pre_read fixes
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "hash.h"
39#include "smalloc.h"
40
41unsigned long page_mask;
42unsigned long page_size;
43#define ALIGN(buf) \
44 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
45
46int groupid = 0;
47int thread_number = 0;
48int nr_process = 0;
49int nr_thread = 0;
50int shm_id = 0;
51int temp_stall_ts;
52unsigned long done_secs = 0;
53
54static struct fio_mutex *startup_mutex;
55static struct fio_mutex *writeout_mutex;
56static volatile int fio_abort;
57static int exit_value;
58static struct itimerval itimer;
59static pthread_t gtod_thread;
60
61struct io_log *agg_io_log[2];
62
63#define TERMINATE_ALL (-1)
64#define JOB_START_TIMEOUT (5 * 1000)
65
66void td_set_runstate(struct thread_data *td, int runstate)
67{
68 if (td->runstate == runstate)
69 return;
70
71 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
72 td->runstate, runstate);
73 td->runstate = runstate;
74}
75
76static void terminate_threads(int group_id)
77{
78 struct thread_data *td;
79 int i;
80
81 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
82
83 for_each_td(td, i) {
84 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
85 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
86 td->o.name, (int) td->pid);
87 td->terminate = 1;
88 td->o.start_delay = 0;
89
90 /*
91 * if the thread is running, just let it exit
92 */
93 if (td->runstate < TD_RUNNING)
94 kill(td->pid, SIGQUIT);
95 else {
96 struct ioengine_ops *ops = td->io_ops;
97
98 if (ops && (ops->flags & FIO_SIGQUIT))
99 kill(td->pid, SIGQUIT);
100 }
101 }
102 }
103}
104
105static void status_timer_arm(void)
106{
107 itimer.it_value.tv_sec = 0;
108 itimer.it_value.tv_usec = DISK_UTIL_MSEC * 1000;
109 setitimer(ITIMER_REAL, &itimer, NULL);
110}
111
112static void sig_alrm(int fio_unused sig)
113{
114 if (threads) {
115 update_io_ticks();
116 print_thread_status();
117 status_timer_arm();
118 }
119}
120
121/*
122 * Happens on thread runs with ctrl-c, ignore our own SIGQUIT
123 */
124static void sig_quit(int sig)
125{
126}
127
128static void sig_int(int sig)
129{
130 if (threads) {
131 printf("\nfio: terminating on signal %d\n", sig);
132 fflush(stdout);
133 terminate_threads(TERMINATE_ALL);
134 }
135}
136
137static void sig_ill(int fio_unused sig)
138{
139 if (!threads)
140 return;
141
142 log_err("fio: illegal instruction. your cpu does not support "
143 "the sse4.2 instruction for crc32c\n");
144 terminate_threads(TERMINATE_ALL);
145 exit(4);
146}
147
148static void set_sig_handlers(void)
149{
150 struct sigaction act;
151
152 memset(&act, 0, sizeof(act));
153 act.sa_handler = sig_alrm;
154 act.sa_flags = SA_RESTART;
155 sigaction(SIGALRM, &act, NULL);
156
157 memset(&act, 0, sizeof(act));
158 act.sa_handler = sig_int;
159 act.sa_flags = SA_RESTART;
160 sigaction(SIGINT, &act, NULL);
161
162 memset(&act, 0, sizeof(act));
163 act.sa_handler = sig_ill;
164 act.sa_flags = SA_RESTART;
165 sigaction(SIGILL, &act, NULL);
166
167 memset(&act, 0, sizeof(act));
168 act.sa_handler = sig_quit;
169 act.sa_flags = SA_RESTART;
170 sigaction(SIGQUIT, &act, NULL);
171}
172
173static inline int should_check_rate(struct thread_data *td)
174{
175 struct thread_options *o = &td->o;
176
177 /*
178 * If some rate setting was given, we need to check it
179 */
180 if (o->rate || o->ratemin || o->rate_iops || o->rate_iops_min)
181 return 1;
182
183 return 0;
184}
185
186/*
187 * Check if we are above the minimum rate given.
188 */
189static int check_min_rate(struct thread_data *td, struct timeval *now)
190{
191 unsigned long long bytes = 0;
192 unsigned long iops = 0;
193 unsigned long spent;
194 unsigned long rate;
195
196 /*
197 * allow a 2 second settle period in the beginning
198 */
199 if (mtime_since(&td->start, now) < 2000)
200 return 0;
201
202 if (td_read(td)) {
203 iops += td->io_blocks[DDIR_READ];
204 bytes += td->this_io_bytes[DDIR_READ];
205 }
206 if (td_write(td)) {
207 iops += td->io_blocks[DDIR_WRITE];
208 bytes += td->this_io_bytes[DDIR_WRITE];
209 }
210
211 /*
212 * if rate blocks is set, sample is running
213 */
214 if (td->rate_bytes || td->rate_blocks) {
215 spent = mtime_since(&td->lastrate, now);
216 if (spent < td->o.ratecycle)
217 return 0;
218
219 if (td->o.rate) {
220 /*
221 * check bandwidth specified rate
222 */
223 if (bytes < td->rate_bytes) {
224 log_err("%s: min rate %u not met\n", td->o.name,
225 td->o.ratemin);
226 return 1;
227 } else {
228 rate = (bytes - td->rate_bytes) / spent;
229 if (rate < td->o.ratemin ||
230 bytes < td->rate_bytes) {
231 log_err("%s: min rate %u not met, got"
232 " %luKiB/sec\n", td->o.name,
233 td->o.ratemin, rate);
234 return 1;
235 }
236 }
237 } else {
238 /*
239 * checks iops specified rate
240 */
241 if (iops < td->o.rate_iops) {
242 log_err("%s: min iops rate %u not met\n",
243 td->o.name, td->o.rate_iops);
244 return 1;
245 } else {
246 rate = (iops - td->rate_blocks) / spent;
247 if (rate < td->o.rate_iops_min ||
248 iops < td->rate_blocks) {
249 log_err("%s: min iops rate %u not met,"
250 " got %lu\n", td->o.name,
251 td->o.rate_iops_min,
252 rate);
253 }
254 }
255 }
256 }
257
258 td->rate_bytes = bytes;
259 td->rate_blocks = iops;
260 memcpy(&td->lastrate, now, sizeof(*now));
261 return 0;
262}
263
264static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
265{
266 if (!td->o.timeout)
267 return 0;
268 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
269 return 1;
270
271 return 0;
272}
273
274/*
275 * When job exits, we can cancel the in-flight IO if we are using async
276 * io. Attempt to do so.
