syslet engine: submission latency numbers
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "os.h"
39
40static unsigned long page_mask;
41#define ALIGN(buf) \
42 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
43
44int groupid = 0;
45int thread_number = 0;
46int shm_id = 0;
47int temp_stall_ts;
48
49static volatile int startup_sem;
50static volatile int fio_abort;
51static int exit_value;
52
53struct io_log *agg_io_log[2];
54
55#define TERMINATE_ALL (-1)
56#define JOB_START_TIMEOUT (5 * 1000)
57
58static inline void td_set_runstate(struct thread_data *td, int runstate)
59{
60 td->runstate = runstate;
61}
62
63static void terminate_threads(int group_id, int forced_kill)
64{
65 struct thread_data *td;
66 int i;
67
68 for_each_td(td, i) {
69 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
70 td->terminate = 1;
71 td->start_delay = 0;
72 if (forced_kill)
73 td_set_runstate(td, TD_EXITED);
74 }
75 }
76}
77
78static void sig_handler(int sig)
79{
80 switch (sig) {
81 case SIGALRM:
82 update_io_ticks();
83 disk_util_timer_arm();
84 print_thread_status();
85 break;
86 default:
87 printf("\nfio: terminating on signal %d\n", sig);
88 fflush(stdout);
89 terminate_threads(TERMINATE_ALL, 0);
90 break;
91 }
92}
93
94/*
95 * Check if we are above the minimum rate given.
96 */
97static int check_min_rate(struct thread_data *td, struct timeval *now)
98{
99 unsigned long long bytes = 0;
100 unsigned long spent;
101 unsigned long rate;
102
103 /*
104 * allow a 2 second settle period in the beginning
105 */
106 if (mtime_since(&td->start, now) < 2000)
107 return 0;
108
109 if (td_read(td))
110 bytes += td->this_io_bytes[DDIR_READ];
111 if (td_write(td))
112 bytes += td->this_io_bytes[DDIR_WRITE];
113
114 /*
115 * if rate blocks is set, sample is running
116 */
117 if (td->rate_bytes) {
118 spent = mtime_since(&td->lastrate, now);
119 if (spent < td->ratecycle)
120 return 0;
121
122 if (bytes < td->rate_bytes) {
123 fprintf(f_out, "%s: min rate %u not met\n", td->name, td->ratemin);
124 return 1;
125 } else {
126 rate = (bytes - td->rate_bytes) / spent;
127 if (rate < td->ratemin || bytes < td->rate_bytes) {
128 fprintf(f_out, "%s: min rate %u not met, got %luKiB/sec\n", td->name, td->ratemin, rate);
129 return 1;
130 }
131 }
132 }
133
134 td->rate_bytes = bytes;
135 memcpy(&td->lastrate, now, sizeof(*now));
136 return 0;
137}
138
139static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
140{
141 if (!td->timeout)
142 return 0;
143 if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
144 return 1;
145
146 return 0;
147}
148
149/*
150 * When job exits, we can cancel the in-flight IO if we are using async
151 * io. Attempt to do so.
152 */
153static void cleanup_pending_aio(struct thread_data *td)
154{
155 struct list_head *entry, *n;
156 struct io_u *io_u;
157 int r;
158
159 /*
160 * get immediately available events, if any
161 */
162 r = io_u_queued_complete(td, 0);
163 if (r < 0)
164 return;
165
166 /*
167 * now cancel remaining active events
168 */
169 if (td->io_ops->cancel) {
170 list_for_each_safe(entry, n, &td->io_u_busylist) {
171 io_u = list_entry(entry, struct io_u, list);
172
173 /*
174 * if the io_u isn't in flight, then that generally
175 * means someone leaked an io_u. complain but fix
176 * it up, so we don't stall here.
177 */
178 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
179 log_err("fio: non-busy IO on busy list\n");
180 put_io_u(td, io_u);
181 } else {
182 r = td->io_ops->cancel(td, io_u);
183 if (!r)
184 put_io_u(td, io_u);
185 }
186 }
187 }
188
189 if (td->cur_depth)
190 r = io_u_queued_complete(td, td->cur_depth);
191}
192
193/*
194 * Helper to handle the final sync of a file. Works just like the normal
195 * io path, just does everything sync.
