops->flags & FIO_RAWIO))
854 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
855 else
856 p = td->orig_buffer;
857
858 cl_align = os_cache_line_size();
859
860 for (i = 0; i < max_units; i++) {
861 void *ptr;
862
863 if (td->terminate)
864 return 1;
865
866 ptr = fio_memalign(cl_align, sizeof(*io_u));
867 if (!ptr) {
868 log_err("fio: unable to allocate aligned memory\n");
869 break;
870 }
871
872 io_u = ptr;
873 memset(io_u, 0, sizeof(*io_u));
874 INIT_FLIST_HEAD(&io_u->list);
875 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
876
877 if (!(td->io_ops->flags & FIO_NOIO)) {
878 io_u->buf = p + max_bs * i;
879 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
880
881 if (td_write(td))
882 io_u_fill_buffer(td, io_u, max_bs);
883 if (td_write(td) && td->o.verify_pattern_bytes) {
884 /*
885 * Fill the buffer with the pattern if we are
886 * going to be doing writes.
887 */
888 fill_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
889 }
890 }
891
892 io_u->index = i;
893 io_u->flags = IO_U_F_FREE;
894 flist_add(&io_u->list, &td->io_u_freelist);
895 }
896
897 return 0;
898}
899
900static int switch_ioscheduler(struct thread_data *td)
901{
902 char tmp[256], tmp2[128];
903 FILE *f;
904 int ret;
905
906 if (td->io_ops->flags & FIO_DISKLESSIO)
907 return 0;
908
909 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
910
911 f = fopen(tmp, "r+");
912 if (!f) {
913 if (errno == ENOENT) {
914 log_err("fio: os or kernel doesn't support IO scheduler"
915 " switching\n");
916 return 0;
917 }
918 td_verror(td, errno, "fopen iosched");
919 return 1;
920 }
921
922 /*
923 * Set io scheduler.
924 */
925 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
926 if (ferror(f) || ret != 1) {
927 td_verror(td, errno, "fwrite");
928 fclose(f);
929 return 1;
930 }
931
932 rewind(f);
933
934 /*
935 * Read back and check that the selected scheduler is now the default.
936 */
937 ret = fread(tmp, 1, sizeof(tmp), f);
938 if (ferror(f) || ret < 0) {
939 td_verror(td, errno, "fread");
940 fclose(f);
941 return 1;
942 }
943
944 sprintf(tmp2, "[%s]", td->o.ioscheduler);
945 if (!strstr(tmp, tmp2)) {
946 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
947 td_verror(td, EINVAL, "iosched_switch");
948 fclose(f);
949 return 1;
950 }
951
952 fclose(f);
953 return 0;
954}
955
956static int keep_running(struct thread_data *td)
957{
958 unsigned long long io_done;
959
960 if (td->done)
961 return 0;
962 if (td->o.time_based)
963 return 1;
964 if (td->o.loops) {
965 td->o.loops--;
966 return 1;
967 }
968
969 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
970 + td->io_skip_bytes;
971 if (io_done < td->o.size)
972 return 1;
973
974 return 0;
975}
976
977static void reset_io_counters(struct thread_data *td)
978{
979 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
980 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
981 td->zone_bytes = 0;
982 td->rate_bytes[0] = td->rate_bytes[1] = 0;
983 td->rate_blocks[0] = td->rate_blocks[1] = 0;
984
985 td->last_was_sync = 0;
986
987 /*
988 * reset file done count if we are to start over
989 */
990 if (td->o.time_based || td->o.loops)
991 td->nr_done_files = 0;
992}
993
994void reset_all_stats(struct thread_data *td)
995{
996 struct timeval tv;
997 int i;
998
999 reset_io_counters(td);
1000