277 */
278static void cleanup_pending_aio(struct thread_data *td)
279{
280 struct flist_head *entry, *n;
281 struct io_u *io_u;
282 int r;
283
284 /*
285 * get immediately available events, if any
286 */
287 r = io_u_queued_complete(td, 0);
288 if (r < 0)
289 return;
290
291 /*
292 * now cancel remaining active events
293 */
294 if (td->io_ops->cancel) {
295 flist_for_each_safe(entry, n, &td->io_u_busylist) {
296 io_u = flist_entry(entry, struct io_u, list);
297
298 /*
299 * if the io_u isn't in flight, then that generally
300 * means someone leaked an io_u. complain but fix
301 * it up, so we don't stall here.
302 */
303 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
304 log_err("fio: non-busy IO on busy list\n");
305 put_io_u(td, io_u);
306 } else {
307 r = td->io_ops->cancel(td, io_u);
308 if (!r)
309 put_io_u(td, io_u);
310 }
311 }
312 }
313
314 if (td->cur_depth)
315 r = io_u_queued_complete(td, td->cur_depth);
316}
317
318/*
319 * Helper to handle the final sync of a file. Works just like the normal
320 * io path, just does everything sync.
321 */
322static int fio_io_sync(struct thread_data *td, struct fio_file *f)
323{
324 struct io_u *io_u = __get_io_u(td);
325 int ret;
326
327 if (!io_u)
328 return 1;
329
330 io_u->ddir = DDIR_SYNC;
331 io_u->file = f;
332
333 if (td_io_prep(td, io_u)) {
334 put_io_u(td, io_u);
335 return 1;
336 }
337
338requeue:
339 ret = td_io_queue(td, io_u);
340 if (ret < 0) {
341 td_verror(td, io_u->error, "td_io_queue");
342 put_io_u(td, io_u);
343 return 1;
344 } else if (ret == FIO_Q_QUEUED) {
345 if (io_u_queued_complete(td, 1) < 0)
346 return 1;
347 } else if (ret == FIO_Q_COMPLETED) {
348 if (io_u->error) {
349 td_verror(td, io_u->error, "td_io_queue");
350 return 1;
351 }
352
353 if (io_u_sync_complete(td, io_u) < 0)
354 return 1;
355 } else if (ret == FIO_Q_BUSY) {
356 if (td_io_commit(td))
357 return 1;
358 goto requeue;
359 }
360
361 return 0;
362}
363
364static inline void update_tv_cache(struct thread_data *td)
365{
366 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
367 fio_gettime(&td->tv_cache, NULL);
368}
369
370/*
371 * The main verify engine. Runs over the writes we previously submitted,
372 * reads the blocks back in, and checks the crc/md5 of the data.
373 */
374static void do_verify(struct thread_data *td)
375{
376 struct fio_file *f;
377 struct io_u *io_u;
378 int ret, min_events;
379 unsigned int i;
380
381 /*
382 * sync io first and invalidate cache, to make sure we really
383 * read from disk.
384 */
385 for_each_file(td, f, i) {
386 if (!(f->flags & FIO_FILE_OPEN))
387 continue;
388 if (fio_io_sync(td, f))
389 break;
390 if (file_invalidate_cache(td, f))
391 break;
392 }
393
394 if (td->error)
395 return;
396
397 td_set_runstate(td, TD_VERIFYING);
398
399 io_u = NULL;
400 while (!td->terminate) {
401 int ret2, full;
402
403 io_u = __get_io_u(td);
404 if (!io_u)
405 break;
406
407 update_tv_cache(td);
408
409 if (runtime_exceeded(td, &td->tv_cache)) {
410 put_io_u(td, io_u);
411 td->terminate = 1;
412 break;
413 }
414
415 if (get_next_verify(td, io_u)) {
416 put_io_u(td, io_u);
417 break;
418 }
419
420 if (td_io_prep(td, io_u)) {
421 put_io_u(td, io_u);
422 break;
423 }
424
425 io_u->end_io = verify_io_u;
426
427 ret = td_io_queue(td, io_u);
428 switch (ret) {
429 case FIO_Q_COMPLETED:
430 if (io_u->error)
431 ret = -io_u->error;
432 else if (io_u->resid) {
433 int bytes = io_u->xfer_buflen - io_u->resid;
434 struct fio_file *f = io_u->file;
435
436 /*
437 * zero read, fail
438 */
439 if (!bytes) {
440 td_verror(td, EIO, "full resid");
441 put_io_u(td, io_u);
442 break;
443 }
444
445 io_u->xfer_buflen = io_u->resid;
446 io_u->xfer_buf += bytes;
447 io_u->offset += bytes;
448
449 td->ts.short_io_u[io_u->ddir]++;
450
451 if (io_u->offset == f->real_file_size)
452 goto sync_done;
453
454 requeue_io_u(td, &io_u);
455 } else {
456sync_done:
457 ret = io_u_sync_complete(td, io_u);
458 if (ret < 0)
459 break;
460 }
461 continue;
462 case FIO_Q_QUEUED:
463 break;
464 case FIO_Q_BUSY:
465 requeue_io_u(td, &io_u);
466 ret2 = td_io_commit(td);
467 if (ret2 < 0)
468 ret = ret2;
469 break;
470 default:
471 assert(ret < 0);
472 td_verror(td, -ret, "td_io_queue");
473 break;
474 }
475
476 if (ret < 0 || td->error)
477 break;
478
479 /*
480 * if we can queue more, do so. but check if there are
481 * completed io_u's first.