196 */
197static int fio_io_sync(struct thread_data *td, struct fio_file *f)
198{
199 struct io_u *io_u = __get_io_u(td);
200 int ret;
201
202 if (!io_u)
203 return 1;
204
205 io_u->ddir = DDIR_SYNC;
206 io_u->file = f;
207
208 if (td_io_prep(td, io_u)) {
209 put_io_u(td, io_u);
210 return 1;
211 }
212
213requeue:
214 ret = td_io_queue(td, io_u);
215 if (ret < 0) {
216 td_verror(td, io_u->error, "td_io_queue");
217 put_io_u(td, io_u);
218 return 1;
219 } else if (ret == FIO_Q_QUEUED) {
220 if (io_u_queued_complete(td, 1) < 0)
221 return 1;
222 } else if (ret == FIO_Q_COMPLETED) {
223 if (io_u->error) {
224 td_verror(td, io_u->error, "td_io_queue");
225 return 1;
226 }
227
228 if (io_u_sync_complete(td, io_u) < 0)
229 return 1;
230 } else if (ret == FIO_Q_BUSY) {
231 if (td_io_commit(td))
232 return 1;
233 goto requeue;
234 }
235
236 return 0;
237}
238
239/*
240 * The main verify engine. Runs over the writes we previusly submitted,
241 * reads the blocks back in, and checks the crc/md5 of the data.
242 */
243static void do_verify(struct thread_data *td)
244{
245 struct fio_file *f;
246 struct io_u *io_u;
247 int ret, i, min_events;
248
249 /*
250 * sync io first and invalidate cache, to make sure we really
251 * read from disk.
252 */
253 for_each_file(td, f, i) {
254 if (fio_io_sync(td, f))
255 break;
256 if (file_invalidate_cache(td, f))
257 break;
258 }
259
260 if (td->error)
261 return;
262
263 td_set_runstate(td, TD_VERIFYING);
264
265 io_u = NULL;
266 while (!td->terminate) {
267 io_u = __get_io_u(td);
268 if (!io_u)
269 break;
270
271 if (runtime_exceeded(td, &io_u->start_time)) {
272 put_io_u(td, io_u);
273 break;
274 }
275
276 if (get_next_verify(td, io_u)) {
277 put_io_u(td, io_u);
278 break;
279 }
280
281 if (td_io_prep(td, io_u)) {
282 put_io_u(td, io_u);
283 break;
284 }
285
286 io_u->end_io = verify_io_u;
287requeue:
288 ret = td_io_queue(td, io_u);
289
290 switch (ret) {
291 case FIO_Q_COMPLETED:
292 if (io_u->error)
293 ret = -io_u->error;
294 if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
295 int bytes = io_u->xfer_buflen - io_u->resid;
296
297 io_u->xfer_buflen = io_u->resid;
298 io_u->xfer_buf += bytes;
299 goto requeue;
300 }
301 ret = io_u_sync_complete(td, io_u);
302 if (ret < 0)
303 break;
304 continue;
305 case FIO_Q_QUEUED:
306 break;
307 case FIO_Q_BUSY:
308 requeue_io_u(td, &io_u);
309 ret = td_io_commit(td);
310 break;
311 default:
312 assert(ret < 0);
313 td_verror(td, -ret, "td_io_queue");
314 break;
315 }
316
317 if (ret < 0 || td->error)
318 break;
319
320 /*
321 * if we can queue more, do so. but check if there are
322 * completed io_u's first.
323 */
324 min_events = 0;
325 if (queue_full(td) || ret == FIO_Q_BUSY) {
326 min_events = 1;
327
328 if (td->cur_depth > td->iodepth_low)
329 min_events = td->cur_depth - td->iodepth_low;
330 }
331
332 /*
333 * Reap required number of io units, if any, and do the
334 * verification on them through the callback handler
335 */
336 if (io_u_queued_complete(td, min_events) < 0)
337 break;
338 }
339
340 if (!td->error) {
341 min_events = td->cur_depth;
342
343 if (min_events)
344 ret = io_u_queued_complete(td, min_events);
345 } else
346 cleanup_pending_aio(td);
347
348 td_set_runstate(td, TD_RUNNING);
349}
350
351/*
352 * Not really an io thread, all it does is burn CPU cycles in the specified
353 * manner.