1001 for (i = 0; i < 2; i++) {
1002 td->io_bytes[i] = 0;
1003 td->io_blocks[i] = 0;
1004 td->io_issues[i] = 0;
1005 td->ts.total_io_u[i] = 0;
1006 }
1007
1008 fio_gettime(&tv, NULL);
1009 td->ts.runtime[0] = 0;
1010 td->ts.runtime[1] = 0;
1011 memcpy(&td->epoch, &tv, sizeof(tv));
1012 memcpy(&td->start, &tv, sizeof(tv));
1013}
1014
1015static void clear_io_state(struct thread_data *td)
1016{
1017 struct fio_file *f;
1018 unsigned int i;
1019
1020 reset_io_counters(td);
1021
1022 close_files(td);
1023 for_each_file(td, f, i)
1024 fio_file_clear_done(f);
1025
1026 /*
1027 * Set the same seed to get repeatable runs
1028 */
1029 td_fill_rand_seeds(td);
1030}
1031
1032static int exec_string(const char *string)
1033{
1034 int ret, newlen = strlen(string) + 1 + 8;
1035 char *str;
1036
1037 str = malloc(newlen);
1038 sprintf(str, "sh -c %s", string);
1039
1040 ret = system(str);
1041 if (ret == -1)
1042 log_err("fio: exec of cmd <%s> failed\n", str);
1043
1044 free(str);
1045 return ret;
1046}
1047
1048/*
1049 * Entry point for the thread based jobs. The process based jobs end up
1050 * here as well, after a little setup.
1051 */
1052static void *thread_main(void *data)
1053{
1054 unsigned long long elapsed;
1055 struct thread_data *td = data;
1056 pthread_condattr_t attr;
1057 int clear_state;
1058
1059 if (!td->o.use_thread) {
1060 setsid();
1061 td->pid = getpid();
1062 } else
1063 td->pid = gettid();
1064
1065 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1066
1067 INIT_FLIST_HEAD(&td->io_u_freelist);
1068 INIT_FLIST_HEAD(&td->io_u_busylist);
1069 INIT_FLIST_HEAD(&td->io_u_requeues);
1070 INIT_FLIST_HEAD(&td->io_log_list);
1071 INIT_FLIST_HEAD(&td->io_hist_list);
1072 INIT_FLIST_HEAD(&td->verify_list);
1073 INIT_FLIST_HEAD(&td->trim_list);
1074 pthread_mutex_init(&td->io_u_lock, NULL);
1075 td->io_hist_tree = RB_ROOT;
1076
1077 pthread_condattr_init(&attr);
1078 pthread_cond_init(&td->verify_cond, &attr);
1079 pthread_cond_init(&td->free_cond, &attr);
1080
1081 td_set_runstate(td, TD_INITIALIZED);
1082 dprint(FD_MUTEX, "up startup_mutex\n");
1083 fio_mutex_up(startup_mutex);
1084 dprint(FD_MUTEX, "wait on td->mutex\n");
1085 fio_mutex_down(td->mutex);
1086 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1087
1088 /*
1089 * the ->mutex mutex is now no longer used, close it to avoid
1090 * eating a file descriptor
1091 */
1092 fio_mutex_remove(td->mutex);
1093
1094 /*
1095 * A new gid requires privilege, so we need to do this before setting
1096 * the uid.
1097 */
1098 if (td->o.gid != -1U && setgid(td->o.gid)) {
1099 td_verror(td, errno, "setgid");
1100 goto err;
1101 }
1102 if (td->o.uid != -1U && setuid(td->o.uid)) {
1103 td_verror(td, errno, "setuid");
1104 goto err;
1105 }
1106
1107 /*
1108 * If we have a gettimeofday() thread, make sure we exclude that
1109 * thread from this job
1110 */
1111 if (td->o.gtod_cpu)
1112 fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
1113
1114 /*
1115 * Set affinity first, in case it has an impact on the memory
1116 * allocations.
1117 */
1118 if (td->o.cpumask_set && fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1119 td_verror(td, errno, "cpu_set_affinity");
1120 goto err;
1121 }
1122
1123 /*
1124 * May alter parameters that init_io_u() will use, so we need to
1125 * do this first.