482 */
483 full = queue_full(td) || ret == FIO_Q_BUSY;
484 if (full || !td->o.iodepth_batch_complete) {
485 min_events = td->o.iodepth_batch_complete;
486 if (full && !min_events)
487 min_events = 1;
488
489 do {
490 /*
491 * Reap required number of io units, if any,
492 * and do the verification on them through
493 * the callback handler
494 */
495 if (io_u_queued_complete(td, min_events) < 0) {
496 ret = -1;
497 break;
498 }
499 } while (full && (td->cur_depth > td->o.iodepth_low));
500 }
501 if (ret < 0)
502 break;
503 }
504
505 if (!td->error) {
506 min_events = td->cur_depth;
507
508 if (min_events)
509 ret = io_u_queued_complete(td, min_events);
510 } else
511 cleanup_pending_aio(td);
512
513 td_set_runstate(td, TD_RUNNING);
514}
515
516/*
517 * Main IO worker function. It retrieves io_u's to process and queues
518 * and reaps them, checking for rate and errors along the way.
519 */
520static void do_io(struct thread_data *td)
521{
522 unsigned long usec;
523 unsigned int i;
524 int ret = 0;
525
526 if (in_ramp_time(td))
527 td_set_runstate(td, TD_RAMP);
528 else
529 td_set_runstate(td, TD_RUNNING);
530
531 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) {
532 struct timeval comp_time;
533 long bytes_done = 0;
534 int min_evts = 0;
535 struct io_u *io_u;
536 int ret2, full;
537
538 if (td->terminate)
539 break;
540
541 io_u = get_io_u(td);
542 if (!io_u)
543 break;
544
545 update_tv_cache(td);
546
547 if (runtime_exceeded(td, &td->tv_cache)) {
548 put_io_u(td, io_u);
549 td->terminate = 1;
550 break;
551 }
552
553 /*
554 * Add verification end_io handler, if asked to verify
555 * a previously written file.
556 */
557 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ) {
558 io_u->end_io = verify_io_u;
559 td_set_runstate(td, TD_VERIFYING);
560 } else if (in_ramp_time(td))
561 td_set_runstate(td, TD_RAMP);
562 else
563 td_set_runstate(td, TD_RUNNING);
564
565 ret = td_io_queue(td, io_u);
566 switch (ret) {
567 case FIO_Q_COMPLETED:
568 if (io_u->error)
569 ret = -io_u->error;
570 else if (io_u->resid) {
571 int bytes = io_u->xfer_buflen - io_u->resid;
572 struct fio_file *f = io_u->file;
573
574 /*
575 * zero read, fail
576 */
577 if (!bytes) {
578 td_verror(td, EIO, "full resid");
579 put_io_u(td, io_u);
580 break;
581 }
582
583 io_u->xfer_buflen = io_u->resid;
584 io_u->xfer_buf += bytes;
585 io_u->offset += bytes;
586
587 td->ts.short_io_u[io_u->ddir]++;
588
589 if (io_u->offset == f->real_file_size)
590 goto sync_done;
591
592 requeue_io_u(td, &io_u);
593 } else {
594sync_done:
595 if (should_check_rate(td))
596 fio_gettime(&comp_time, NULL);
597
598 bytes_done = io_u_sync_complete(td, io_u);
599 if (bytes_done < 0)
600 ret = bytes_done;
601 }
602 break;
603 case FIO_Q_QUEUED:
604 /*
605 * if the engine doesn't have a commit hook,
606 * the io_u is really queued. if it does have such
607 * a hook, it has to call io_u_queued() itself.