354 */
355static void do_cpuio(struct thread_data *td)
356{
357 struct timeval e;
358 int split = 100 / td->cpuload;
359 int i = 0;
360
361 while (!td->terminate) {
362 fio_gettime(&e, NULL);
363
364 if (runtime_exceeded(td, &e))
365 break;
366
367 if (!(i % split))
368 __usec_sleep(10000);
369 else
370 usec_sleep(td, 10000);
371
372 i++;
373 }
374}
375
376/*
377 * Main IO worker function. It retrieves io_u's to process and queues
378 * and reaps them, checking for rate and errors along the way.
379 */
380static void do_io(struct thread_data *td)
381{
382 struct timeval s;
383 unsigned long usec;
384 int i, ret = 0;
385
386 td_set_runstate(td, TD_RUNNING);
387
388 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->io_size) {
389 struct timeval comp_time;
390 long bytes_done = 0;
391 int min_evts = 0;
392 struct io_u *io_u;
393
394 if (td->terminate)
395 break;
396
397 io_u = get_io_u(td);
398 if (!io_u)
399 break;
400
401 memcpy(&s, &io_u->start_time, sizeof(s));
402
403 if (runtime_exceeded(td, &s)) {
404 put_io_u(td, io_u);
405 break;
406 }
407requeue:
408 ret = td_io_queue(td, io_u);
409
410 switch (ret) {
411 case FIO_Q_COMPLETED:
412 if (io_u->error) {
413 ret = io_u->error;
414 break;
415 }
416 if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
417 int bytes = io_u->xfer_buflen - io_u->resid;
418
419 io_u->xfer_buflen = io_u->resid;
420 io_u->xfer_buf += bytes;
421 goto requeue;
422 }
423 fio_gettime(&comp_time, NULL);
424 bytes_done = io_u_sync_complete(td, io_u);
425 if (bytes_done < 0)
426 ret = bytes_done;
427 break;
428 case FIO_Q_QUEUED:
429 /*
430 * if the engine doesn't have a commit hook,
431 * the io_u is really queued. if it does have such
432 * a hook, it has to call io_u_queued() itself.
433 */
434 if (td->io_ops->commit == NULL)
435 io_u_queued(td, io_u);
436 break;
437 case FIO_Q_BUSY:
438 requeue_io_u(td, &io_u);
439 ret = td_io_commit(td);
440 break;
441 default:
442 assert(ret < 0);
443 put_io_u(td, io_u);
444 break;
445 }
446
447 if (ret < 0 || td->error)
448 break;
449
450 /*
451 * See if we need to complete some commands
452 */
453 if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) {
454 min_evts = 0;
455 if (queue_full(td) || ret == FIO_Q_BUSY) {
456 min_evts = 1;
457
458 if (td->cur_depth > td->iodepth_low)
459 min_evts = td->cur_depth - td->iodepth_low;
460 }
461
462 fio_gettime(&comp_time, NULL);
463 bytes_done = io_u_queued_complete(td, min_evts);
464 if (bytes_done < 0)
465 break;
466 }
467
468 if (!bytes_done)
469 continue;
470
471 /*
472 * the rate is batched for now, it should work for batches
473 * of completions except the very first one which may look
474 * a little bursty
475 */
476 usec = utime_since(&s, &comp_time);
477
478 rate_throttle(td, usec, bytes_done);
479
480 if (check_min_rate(td, &comp_time)) {
481 if (exitall_on_terminate)
482 terminate_threads(td->groupid, 0);
483 td_verror(td, ENODATA, "check_min_rate");
484 break;
485 }
486
487 if (td->thinktime) {
488 unsigned long long b;
489
490 b = td->io_blocks[0] + td->io_blocks[1];
491 if (!(b % td->thinktime_blocks)) {
492 int left;
493
494 if (td->thinktime_spin)
495 __usec_sleep(td->thinktime_spin);
496
497 left = td->thinktime - td->thinktime_spin;
498 if (left)
499 usec_sleep(td, left);
500 }
501 }
502 }
503
504 if (!td->error) {
505 struct fio_file *f;
506
507 i = td->cur_depth;
508 if (i)
509 ret = io_u_queued_complete(td, i);
510
511 if (should_fsync(td) && td->end_fsync) {
512 td_set_runstate(td, TD_FSYNCING);