1126 */
1127 if (init_iolog(td))
1128 goto err;
1129
1130 if (init_io_u(td))
1131 goto err;
1132
1133 if (td->o.verify_async && verify_async_init(td))
1134 goto err;
1135
1136 if (td->ioprio_set) {
1137 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1138 td_verror(td, errno, "ioprio_set");
1139 goto err;
1140 }
1141 }
1142
1143 if (td->o.cgroup_weight && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1144 goto err;
1145
1146 if (nice(td->o.nice) == -1) {
1147 td_verror(td, errno, "nice");
1148 goto err;
1149 }
1150
1151 if (td->o.ioscheduler && switch_ioscheduler(td))
1152 goto err;
1153
1154 if (!td->o.create_serialize && setup_files(td))
1155 goto err;
1156
1157 if (td_io_init(td))
1158 goto err;
1159
1160 if (init_random_map(td))
1161 goto err;
1162
1163 if (td->o.exec_prerun) {
1164 if (exec_string(td->o.exec_prerun))
1165 goto err;
1166 }
1167
1168 if (td->o.pre_read) {
1169 if (pre_read_files(td) < 0)
1170 goto err;
1171 }
1172
1173 fio_gettime(&td->epoch, NULL);
1174 getrusage(RUSAGE_SELF, &td->ts.ru_start);
1175
1176 clear_state = 0;
1177 while (keep_running(td)) {
1178 fio_gettime(&td->start, NULL);
1179 memcpy(&td->ts.stat_sample_time[0], &td->start,
1180 sizeof(td->start));
1181 memcpy(&td->ts.stat_sample_time[1], &td->start,
1182 sizeof(td->start));
1183 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1184
1185 if (td->o.ratemin[0] || td->o.ratemin[1])
1186 memcpy(&td->lastrate, &td->ts.stat_sample_time,
1187 sizeof(td->lastrate));
1188
1189 if (clear_state)
1190 clear_io_state(td);
1191
1192 prune_io_piece_log(td);
1193
1194 do_io(td);
1195
1196 clear_state = 1;
1197
1198 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1199 elapsed = utime_since_now(&td->start);
1200 td->ts.runtime[DDIR_READ] += elapsed;
1201 }
1202 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1203 elapsed = utime_since_now(&td->start);
1204 td->ts.runtime[DDIR_WRITE] += elapsed;
1205 }
1206
1207 if (td->error || td->terminate)
1208 break;
1209
1210 if (!td->o.do_verify ||
1211 td->o.verify == VERIFY_NONE ||
1212 (td->io_ops->flags & FIO_UNIDIR))
1213 continue;
1214
1215 clear_io_state(td);
1216
1217 fio_gettime(&td->start, NULL);
1218
1219 do_verify(td);
1220
1221 td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1222
1223 if (td->error || td->terminate)
1224 break;
1225 }
1226
1227 update_rusage_stat(td);
1228 td->ts.runtime[0] = (td->ts.runtime[0] + 999) / 1000;
1229 td->ts.runtime[1] = (td->ts.runtime[1] + 999) / 1000;
1230 td->ts.total_run_time = mtime_since_now(&td->epoch);
1231 td->ts.io_bytes[0] = td->io_bytes[0];
1232 td->ts.io_bytes[1] = td->io_bytes[1];
1233
1234 fio_mutex_down(writeout_mutex);
1235 if (td->ts.bw_log) {
1236 if (td->o.bw_log_file) {
1237 finish_log_named(td, td->ts.bw_log,
1238 td->o.bw_log_file, "bw");
1239 } else
1240 finish_log(td, td->ts.bw_log, "bw");