608 */
609 if (td->io_ops->commit == NULL)
610 io_u_queued(td, io_u);
611 break;
612 case FIO_Q_BUSY:
613 requeue_io_u(td, &io_u);
614 ret2 = td_io_commit(td);
615 if (ret2 < 0)
616 ret = ret2;
617 break;
618 default:
619 assert(ret < 0);
620 put_io_u(td, io_u);
621 break;
622 }
623
624 if (ret < 0 || td->error)
625 break;
626
627 /*
628 * See if we need to complete some commands
629 */
630 full = queue_full(td) || ret == FIO_Q_BUSY;
631 if (full || !td->o.iodepth_batch_complete) {
632 min_evts = td->o.iodepth_batch_complete;
633 if (full && !min_evts)
634 min_evts = 1;
635
636 if (should_check_rate(td))
637 fio_gettime(&comp_time, NULL);
638
639 do {
640 ret = io_u_queued_complete(td, min_evts);
641 if (ret <= 0)
642 break;
643
644 bytes_done += ret;
645 } while (full && (td->cur_depth > td->o.iodepth_low));
646 }
647
648 if (ret < 0)
649 break;
650 if (!bytes_done)
651 continue;
652
653 /*
654 * the rate is batched for now, it should work for batches
655 * of completions except the very first one which may look
656 * a little bursty
657 */
658 if (!in_ramp_time(td) && should_check_rate(td)) {
659 usec = utime_since(&td->tv_cache, &comp_time);
660
661 rate_throttle(td, usec, bytes_done);
662
663 if (check_min_rate(td, &comp_time)) {
664 if (exitall_on_terminate)
665 terminate_threads(td->groupid);
666 td_verror(td, EIO, "check_min_rate");
667 break;
668 }
669 }
670
671 if (td->o.thinktime) {
672 unsigned long long b;
673
674 b = td->io_blocks[0] + td->io_blocks[1];
675 if (!(b % td->o.thinktime_blocks)) {
676 int left;
677
678 if (td->o.thinktime_spin)
679 usec_spin(td->o.thinktime_spin);
680
681 left = td->o.thinktime - td->o.thinktime_spin;
682 if (left)
683 usec_sleep(td, left);
684 }
685 }
686 }
687
688 if (td->o.fill_device && td->error == ENOSPC) {
689 td->error = 0;
690 td->terminate = 1;
691 }
692 if (!td->error) {
693 struct fio_file *f;
694
695 i = td->cur_depth;
696 if (i)
697 ret = io_u_queued_complete(td, i);
698
699 if (should_fsync(td) && td->o.end_fsync) {
700 td_set_runstate(td, TD_FSYNCING);
701
702 for_each_file(td, f, i) {
703 if (!(f->flags & FIO_FILE_OPEN))
704 continue;
705 fio_io_sync(td, f);
706 }
707 }
708 } else
709 cleanup_pending_aio(td);
710
711 /*
712 * stop job if we failed doing any IO
713 */
714 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
715 td->done = 1;
716}
717
718static void cleanup_io_u(struct thread_data *td)
719{
720 struct flist_head *entry, *n;
721 struct io_u *io_u;
722
723 flist_for_each_safe(entry, n, &td->io_u_freelist) {
724 io_u = flist_entry(entry, struct io_u, list);
725
726 flist_del(&io_u->list);
727 free(io_u);
728 }
729
730 free_io_mem(td);
731}
732
733static int init_io_u(struct thread_data *td)
734{
735 struct io_u *io_u;
736 unsigned int max_bs;
737 int cl_align, i, max_units;
738 char *p;
739
740 max_units = td->o.iodepth;
741 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
742 td->orig_buffer_size = (unsigned long long) max_bs
743 * (unsigned long long) max_units;
744
745 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
746 unsigned long bs;
747
748 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
749 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
750 }
751
752 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
753 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
754 return 1;
755 }
756
757 if (allocate_io_mem(td))
758 return 1;
759
760 if (td->o.odirect)
761 p = ALIGN(td->orig_buffer);
762 else
763 p = td->orig_buffer;
764
765 cl_align = os_cache_line_size();
766
767 for (i = 0; i < max_units; i++) {
768 void *ptr;
769
770 if (td->terminate)
771 return 1;
772
773 if (posix_memalign(&ptr, cl_align, sizeof(*io_u))) {
774 log_err("fio: posix_memalign=%s\n", strerror(errno));
775 break;
776 }
777
778 io_u = ptr;
779 memset(io_u, 0, sizeof(*io_u));
780 INIT_FLIST_HEAD(&io_u->list);
781
782 if (!(td->io_ops->flags & FIO_NOIO)) {
783 io_u->buf = p + max_bs * i;
784
785 if (td_write(td) && !td->o.refill_buffers)
786 io_u_fill_buffer(td, io_u, max_bs);
787 }
788
789 io_u->index = i;
790 io_u->flags = IO_U_F_FREE;
791 flist_add(&io_u->list, &td->io_u_freelist);
792 }
793
794 return 0;
795}
796
797static int switch_ioscheduler(struct thread_data *td)
798{
799 char tmp[256], tmp2[128];
800 FILE *f;
801 int ret;
802
803 if (td->io_ops->flags & FIO_DISKLESSIO)
804 return 0;
805
806 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
807
808 f = fopen(tmp, "r+");
809 if (!f) {
810 if (errno == ENOENT) {
811 log_err("fio: os or kernel doesn't support IO scheduler"
812 " switching\n");
813 return 0;
814 }
815 td_verror(td, errno, "fopen iosched");
816 return 1;
817 }
818
819 /*
820 * Set io scheduler.
821 */
822 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
823 if (ferror(f) || ret != 1) {
824 td_verror(td, errno, "fwrite");
825 fclose(f);
826 return 1;
827 }
828
829 rewind(f);
830
831 /*
832 * Read back and check that the selected scheduler is now the default.