513 for_each_file(td, f, i)
514 fio_io_sync(td, f);
515 }
516 } else
517 cleanup_pending_aio(td);
518}
519
520static void cleanup_io_u(struct thread_data *td)
521{
522 struct list_head *entry, *n;
523 struct io_u *io_u;
524
525 list_for_each_safe(entry, n, &td->io_u_freelist) {
526 io_u = list_entry(entry, struct io_u, list);
527
528 list_del(&io_u->list);
529 free(io_u);
530 }
531
532 free_io_mem(td);
533}
534
535/*
536 * "randomly" fill the buffer contents
537 */
538static void fill_rand_buf(struct io_u *io_u, int max_bs)
539{
540 int *ptr = io_u->buf;
541
542 while ((void *) ptr - io_u->buf < max_bs) {
543 *ptr = rand() * 0x9e370001;
544 ptr++;
545 }
546}
547
548static int init_io_u(struct thread_data *td)
549{
550 struct io_u *io_u;
551 unsigned int max_bs;
552 int i, max_units;
553 char *p;
554
555 if (td->io_ops->flags & FIO_CPUIO)
556 return 0;
557
558 if (td->io_ops->flags & FIO_SYNCIO)
559 max_units = 1;
560 else
561 max_units = td->iodepth;
562
563 max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
564 td->orig_buffer_size = max_bs * max_units;
565
566 if (td->mem_type == MEM_SHMHUGE || td->mem_type == MEM_MMAPHUGE)
567 td->orig_buffer_size = (td->orig_buffer_size + td->hugepage_size - 1) & ~(td->hugepage_size - 1);
568 else
569 td->orig_buffer_size += page_mask;
570
571 if (allocate_io_mem(td))
572 return 1;
573
574 p = ALIGN(td->orig_buffer);
575 for (i = 0; i < max_units; i++) {
576 io_u = malloc(sizeof(*io_u));
577 memset(io_u, 0, sizeof(*io_u));
578 INIT_LIST_HEAD(&io_u->list);
579
580 io_u->buf = p + max_bs * i;
581 if (td_write(td) || td_rw(td))
582 fill_rand_buf(io_u, max_bs);
583
584 io_u->index = i;
585 io_u->flags = IO_U_F_FREE;
586 list_add(&io_u->list, &td->io_u_freelist);
587 }
588
589 io_u_init_timeout();
590
591 return 0;
592}
593
594static int switch_ioscheduler(struct thread_data *td)
595{
596 char tmp[256], tmp2[128];
597 FILE *f;
598 int ret;
599
600 if (td->io_ops->flags & FIO_CPUIO)
601 return 0;
602
603 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
604
605 f = fopen(tmp, "r+");
606 if (!f) {
607 td_verror(td, errno, "fopen");
608 return 1;
609 }
610
611 /*
612 * Set io scheduler.
613 */
614 ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
615 if (ferror(f) || ret != 1) {
616 td_verror(td, errno, "fwrite");
617 fclose(f);
618 return 1;
619 }
620
621 rewind(f);
622
623 /*
624 * Read back and check that the selected scheduler is now the default.
625 */
626 ret = fread(tmp, 1, sizeof(tmp), f);
627 if (ferror(f) || ret < 0) {
628 td_verror(td, errno, "fread");
629 fclose(f);
630 return 1;
631 }
632
633 sprintf(tmp2, "[%s]", td->ioscheduler);
634 if (!strstr(tmp, tmp2)) {
635 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
636 td_verror(td, EINVAL, "iosched_switch");
637 fclose(f);
638 return 1;
639 }
640
641 fclose(f);
642 return 0;
643}
644
645static void clear_io_state(struct thread_data *td)
646{
647 struct fio_file *f;
648 int i;
649
650 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
651 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
652 td->zone_bytes = 0;
653
654 td->last_was_sync = 0;
655
656 for_each_file(td, f, i) {
657 f->last_completed_pos = 0;
658
659 f->last_pos = 0;
660 if (td->io_ops->flags & FIO_SYNCIO)
661 lseek(f->fd, SEEK_SET, 0);
662
663 if (f->file_map)
664 memset(f->file_map, 0, f->num_maps * sizeof(long));
665 }
666}
667
668/*
669 * Entry point for the thread based jobs. The process based jobs end up
670 * here as well, after a little setup.