1241 }
1242 if (td->ts.lat_log) {
1243 if (td->o.lat_log_file) {
1244 finish_log_named(td, td->ts.lat_log,
1245 td->o.lat_log_file, "lat");
1246 } else
1247 finish_log(td, td->ts.lat_log, "lat");
1248 }
1249 if (td->ts.slat_log) {
1250 if (td->o.lat_log_file) {
1251 finish_log_named(td, td->ts.slat_log,
1252 td->o.lat_log_file, "slat");
1253 } else
1254 finish_log(td, td->ts.slat_log, "slat");
1255 }
1256 if (td->ts.clat_log) {
1257 if (td->o.lat_log_file) {
1258 finish_log_named(td, td->ts.clat_log,
1259 td->o.lat_log_file, "clat");
1260 } else
1261 finish_log(td, td->ts.clat_log, "clat");
1262 }
1263 fio_mutex_up(writeout_mutex);
1264 if (td->o.exec_postrun)
1265 exec_string(td->o.exec_postrun);
1266
1267 if (exitall_on_terminate)
1268 terminate_threads(td->groupid);
1269
1270err:
1271 if (td->error)
1272 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1273 td->verror);
1274
1275 if (td->o.verify_async)
1276 verify_async_exit(td);
1277
1278 close_and_free_files(td);
1279 close_ioengine(td);
1280 cleanup_io_u(td);
1281 cgroup_shutdown(td, &cgroup_mnt);
1282
1283 if (td->o.cpumask_set) {
1284 int ret = fio_cpuset_exit(&td->o.cpumask);
1285
1286 td_verror(td, ret, "fio_cpuset_exit");
1287 }
1288
1289 /*
1290 * do this very late, it will log file closing as well
1291 */
1292 if (td->o.write_iolog_file)
1293 write_iolog_close(td);
1294
1295 options_mem_free(td);
1296 td_set_runstate(td, TD_EXITED);
1297 return (void *) (unsigned long) td->error;
1298}
1299
1300/*
1301 * We cannot pass the td data into a forked process, so attach the td and
1302 * pass it to the thread worker.
1303 */
1304static int fork_main(int shmid, int offset)
1305{
1306 struct thread_data *td;
1307 void *data, *ret;
1308
1309#ifndef __hpux
1310 data = shmat(shmid, NULL, 0);
1311 if (data == (void *) -1) {
1312 int __err = errno;
1313
1314 perror("shmat");
1315 return __err;
1316 }
1317#else
1318 /*
1319 * HP-UX inherits shm mappings?
1320 */
1321 data = threads;
1322#endif
1323
1324 td = data + offset * sizeof(struct thread_data);
1325 ret = thread_main(td);
1326 shmdt(data);
1327 return (int) (unsigned long) ret;
1328}
1329
1330/*
1331 * Run over the job map and reap the threads that have exited, if any.
1332 */
1333static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1334{
1335 struct thread_data *td;
1336 int i, cputhreads, realthreads, pending, status, ret;
1337
1338 /*
1339 * reap exited threads (TD_EXITED -> TD_REAPED)
1340 */
1341 realthreads = pending = cputhreads = 0;
1342 for_each_td(td, i) {
1343 int flags = 0;
1344
1345 /*
1346 * ->io_ops is NULL for a thread that has closed its
1347 * io engine
1348 */
1349 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1350 cputhreads++;
1351 else
1352 realthreads++;
1353
1354 if (!td->pid) {
1355 pending++;
1356 continue;