833 */
834 ret = fread(tmp, 1, sizeof(tmp), f);
835 if (ferror(f) || ret < 0) {
836 td_verror(td, errno, "fread");
837 fclose(f);
838 return 1;
839 }
840
841 sprintf(tmp2, "[%s]", td->o.ioscheduler);
842 if (!strstr(tmp, tmp2)) {
843 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
844 td_verror(td, EINVAL, "iosched_switch");
845 fclose(f);
846 return 1;
847 }
848
849 fclose(f);
850 return 0;
851}
852
853static int keep_running(struct thread_data *td)
854{
855 unsigned long long io_done;
856
857 if (td->done)
858 return 0;
859 if (td->o.time_based)
860 return 1;
861 if (td->o.loops) {
862 td->o.loops--;
863 return 1;
864 }
865
866 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
867 + td->io_skip_bytes;
868 if (io_done < td->o.size)
869 return 1;
870
871 return 0;
872}
873
874static void reset_io_counters(struct thread_data *td)
875{
876 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
877 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
878 td->zone_bytes = 0;
879 td->rate_bytes = 0;
880 td->rate_blocks = 0;
881 td->rw_end_set[0] = td->rw_end_set[1] = 0;
882
883 td->last_was_sync = 0;
884
885 /*
886 * reset file done count if we are to start over
887 */
888 if (td->o.time_based || td->o.loops)
889 td->nr_done_files = 0;
890
891 /*
892 * Set the same seed to get repeatable runs
893 */
894 td_fill_rand_seeds(td);
895}
896
897void reset_all_stats(struct thread_data *td)
898{
899 struct timeval tv;
900 int i;
901
902 reset_io_counters(td);
903
904 for (i = 0; i < 2; i++) {
905 td->io_bytes[i] = 0;
906 td->io_blocks[i] = 0;
907 td->io_issues[i] = 0;
908 td->ts.total_io_u[i] = 0;
909 }
910
911 fio_gettime(&tv, NULL);
912 memcpy(&td->epoch, &tv, sizeof(tv));
913 memcpy(&td->start, &tv, sizeof(tv));
914}
915
916static void clear_io_state(struct thread_data *td)
917{
918 struct fio_file *f;
919 unsigned int i;
920
921 reset_io_counters(td);
922
923 close_files(td);
924 for_each_file(td, f, i)
925 f->flags &= ~FIO_FILE_DONE;
926}
927
928/*
929 * Entry point for the thread based jobs. The process based jobs end up
930 * here as well, after a little setup.
931 */
932static void *thread_main(void *data)
933{
934 unsigned long long runtime[2], elapsed;
935 struct thread_data *td = data;
936 int clear_state;
937
938 if (!td->o.use_thread)
939 setsid();
940
941 td->pid = getpid();
942
943 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
944
945 INIT_FLIST_HEAD(&td->io_u_freelist);
946 INIT_FLIST_HEAD(&td->io_u_busylist);
947 INIT_FLIST_HEAD(&td->io_u_requeues);
948 INIT_FLIST_HEAD(&td->io_log_list);
949 INIT_FLIST_HEAD(&td->io_hist_list);
950 td->io_hist_tree = RB_ROOT;
951
952 td_set_runstate(td, TD_INITIALIZED);
953 dprint(FD_MUTEX, "up startup_mutex\n");
954 fio_mutex_up(startup_mutex);
955 dprint(FD_MUTEX, "wait on td->mutex\n");
956 fio_mutex_down(td->mutex);
957 dprint(FD_MUTEX, "done waiting on td->mutex\n");
958
959 /*
960 * the ->mutex mutex is now no longer used, close it to avoid
961 * eating a file descriptor
962 */
963 fio_mutex_remove(td->mutex);
964
965 /*
966 * May alter parameters that init_io_u() will use, so we need to
967 * do this first.
968 */
969 if (init_iolog(td))
970 goto err;
971
972 if (init_io_u(td))
973 goto err;
974
975 if (td->o.cpumask_set && fio_setaffinity(td) == -1) {
976 td_verror(td, errno, "cpu_set_affinity");
977 goto err;
978 }
979
980 /*
981 * If we have a gettimeofday() thread, make sure we exclude that
982 * thread from this job
983 */
984 if (td->o.gtod_cpu) {
985 fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
986 if (fio_setaffinity(td) == -1) {
987 td_verror(td, errno, "cpu_set_affinity");
988 goto err;
989 }
990 }
991
992 if (td->ioprio_set) {
993 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
994 td_verror(td, errno, "ioprio_set");
995 goto err;
996 }
997 }
998
999 if (nice(td->o.nice) == -1) {
1000 td_verror(td, errno, "nice");
1001 goto err;
1002 }
1003
1004 if (td->o.ioscheduler && switch_ioscheduler(td))
1005 goto err;
1006
1007 if (!td->o.create_serialize && setup_files(td))
1008 goto err;
1009
1010 if (td_io_init(td))
1011 goto err;
1012
1013 if (init_random_map(td))