671 */
672static void *thread_main(void *data)
673{
674 unsigned long long runtime[2];
675 struct thread_data *td = data;
676
677 if (!td->use_thread)
678 setsid();
679
680 td->pid = getpid();
681
682 INIT_LIST_HEAD(&td->io_u_freelist);
683 INIT_LIST_HEAD(&td->io_u_busylist);
684 INIT_LIST_HEAD(&td->io_u_requeues);
685 INIT_LIST_HEAD(&td->io_hist_list);
686 INIT_LIST_HEAD(&td->io_log_list);
687
688 if (init_io_u(td))
689 goto err;
690
691 if (fio_setaffinity(td) == -1) {
692 td_verror(td, errno, "cpu_set_affinity");
693 goto err;
694 }
695
696 if (init_iolog(td))
697 goto err;
698
699 if (td->ioprio) {
700 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
701 td_verror(td, errno, "ioprio_set");
702 goto err;
703 }
704 }
705
706 if (nice(td->nice) == -1) {
707 td_verror(td, errno, "nice");
708 goto err;
709 }
710
711 if (init_random_state(td))
712 goto err;
713
714 if (td->ioscheduler && switch_ioscheduler(td))
715 goto err;
716
717 td_set_runstate(td, TD_INITIALIZED);
718 fio_sem_up(&startup_sem);
719 fio_sem_down(&td->mutex);
720
721 if (!td->create_serialize && setup_files(td))
722 goto err;
723 if (open_files(td))
724 goto err;
725
726 /*
727 * Do this late, as some IO engines would like to have the
728 * files setup prior to initializing structures.
729 */
730 if (td_io_init(td))
731 goto err;
732
733 if (td->exec_prerun) {
734 if (system(td->exec_prerun) < 0)
735 goto err;
736 }
737
738 fio_gettime(&td->epoch, NULL);
739 memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch));
740 getrusage(RUSAGE_SELF, &td->ts.ru_start);
741
742 runtime[0] = runtime[1] = 0;
743 while (td->loops--) {
744 fio_gettime(&td->start, NULL);
745 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
746
747 if (td->ratemin)
748 memcpy(&td->lastrate, &td->ts.stat_sample_time, sizeof(td->lastrate));
749
750 clear_io_state(td);
751 prune_io_piece_log(td);
752
753 if (td->io_ops->flags & FIO_CPUIO)
754 do_cpuio(td);
755 else
756 do_io(td);
757
758 if (td_read(td) && td->io_bytes[DDIR_READ])
759 runtime[DDIR_READ] += utime_since_now(&td->start);
760 if (td_write(td) && td->io_bytes[DDIR_WRITE])
761 runtime[DDIR_WRITE] += utime_since_now(&td->start);
762
763 if (td->error || td->terminate)
764 break;
765
766 if (td->verify == VERIFY_NONE)
767 continue;
768
769 clear_io_state(td);
770 fio_gettime(&td->start, NULL);
771
772 do_verify(td);
773
774 runtime[DDIR_READ] += utime_since_now(&td->start);
775
776 if (td->error || td->terminate)
777 break;
778 }
779
780 update_rusage_stat(td);
781 fio_gettime(&td->end_time, NULL);
782 td->runtime[0] = runtime[0] / 1000;
783 td->runtime[1] = runtime[1] / 1000;
784
785 if (td->ts.bw_log)
786 finish_log(td, td->ts.bw_log, "bw");
787 if (td->ts.slat_log)
788 finish_log(td, td->ts.slat_log, "slat");
789 if (td->ts.clat_log)
790 finish_log(td, td->ts.clat_log, "clat");
791 if (td->write_iolog_file)
792 write_iolog_close(td);
793 if (td->exec_postrun) {
794 if (system(td->exec_postrun) < 0)
795 log_err("fio: postrun %s failed\n", td->exec_postrun);
796 }
797
798 if (exitall_on_terminate)
799 terminate_threads(td->groupid, 0);
800
801err:
802 if (td->error)
803 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
804 close_files(td);
805 close_ioengine(td);
806 cleanup_io_u(td);
807 td_set_runstate(td, TD_EXITED);
808 return (void *) (unsigned long) td->error;
809}
810
811/*
812 * We cannot pass the td data into a forked process, so attach the td and
813 * pass it to the thread worker.