1357 }
1358 if (td->runstate == TD_REAPED)
1359 continue;
1360 if (td->o.use_thread) {
1361 if (td->runstate == TD_EXITED) {
1362 td_set_runstate(td, TD_REAPED);
1363 goto reaped;
1364 }
1365 continue;
1366 }
1367
1368 flags = WNOHANG;
1369 if (td->runstate == TD_EXITED)
1370 flags = 0;
1371
1372 /*
1373 * check if someone quit or got killed in an unusual way
1374 */
1375 ret = waitpid(td->pid, &status, flags);
1376 if (ret < 0) {
1377 if (errno == ECHILD) {
1378 log_err("fio: pid=%d disappeared %d\n",
1379 (int) td->pid, td->runstate);
1380 td_set_runstate(td, TD_REAPED);
1381 goto reaped;
1382 }
1383 perror("waitpid");
1384 } else if (ret == td->pid) {
1385 if (WIFSIGNALED(status)) {
1386 int sig = WTERMSIG(status);
1387
1388 if (sig != SIGTERM)
1389 log_err("fio: pid=%d, got signal=%d\n",
1390 (int) td->pid, sig);
1391 td_set_runstate(td, TD_REAPED);
1392 goto reaped;
1393 }
1394 if (WIFEXITED(status)) {
1395 if (WEXITSTATUS(status) && !td->error)
1396 td->error = WEXITSTATUS(status);
1397
1398 td_set_runstate(td, TD_REAPED);
1399 goto reaped;
1400 }
1401 }
1402
1403 /*
1404 * thread is not dead, continue
1405 */
1406 pending++;
1407 continue;
1408reaped:
1409 (*nr_running)--;
1410 (*m_rate) -= (td->o.ratemin[0] + td->o.ratemin[1]);
1411 (*t_rate) -= (td->o.rate[0] + td->o.rate[1]);
1412 if (!td->pid)
1413 pending--;
1414
1415 if (td->error)
1416 exit_value++;
1417
1418 done_secs += mtime_since_now(&td->epoch) / 1000;
1419 }
1420
1421 if (*nr_running == cputhreads && !pending && realthreads)
1422 terminate_threads(TERMINATE_ALL);
1423}
1424
1425static void *gtod_thread_main(void *data)
1426{
1427 fio_mutex_up(startup_mutex);
1428
1429 /*
1430 * As long as we have jobs around, update the clock. It would be nice
1431 * to have some way of NOT hammering that CPU with gettimeofday(),
1432 * but I'm not sure what to use outside of a simple CPU nop to relax
1433 * it - we don't want to lose precision.
1434 */
1435 while (threads) {
1436 fio_gtod_update();
1437 nop;
1438 }
1439
1440 return NULL;
1441}
1442
1443static int fio_start_gtod_thread(void)
1444{
1445 pthread_attr_t attr;
1446 int ret;
1447
1448 pthread_attr_init(&attr);
1449 pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN);
1450 ret = pthread_create(&gtod_thread, &attr, gtod_thread_main, NULL);
1451 pthread_attr_destroy(&attr);
1452 if (ret) {
1453 log_err("Can't create gtod thread: %s\n", strerror(ret));
1454 return 1;
1455 }
1456
1457 ret = pthread_detach(gtod_thread);
1458 if (ret) {
1459 log_err("Can't detatch gtod thread: %s\n", strerror(ret));
1460 return 1;
1461 }
1462
1463 dprint(FD_MUTEX, "wait on startup_mutex\n");
1464 fio_mutex_down(startup_mutex);
1465 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1466 return 0;
1467}
1468
1469/*
1470 * Main function for kicking off and reaping jobs, as needed.