1014 goto err;
1015
1016 if (td->o.exec_prerun) {
1017 if (system(td->o.exec_prerun) < 0)
1018 goto err;
1019 }
1020
1021 if (td->o.pre_read) {
1022 if (pre_read_files(td) < 0)
1023 goto err;
1024 }
1025
1026 fio_gettime(&td->epoch, NULL);
1027 getrusage(RUSAGE_SELF, &td->ts.ru_start);
1028
1029 runtime[0] = runtime[1] = 0;
1030 clear_state = 0;
1031 while (keep_running(td)) {
1032 fio_gettime(&td->start, NULL);
1033 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
1034 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1035
1036 if (td->o.ratemin)
1037 memcpy(&td->lastrate, &td->ts.stat_sample_time,
1038 sizeof(td->lastrate));
1039
1040 if (clear_state)
1041 clear_io_state(td);
1042
1043 prune_io_piece_log(td);
1044
1045 do_io(td);
1046
1047 clear_state = 1;
1048
1049 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1050 if (td->rw_end_set[DDIR_READ])
1051 elapsed = utime_since(&td->start,
1052 &td->rw_end[DDIR_READ]);
1053 else
1054 elapsed = utime_since_now(&td->start);
1055
1056 runtime[DDIR_READ] += elapsed;
1057 }
1058 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1059 if (td->rw_end_set[DDIR_WRITE])
1060 elapsed = utime_since(&td->start,
1061 &td->rw_end[DDIR_WRITE]);
1062 else
1063 elapsed = utime_since_now(&td->start);
1064
1065 runtime[DDIR_WRITE] += elapsed;
1066 }
1067
1068 if (td->error || td->terminate)
1069 break;
1070
1071 if (!td->o.do_verify ||
1072 td->o.verify == VERIFY_NONE ||
1073 (td->io_ops->flags & FIO_UNIDIR))
1074 continue;
1075
1076 clear_io_state(td);
1077
1078 fio_gettime(&td->start, NULL);
1079
1080 do_verify(td);
1081
1082 runtime[DDIR_READ] += utime_since_now(&td->start);
1083
1084 if (td->error || td->terminate)
1085 break;
1086 }
1087
1088 update_rusage_stat(td);
1089 td->ts.runtime[0] = (runtime[0] + 999) / 1000;
1090 td->ts.runtime[1] = (runtime[1] + 999) / 1000;
1091 td->ts.total_run_time = mtime_since_now(&td->epoch);
1092 td->ts.io_bytes[0] = td->io_bytes[0];
1093 td->ts.io_bytes[1] = td->io_bytes[1];
1094
1095 fio_mutex_down(writeout_mutex);
1096 if (td->ts.bw_log) {
1097 if (td->o.bw_log_file) {
1098 finish_log_named(td, td->ts.bw_log,
1099 td->o.bw_log_file, "bw");
1100 } else
1101 finish_log(td, td->ts.bw_log, "bw");
1102 }
1103 if (td->ts.slat_log) {
1104 if (td->o.lat_log_file) {
1105 finish_log_named(td, td->ts.slat_log,
1106 td->o.lat_log_file, "slat");
1107 } else
1108 finish_log(td, td->ts.slat_log, "slat");
1109 }
1110 if (td->ts.clat_log) {
1111 if (td->o.lat_log_file) {
1112 finish_log_named(td, td->ts.clat_log,
1113 td->o.lat_log_file, "clat");
1114 } else
1115 finish_log(td, td->ts.clat_log, "clat");
1116 }
1117 fio_mutex_up(writeout_mutex);
1118 if (td->o.exec_postrun) {
1119 if (system(td->o.exec_postrun) < 0)
1120 log_err("fio: postrun %s failed\n", td->o.exec_postrun);
1121 }
1122
1123 if (exitall_on_terminate)
1124 terminate_threads(td->groupid);
1125
1126err:
1127 if (td->error)
1128 printf("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1129 td->verror);
1130 close_and_free_files(td);
1131 close_ioengine(td);
1132 cleanup_io_u(td);
1133
1134 if (td->o.cpumask_set) {
1135 int ret = fio_cpuset_exit(&td->o.cpumask);
1136
1137 td_verror(td, ret, "fio_cpuset_exit");
1138 }
1139
1140 /*
1141 * do this very late, it will log file closing as well
1142 */
1143 if (td->o.write_iolog_file)
1144 write_iolog_close(td);
1145
1146 options_mem_free(td);
1147 td_set_runstate(td, TD_EXITED);
1148 return (void *) (unsigned long) td->error;
1149}
1150
1151/*
1152 * We cannot pass the td data into a forked process, so attach the td and
1153 * pass it to the thread worker.
1154 */
1155static int fork_main(int shmid, int offset)
1156{
1157 struct thread_data *td;
1158 void *data, *ret;
1159
1160 data = shmat(shmid, NULL, 0);
1161 if (data == (void *) -1) {
1162 int __err = errno;
1163
1164 perror("shmat");
1165 return __err;
1166 }
1167
1168 td = data + offset * sizeof(struct thread_data);
1169 ret = thread_main(td);
1170 shmdt(data);
1171 return (int) (unsigned long) ret;
1172}
1173
1174/*
1175 * Run over the job map and reap the threads that have exited, if any.