814 */
815static int fork_main(int shmid, int offset)
816{
817 struct thread_data *td;
818 void *data, *ret;
819
820 data = shmat(shmid, NULL, 0);
821 if (data == (void *) -1) {
822 int __err = errno;
823
824 perror("shmat");
825 return __err;
826 }
827
828 td = data + offset * sizeof(struct thread_data);
829 ret = thread_main(td);
830 shmdt(data);
831 return (int) (unsigned long) ret;
832}
833
834/*
835 * Run over the job map and reap the threads that have exited, if any.
836 */
837static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
838{
839 struct thread_data *td;
840 int i, cputhreads, pending, status, ret;
841
842 /*
843 * reap exited threads (TD_EXITED -> TD_REAPED)
844 */
845 pending = cputhreads = 0;
846 for_each_td(td, i) {
847 int flags = 0;
848
849 /*
850 * ->io_ops is NULL for a thread that has closed its
851 * io engine
852 */
853 if (td->io_ops && td->io_ops->flags & FIO_CPUIO)
854 cputhreads++;
855
856 if (!td->pid || td->runstate == TD_REAPED)
857 continue;
858 if (td->use_thread) {
859 if (td->runstate == TD_EXITED) {
860 td_set_runstate(td, TD_REAPED);
861 goto reaped;
862 }
863 continue;
864 }
865
866 flags = WNOHANG;
867 if (td->runstate == TD_EXITED)
868 flags = 0;
869
870 /*
871 * check if someone quit or got killed in an unusual way
872 */
873 ret = waitpid(td->pid, &status, flags);
874 if (ret < 0) {
875 if (errno == ECHILD) {
876 log_err("fio: pid=%d disappeared %d\n", td->pid, td->runstate);
877 td_set_runstate(td, TD_REAPED);
878 goto reaped;
879 }
880 perror("waitpid");
881 } else if (ret == td->pid) {
882 if (WIFSIGNALED(status)) {
883 int sig = WTERMSIG(status);
884
885 log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
886 td_set_runstate(td, TD_REAPED);
887 goto reaped;
888 }
889 if (WIFEXITED(status)) {
890 if (WEXITSTATUS(status) && !td->error)
891 td->error = WEXITSTATUS(status);
892
893 td_set_runstate(td, TD_REAPED);
894 goto reaped;
895 }
896 }
897
898 /*
899 * thread is not dead, continue
900 */
901 continue;
902reaped:
903 if (td->use_thread) {
904 long ret;
905
906 if (pthread_join(td->thread, (void *) &ret))
907 perror("pthread_join");
908 }
909
910 (*nr_running)--;
911 (*m_rate) -= td->ratemin;
912 (*t_rate) -= td->rate;
913
914 if (td->error)
915 exit_value++;
916 }
917
918 if (*nr_running == cputhreads && !pending)
919 terminate_threads(TERMINATE_ALL, 0);
920}
921
922/*
923 * Main function for kicking off and reaping jobs, as needed.
924 */
925static void run_threads(void)
926{
927 struct thread_data *td;
928 unsigned long spent;
929 int i, todo, nr_running, m_rate, t_rate, nr_started;
930
931 if (fio_pin_memory())
932 return;
933
934 if (!terse_output) {
935 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
936 fflush(stdout);
937 }
938
939 signal(SIGINT, sig_handler);
940 signal(SIGALRM, sig_handler);
941
942 todo = thread_number;
943 nr_running = 0;
944 nr_started = 0;
945 m_rate = t_rate = 0;
946
947 for_each_td(td, i) {
948 print_status_init(td->thread_number - 1);
949
950 if (!td->create_serialize) {
951 init_disk_util(td);
952 continue;
953 }
954
955 /*
956 * do file setup here so it happens sequentially,
957 * we don't want X number of threads getting their
958 * client data interspersed on disk
959 */
960 if (setup_files(td)) {
961 exit_value++;
962 if (td->error)
963 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
964 td_set_runstate(td, TD_REAPED);
965 todo--;
966 }
967
968 init_disk_util(td);
969 }
970
971 set_genesis_time();
972
973 while (todo) {
974 struct thread_data *map[MAX_JOBS];
975 struct timeval this_start;
976 int this_jobs = 0, left;
977
978 /*
979 * create threads (TD_NOT_CREATED -> TD_CREATED)
980 */
981 for_each_td(td, i) {
982 if (td->runstate != TD_NOT_CREATED)
983 continue;
984
985 /*
986 * never got a chance to start, killed by other
987 * thread for some reason
988 */
989 if (td->terminate) {
990 todo--;
991 continue;
992 }
993
994 if (td->start_delay) {
995 spent = mtime_since_genesis();
996
997 if (td->start_delay * 1000 > spent)
998 continue;
999 }
1000
1001 if (td->stonewall && (nr_started || nr_running))
1002 break;
1003
1004 /*
1005 * Set state to created. Thread will transition
1006 * to TD_INITIALIZED when it's done setting up.