1471 */
1472static void run_threads(void)
1473{
1474 struct thread_data *td;
1475 unsigned long spent;
1476 int i, todo, nr_running, m_rate, t_rate, nr_started;
1477
1478 if (fio_pin_memory())
1479 return;
1480
1481 if (fio_gtod_offload && fio_start_gtod_thread())
1482 return;
1483
1484 if (!terse_output) {
1485 log_info("Starting ");
1486 if (nr_thread)
1487 log_info("%d thread%s", nr_thread,
1488 nr_thread > 1 ? "s" : "");
1489 if (nr_process) {
1490 if (nr_thread)
1491 printf(" and ");
1492 log_info("%d process%s", nr_process,
1493 nr_process > 1 ? "es" : "");
1494 }
1495 log_info("\n");
1496 fflush(stdout);
1497 }
1498
1499 set_sig_handlers();
1500
1501 todo = thread_number;
1502 nr_running = 0;
1503 nr_started = 0;
1504 m_rate = t_rate = 0;
1505
1506 for_each_td(td, i) {
1507 print_status_init(td->thread_number - 1);
1508
1509 if (!td->o.create_serialize)
1510 continue;
1511
1512 /*
1513 * do file setup here so it happens sequentially,
1514 * we don't want X number of threads getting their
1515 * client data interspersed on disk
1516 */
1517 if (setup_files(td)) {
1518 exit_value++;
1519 if (td->error)
1520 log_err("fio: pid=%d, err=%d/%s\n",
1521 (int) td->pid, td->error, td->verror);
1522 td_set_runstate(td, TD_REAPED);
1523 todo--;
1524 } else {
1525 struct fio_file *f;
1526 unsigned int j;
1527
1528 /*
1529 * for sharing to work, each job must always open
1530 * its own files. so close them, if we opened them
1531 * for creation
1532 */
1533 for_each_file(td, f, j) {
1534 if (fio_file_open(f))
1535 td_io_close_file(td, f);
1536 }
1537 }
1538 }
1539
1540 set_genesis_time();
1541
1542 while (todo) {
1543 struct thread_data *map[REAL_MAX_JOBS];
1544 struct timeval this_start;
1545 int this_jobs = 0, left;
1546
1547 /*
1548 * create threads (TD_NOT_CREATED -> TD_CREATED)
1549 */
1550 for_each_td(td, i) {
1551 if (td->runstate != TD_NOT_CREATED)
1552 continue;
1553
1554 /*
1555 * never got a chance to start, killed by other
1556 * thread for some reason
1557 */
1558 if (td->terminate) {
1559 todo--;
1560 continue;
1561 }
1562
1563 if (td->o.start_delay) {
1564 spent = mtime_since_genesis();
1565
1566 if (td->o.start_delay * 1000 > spent)
1567 continue;
1568 }
1569
1570 if (td->o.stonewall && (nr_started || nr_running)) {
1571 dprint(FD_PROCESS, "%s: stonewall wait\n",
1572 td->o.name);
1573 break;
1574 }
1575
1576 init_disk_util(td);
1577
1578 /*
1579 * Set state to created. Thread will transition
1580 * to TD_INITIALIZED when it's done setting up.
1581 */
1582 td_set_runstate(td, TD_CREATED);
1583 map[this_jobs++] = td;
1584 nr_started++;
1585
1586 if (td->o.use_thread) {
1587 int ret;
1588
1589 dprint(FD_PROCESS, "will pthread_create\n");
1590 ret = pthread_create(&td->thread, NULL,
1591 thread_main, td);
1592 if (ret) {
1593 log_err("pthread_create: %s\n",
1594 strerror(ret));
1595 nr_started--;
1596 break;
1597 }
1598 ret = pthread_detach(td->thread);
1599 if (ret)
1600 log_err("pthread_detach: %s",
1601 strerror(ret));
1602 } else {
1603 pid_t pid;
1604 dprint(FD_PROCESS, "will fork\n");
1605 pid = fork();
1606 if (!pid) {
1607 int ret = fork_main(shm_id, i);
1608
1609 _exit(ret);
1610 } else if (i == fio_debug_jobno)
1611 *fio_debug_jobp = pid;
1612 }
1613 dprint(FD_MUTEX, "wait on startup_mutex\n");
1614 if (fio_mutex_down_timeout(startup_mutex, 10)) {
1615 log_err("fio: job startup hung? exiting.\n");
1616 terminate_threads(TERMINATE_ALL);
1617 fio_abort = 1;
1618 nr_started--;
1619 break;
1620 }
1621 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1622 }
1623
1624 /*
1625 * Wait for the started threads to transition to
1626 * TD_INITIALIZED.