1176 */
1177static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1178{
1179 struct thread_data *td;
1180 int i, cputhreads, realthreads, pending, status, ret;
1181
1182 /*
1183 * reap exited threads (TD_EXITED -> TD_REAPED)
1184 */
1185 realthreads = pending = cputhreads = 0;
1186 for_each_td(td, i) {
1187 int flags = 0;
1188
1189 /*
1190 * ->io_ops is NULL for a thread that has closed its
1191 * io engine
1192 */
1193 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1194 cputhreads++;
1195 else
1196 realthreads++;
1197
1198 if (!td->pid) {
1199 pending++;
1200 continue;
1201 }
1202 if (td->runstate == TD_REAPED)
1203 continue;
1204 if (td->o.use_thread) {
1205 if (td->runstate == TD_EXITED) {
1206 td_set_runstate(td, TD_REAPED);
1207 goto reaped;
1208 }
1209 continue;
1210 }
1211
1212 flags = WNOHANG;
1213 if (td->runstate == TD_EXITED)
1214 flags = 0;
1215
1216 /*
1217 * check if someone quit or got killed in an unusual way
1218 */
1219 ret = waitpid(td->pid, &status, flags);
1220 if (ret < 0) {
1221 if (errno == ECHILD) {
1222 log_err("fio: pid=%d disappeared %d\n",
1223 (int) td->pid, td->runstate);
1224 td_set_runstate(td, TD_REAPED);
1225 goto reaped;
1226 }
1227 perror("waitpid");
1228 } else if (ret == td->pid) {
1229 if (WIFSIGNALED(status)) {
1230 int sig = WTERMSIG(status);
1231
1232 if (sig != SIGQUIT)
1233 log_err("fio: pid=%d, got signal=%d\n",
1234 (int) td->pid, sig);
1235 td_set_runstate(td, TD_REAPED);
1236 goto reaped;
1237 }
1238 if (WIFEXITED(status)) {
1239 if (WEXITSTATUS(status) && !td->error)
1240 td->error = WEXITSTATUS(status);
1241
1242 td_set_runstate(td, TD_REAPED);
1243 goto reaped;
1244 }
1245 }
1246
1247 /*
1248 * thread is not dead, continue
1249 */
1250 pending++;
1251 continue;
1252reaped:
1253 (*nr_running)--;
1254 (*m_rate) -= td->o.ratemin;
1255 (*t_rate) -= td->o.rate;
1256 if (!td->pid)
1257 pending--;
1258
1259 if (td->error)
1260 exit_value++;
1261
1262 done_secs += mtime_since_now(&td->epoch) / 1000;
1263 }
1264
1265 if (*nr_running == cputhreads && !pending && realthreads)
1266 terminate_threads(TERMINATE_ALL);
1267}
1268
1269static void *gtod_thread_main(void *data)
1270{
1271 fio_mutex_up(startup_mutex);
1272
1273 /*
1274 * As long as we have jobs around, update the clock. It would be nice
1275 * to have some way of NOT hammering that CPU with gettimeofday(),
1276 * but I'm not sure what to use outside of a simple CPU nop to relax
1277 * it - we don't want to lose precision.
1278 */
1279 while (threads) {
1280 fio_gtod_update();
1281 nop;
1282 }
1283
1284 return NULL;
1285}
1286
1287static int fio_start_gtod_thread(void)
1288{
1289 int ret;
1290
1291 ret = pthread_create(&gtod_thread, NULL, gtod_thread_main, NULL);
1292 if (ret) {
1293 log_err("Can't create gtod thread: %s\n", strerror(ret));
1294 return 1;
1295 }
1296
1297 ret = pthread_detach(gtod_thread);
1298 if (ret) {
1299 log_err("Can't detatch gtod thread: %s\n", strerror(ret));
1300 return 1;
1301 }
1302
1303 dprint(FD_MUTEX, "wait on startup_mutex\n");
1304 fio_mutex_down(startup_mutex);
1305 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1306 return 0;
1307}
1308
1309/*
1310 * Main function for kicking off and reaping jobs, as needed.
1311 */
1312static void run_threads(void)
1313{
1314 struct thread_data *td;
1315 unsigned long spent;
1316 int i, todo, nr_running, m_rate, t_rate, nr_started;
1317
1318 if (fio_pin_memory())
1319 return;
1320
1321 if (fio_gtod_offload && fio_start_gtod_thread())
1322 return;
1323
1324 if (!terse_output) {
1325 printf("Starting ");
1326 if (nr_thread)
1327 printf("%d thread%s", nr_thread,
1328 nr_thread > 1 ? "s" : "");
1329 if (nr_process) {
1330 if (nr_thread)
1331 printf(" and ");
1332 printf("%d process%s", nr_process,
1333 nr_process > 1 ? "es" : "");
1334 }
1335 printf("\n");
1336 fflush(stdout);
1337 }
1338
1339 set_sig_handlers();
1340
1341 todo = thread_number;
1342 nr_running = 0;
1343 nr_started = 0;
1344 m_rate = t_rate = 0;
1345
1346 for_each_td(td, i) {
1347 print_status_init(td->thread_number - 1);
1348
1349 if (!td->o.create_serialize) {
1350 init_disk_util(td);
1351 continue;
1352 }
1353
1354 /*
1355 * do file setup here so it happens sequentially,
1356 * we don't want X number of threads getting their
1357 * client data interspersed on disk
1358 */
1359 if (setup_files(td)) {
1360 exit_value++;
1361 if (td->error)
1362 log_err("fio: pid=%d, err=%d/%s\n",
1363 (int) td->pid, td->error, td->verror);
1364 td_set_runstate(td, TD_REAPED);
1365 todo--;
1366 } else {
1367 struct fio_file *f;
1368 unsigned int i;
1369
1370 /*
1371 * for sharing to work, each job must always open
1372 * its own files. so close them, if we opened them
1373 * for creation
1374 */
1375 for_each_file(td, f, i)
1376 td_io_close_file(td, f);
1377 }
1378
1379 init_disk_util(td);
1380 }
1381
1382 set_genesis_time();
1383
1384 while (todo) {
1385 struct thread_data *map[MAX_JOBS];
1386 struct timeval this_start;
1387 int this_jobs = 0, left;
1388
1389 /*
1390 * create threads (TD_NOT_CREATED -> TD_CREATED)
1391 */
1392 for_each_td(td, i) {
1393 if (td->runstate != TD_NOT_CREATED)
1394 continue;
1395
1396 /*
1397 * never got a chance to start, killed by other
1398 * thread for some reason
1399 */
1400 if (td->terminate) {
1401 todo--;
1402 continue;
1403 }
1404
1405 if (td->o.start_delay) {
1406 spent = mtime_since_genesis();
1407
1408 if (td->o.start_delay * 1000 > spent)
1409 continue;
1410 }
1411
1412 if (td->o.stonewall && (nr_started || nr_running)) {
1413 dprint(FD_PROCESS, "%s: stonewall wait\n",
1414 td->o.name);
1415 break;
1416 }
1417
1418 /*
1419 * Set state to created. Thread will transition
1420 * to TD_INITIALIZED when it's done setting up.