1007 */
1008 td_set_runstate(td, TD_CREATED);
1009 map[this_jobs++] = td;
1010 fio_sem_init(&startup_sem, 1);
1011 nr_started++;
1012
1013 if (td->use_thread) {
1014 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1015 perror("thread_create");
1016 nr_started--;
1017 }
1018 } else {
1019 if (fork())
1020 fio_sem_down(&startup_sem);
1021 else {
1022 int ret = fork_main(shm_id, i);
1023
1024 exit(ret);
1025 }
1026 }
1027 }
1028
1029 /*
1030 * Wait for the started threads to transition to
1031 * TD_INITIALIZED.
1032 */
1033 fio_gettime(&this_start, NULL);
1034 left = this_jobs;
1035 while (left && !fio_abort) {
1036 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1037 break;
1038
1039 usleep(100000);
1040
1041 for (i = 0; i < this_jobs; i++) {
1042 td = map[i];
1043 if (!td)
1044 continue;
1045 if (td->runstate == TD_INITIALIZED) {
1046 map[i] = NULL;
1047 left--;
1048 } else if (td->runstate >= TD_EXITED) {
1049 map[i] = NULL;
1050 left--;
1051 todo--;
1052 nr_running++; /* work-around... */
1053 }
1054 }
1055 }
1056
1057 if (left) {
1058 log_err("fio: %d jobs failed to start\n", left);
1059 for (i = 0; i < this_jobs; i++) {
1060 td = map[i];
1061 if (!td)
1062 continue;
1063 kill(td->pid, SIGTERM);
1064 }
1065 break;
1066 }
1067
1068 /*
1069 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1070 */
1071 for_each_td(td, i) {
1072 if (td->runstate != TD_INITIALIZED)
1073 continue;
1074
1075 td_set_runstate(td, TD_RUNNING);
1076 nr_running++;
1077 nr_started--;
1078 m_rate += td->ratemin;
1079 t_rate += td->rate;
1080 todo--;
1081 fio_sem_up(&td->mutex);
1082 }
1083
1084 reap_threads(&nr_running, &t_rate, &m_rate);
1085
1086 if (todo)
1087 usleep(100000);
1088 }
1089
1090 while (nr_running) {
1091 reap_threads(&nr_running, &t_rate, &m_rate);
1092 usleep(10000);
1093 }
1094
1095 update_io_ticks();
1096 fio_unpin_memory();
1097}
1098
1099int main(int argc, char *argv[])
1100{
1101 long ps;
1102
1103 /*
1104 * We need locale for number printing, if it isn't set then just
1105 * go with the US format.
1106 */
1107 if (!getenv("LC_NUMERIC"))
1108 setlocale(LC_NUMERIC, "en_US");
1109
1110 if (parse_options(argc, argv))
1111 return 1;
1112
1113 if (!thread_number) {
1114 log_err("Nothing to do\n");
1115 return 1;
1116 }
1117
1118 ps = sysconf(_SC_PAGESIZE);
1119 if (ps < 0) {
1120 log_err("Failed to get page size\n");
1121 return 1;
1122 }
1123
1124 page_mask = ps - 1;
1125
1126 if (write_bw_log) {
1127 setup_log(&agg_io_log[DDIR_READ]);
1128 setup_log(&agg_io_log[DDIR_WRITE]);
1129 }
1130
1131 set_genesis_time();
1132
1133 disk_util_timer_arm();
1134
1135 run_threads();
1136
1137 if (!fio_abort) {
1138 show_run_stats();
1139 if (write_bw_log) {
1140 __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1141 __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1142 }
1143 }
1144
1145 return exit_value;
1146}