1627 */
1628 fio_gettime(&this_start, NULL);
1629 left = this_jobs;
1630 while (left && !fio_abort) {
1631 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1632 break;
1633
1634 usleep(100000);
1635
1636 for (i = 0; i < this_jobs; i++) {
1637 td = map[i];
1638 if (!td)
1639 continue;
1640 if (td->runstate == TD_INITIALIZED) {
1641 map[i] = NULL;
1642 left--;
1643 } else if (td->runstate >= TD_EXITED) {
1644 map[i] = NULL;
1645 left--;
1646 todo--;
1647 nr_running++; /* work-around... */
1648 }
1649 }
1650 }
1651
1652 if (left) {
1653 log_err("fio: %d jobs failed to start\n", left);
1654 for (i = 0; i < this_jobs; i++) {
1655 td = map[i];
1656 if (!td)
1657 continue;
1658 kill(td->pid, SIGTERM);
1659 }
1660 break;
1661 }
1662
1663 /*
1664 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1665 */
1666 for_each_td(td, i) {
1667 if (td->runstate != TD_INITIALIZED)
1668 continue;
1669
1670 if (in_ramp_time(td))
1671 td_set_runstate(td, TD_RAMP);
1672 else
1673 td_set_runstate(td, TD_RUNNING);
1674 nr_running++;
1675 nr_started--;
1676 m_rate += td->o.ratemin[0] + td->o.ratemin[1];
1677 t_rate += td->o.rate[0] + td->o.rate[1];
1678 todo--;
1679 fio_mutex_up(td->mutex);
1680 }
1681
1682 reap_threads(&nr_running, &t_rate, &m_rate);
1683
1684 if (todo)
1685 usleep(100000);
1686 }
1687
1688 while (nr_running) {
1689 reap_threads(&nr_running, &t_rate, &m_rate);
1690 usleep(10000);
1691 }
1692
1693 update_io_ticks();
1694 fio_unpin_memory();
1695}
1696
1697int exec_run(void)
1698{
1699 if (exec_profile && load_profile(exec_profile))
1700 return 1;
1701
1702 if (!thread_number)
1703 return 0;
1704
1705 if (write_bw_log) {
1706 setup_log(&agg_io_log[DDIR_READ]);
1707 setup_log(&agg_io_log[DDIR_WRITE]);
1708 }
1709
1710 startup_mutex = fio_mutex_init(0);
1711 if (startup_mutex == NULL)
1712 return 1;
1713 writeout_mutex = fio_mutex_init(1);
1714 if (writeout_mutex == NULL)
1715 return 1;
1716
1717 set_genesis_time();
1718 create_disk_util_thread();
1719
1720 cgroup_list = smalloc(sizeof(*cgroup_list));
1721 INIT_FLIST_HEAD(cgroup_list);
1722
1723 run_threads();
1724
1725 if (!fio_abort) {
1726 show_run_stats();
1727 if (write_bw_log) {
1728 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1729 __finish_log(agg_io_log[DDIR_WRITE],
1730 "agg-write_bw.log");
1731 }
1732 }
1733
1734 cgroup_kill(cgroup_list);
1735 sfree(cgroup_list);
1736 sfree(cgroup_mnt);
1737
1738 fio_mutex_remove(startup_mutex);
1739 fio_mutex_remove(writeout_mutex);
1740 return exit_value;
1741}
1742
1743void reset_fio_state(void)
1744{
1745 groupid = 0;
1746 thread_number = 0;
1747 nr_process = 0;
1748 nr_thread = 0;
1749 done_secs = 0;
1750}
1751
1752int main(int argc, char *argv[], char *envp[])
1753{
1754 long ps;
1755
1756 arch_init(envp);
1757
1758 sinit();
1759
1760 /*
1761 * We need locale for number printing, if it isn't set then just
1762 * go with the US format.
1763 */
1764 if (!getenv("LC_NUMERIC"))
1765 setlocale(LC_NUMERIC, "en_US");
1766
1767 ps = sysconf(_SC_PAGESIZE);
1768 if (ps < 0) {
1769 log_err("Failed to get page size\n");
1770 return 1;
1771 }
1772
1773 page_size = ps;
1774 page_mask = ps - 1;
1775
1776 fio_keywords_init();
1777
1778 if (parse_options(argc, argv))
1779 return 1;
1780
1781 return exec_run();
1782}