1421 */
1422 td_set_runstate(td, TD_CREATED);
1423 map[this_jobs++] = td;
1424 nr_started++;
1425
1426 if (td->o.use_thread) {
1427 int ret;
1428
1429 dprint(FD_PROCESS, "will pthread_create\n");
1430 ret = pthread_create(&td->thread, NULL,
1431 thread_main, td);
1432 if (ret) {
1433 log_err("pthread_create: %s\n",
1434 strerror(ret));
1435 nr_started--;
1436 break;
1437 }
1438 ret = pthread_detach(td->thread);
1439 if (ret)
1440 log_err("pthread_detach: %s",
1441 strerror(ret));
1442 } else {
1443 pid_t pid;
1444 dprint(FD_PROCESS, "will fork\n");
1445 pid = fork();
1446 if (!pid) {
1447 int ret = fork_main(shm_id, i);
1448
1449 _exit(ret);
1450 } else if (i == fio_debug_jobno)
1451 *fio_debug_jobp = pid;
1452 }
1453 dprint(FD_MUTEX, "wait on startup_mutex\n");
1454 fio_mutex_down(startup_mutex);
1455 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1456 }
1457
1458 /*
1459 * Wait for the started threads to transition to
1460 * TD_INITIALIZED.
1461 */
1462 fio_gettime(&this_start, NULL);
1463 left = this_jobs;
1464 while (left && !fio_abort) {
1465 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1466 break;
1467
1468 usleep(100000);
1469
1470 for (i = 0; i < this_jobs; i++) {
1471 td = map[i];
1472 if (!td)
1473 continue;
1474 if (td->runstate == TD_INITIALIZED) {
1475 map[i] = NULL;
1476 left--;
1477 } else if (td->runstate >= TD_EXITED) {
1478 map[i] = NULL;
1479 left--;
1480 todo--;
1481 nr_running++; /* work-around... */
1482 }
1483 }
1484 }
1485
1486 if (left) {
1487 log_err("fio: %d jobs failed to start\n", left);
1488 for (i = 0; i < this_jobs; i++) {
1489 td = map[i];
1490 if (!td)
1491 continue;
1492 kill(td->pid, SIGTERM);
1493 }
1494 break;
1495 }
1496
1497 /*
1498 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1499 */
1500 for_each_td(td, i) {
1501 if (td->runstate != TD_INITIALIZED)
1502 continue;
1503
1504 if (in_ramp_time(td))
1505 td_set_runstate(td, TD_RAMP);
1506 else
1507 td_set_runstate(td, TD_RUNNING);
1508 nr_running++;
1509 nr_started--;
1510 m_rate += td->o.ratemin;
1511 t_rate += td->o.rate;
1512 todo--;
1513 fio_mutex_up(td->mutex);
1514 }
1515
1516 reap_threads(&nr_running, &t_rate, &m_rate);
1517
1518 if (todo)
1519 usleep(100000);
1520 }
1521
1522 while (nr_running) {
1523 reap_threads(&nr_running, &t_rate, &m_rate);
1524 usleep(10000);
1525 }
1526
1527 update_io_ticks();
1528 fio_unpin_memory();
1529}
1530
1531int main(int argc, char *argv[])
1532{
1533 long ps;
1534
1535 sinit();
1536
1537 /*
1538 * We need locale for number printing, if it isn't set then just
1539 * go with the US format.
1540 */
1541 if (!getenv("LC_NUMERIC"))
1542 setlocale(LC_NUMERIC, "en_US");
1543
1544 if (parse_options(argc, argv))
1545 return 1;
1546
1547 if (!thread_number)
1548 return 0;
1549
1550 ps = sysconf(_SC_PAGESIZE);
1551 if (ps < 0) {
1552 log_err("Failed to get page size\n");
1553 return 1;
1554 }
1555
1556 page_size = ps;
1557 page_mask = ps - 1;
1558
1559 if (write_bw_log) {
1560 setup_log(&agg_io_log[DDIR_READ]);
1561 setup_log(&agg_io_log[DDIR_WRITE]);
1562 }
1563
1564 startup_mutex = fio_mutex_init(0);
1565 writeout_mutex = fio_mutex_init(1);
1566
1567 set_genesis_time();
1568
1569 status_timer_arm();
1570
1571 run_threads();
1572
1573 if (!fio_abort) {
1574 show_run_stats();
1575 if (write_bw_log) {
1576 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1577 __finish_log(agg_io_log[DDIR_WRITE],
1578 "agg-write_bw.log");
1579 }
1580 }
1581
1582 fio_mutex_remove(startup_mutex);
1583 fio_mutex_remove(writeout_mutex);
1584 return exit_value;
1585}