rate: fix bad math
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <inttypes.h>
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#include <sys/mman.h>
38#include <math.h>
39
40#include "fio.h"
41#ifndef FIO_NO_HAVE_SHM_H
42#include <sys/shm.h>
43#endif
44#include "hash.h"
45#include "smalloc.h"
46#include "verify.h"
47#include "trim.h"
48#include "diskutil.h"
49#include "cgroup.h"
50#include "profile.h"
51#include "lib/rand.h"
52#include "lib/memalign.h"
53#include "server.h"
54#include "lib/getrusage.h"
55#include "idletime.h"
56#include "err.h"
57#include "workqueue.h"
58#include "lib/mountcheck.h"
59#include "rate-submit.h"
60#include "helper_thread.h"
61
62static struct fio_mutex *startup_mutex;
63static struct flist_head *cgroup_list;
64static char *cgroup_mnt;
65static int exit_value;
66static volatile int fio_abort;
67static unsigned int nr_process = 0;
68static unsigned int nr_thread = 0;
69
70struct io_log *agg_io_log[DDIR_RWDIR_CNT];
71
72int groupid = 0;
73unsigned int thread_number = 0;
74unsigned int stat_number = 0;
75int shm_id = 0;
76int temp_stall_ts;
77unsigned long done_secs = 0;
78
79#define JOB_START_TIMEOUT (5 * 1000)
80
81static void sig_int(int sig)
82{
83 if (threads) {
84 if (is_backend)
85 fio_server_got_signal(sig);
86 else {
87 log_info("\nfio: terminating on signal %d\n", sig);
88 log_info_flush();
89 exit_value = 128;
90 }
91
92 fio_terminate_threads(TERMINATE_ALL);
93 }
94}
95
96void sig_show_status(int sig)
97{
98 show_running_run_stats();
99}
100
101static void set_sig_handlers(void)
102{
103 struct sigaction act;
104
105 memset(&act, 0, sizeof(act));
106 act.sa_handler = sig_int;
107 act.sa_flags = SA_RESTART;
108 sigaction(SIGINT, &act, NULL);
109
110 memset(&act, 0, sizeof(act));
111 act.sa_handler = sig_int;
112 act.sa_flags = SA_RESTART;
113 sigaction(SIGTERM, &act, NULL);
114
115/* Windows uses SIGBREAK as a quit signal from other applications */
116#ifdef WIN32
117 memset(&act, 0, sizeof(act));
118 act.sa_handler = sig_int;
119 act.sa_flags = SA_RESTART;
120 sigaction(SIGBREAK, &act, NULL);
121#endif
122
123 memset(&act, 0, sizeof(act));
124 act.sa_handler = sig_show_status;
125 act.sa_flags = SA_RESTART;
126 sigaction(SIGUSR1, &act, NULL);
127
128 if (is_backend) {
129 memset(&act, 0, sizeof(act));
130 act.sa_handler = sig_int;
131 act.sa_flags = SA_RESTART;
132 sigaction(SIGPIPE, &act, NULL);
133 }
134}
135
136/*
137 * Check if we are above the minimum rate given.
138 */
139static bool __check_min_rate(struct thread_data *td, struct timespec *now,
140 enum fio_ddir ddir)
141{
142 unsigned long long bytes = 0;
143 unsigned long iops = 0;
144 unsigned long spent;
145 unsigned long rate;
146 unsigned int ratemin = 0;
147 unsigned int rate_iops = 0;
148 unsigned int rate_iops_min = 0;
149
150 assert(ddir_rw(ddir));
151
152 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
153 return false;
154
155 /*
156 * allow a 2 second settle period in the beginning
157 */
158 if (mtime_since(&td->start, now) < 2000)
159 return false;
160
161 iops += td->this_io_blocks[ddir];
162 bytes += td->this_io_bytes[ddir];
163 ratemin += td->o.ratemin[ddir];
164 rate_iops += td->o.rate_iops[ddir];
165 rate_iops_min += td->o.rate_iops_min[ddir];
166
167 /*
168 * if rate blocks is set, sample is running
169 */
170 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
171 spent = mtime_since(&td->lastrate[ddir], now);
172 if (spent < td->o.ratecycle)
173 return false;
174
175 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
176 /*
177 * check bandwidth specified rate
178 */
179 if (bytes < td->rate_bytes[ddir]) {
180 log_err("%s: rate_min=%uB/s not met, only transferred %lluB\n",
181 td->o.name, ratemin, bytes);
182 return true;
183 } else {
184 if (spent)
185 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
186 else
187 rate = 0;
188
189 if (rate < ratemin ||
190 bytes < td->rate_bytes[ddir]) {
191 log_err("%s: rate_min=%uB/s not met, got %luB/s\n",
192 td->o.name, ratemin, rate);
193 return true;
194 }
195 }
196 } else {
197 /*
198 * checks iops specified rate
199 */
200 if (iops < rate_iops) {
201 log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
202 td->o.name, rate_iops, iops);
203 return true;
204 } else {
205 if (spent)
206 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
207 else
208 rate = 0;
209
210 if (rate < rate_iops_min ||
211 iops < td->rate_blocks[ddir]) {
212 log_err("%s: rate_iops_min=%u not met, got %lu IOPS\n",
213 td->o.name, rate_iops_min, rate);
214 return true;
215 }
216 }
217 }
218 }
219
220 td->rate_bytes[ddir] = bytes;
221 td->rate_blocks[ddir] = iops;
222 memcpy(&td->lastrate[ddir], now, sizeof(*now));
223 return false;
224}
225
226static bool check_min_rate(struct thread_data *td, struct timespec *now)
227{
228 bool ret = false;
229
230 if (td->bytes_done[DDIR_READ])
231 ret |= __check_min_rate(td, now, DDIR_READ);
232 if (td->bytes_done[DDIR_WRITE])
233 ret |= __check_min_rate(td, now, DDIR_WRITE);
234 if (td->bytes_done[DDIR_TRIM])
235 ret |= __check_min_rate(td, now, DDIR_TRIM);
236
237 return ret;
238}
239
240/*
241 * When job exits, we can cancel the in-flight IO if we are using async
242 * io. Attempt to do so.
243 */
244static void cleanup_pending_aio(struct thread_data *td)
245{
246 int r;
247
248 /*
249 * get immediately available events, if any
250 */
251 r = io_u_queued_complete(td, 0);
252 if (r < 0)
253 return;
254
255 /*
256 * now cancel remaining active events
257 */
258 if (td->io_ops->cancel) {
259 struct io_u *io_u;
260 int i;
261
262 io_u_qiter(&td->io_u_all, io_u, i) {
263 if (io_u->flags & IO_U_F_FLIGHT) {
264 r = td->io_ops->cancel(td, io_u);
265 if (!r)
266 put_io_u(td, io_u);
267 }
268 }
269 }
270
271 if (td->cur_depth)
272 r = io_u_queued_complete(td, td->cur_depth);
273}
274
275/*
276 * Helper to handle the final sync of a file. Works just like the normal
277 * io path, just does everything sync.
278 */
279static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
280{
281 struct io_u *io_u = __get_io_u(td);
282 int ret;
283
284 if (!io_u)
285 return true;
286
287 io_u->ddir = DDIR_SYNC;
288 io_u->file = f;
289
290 if (td_io_prep(td, io_u)) {
291 put_io_u(td, io_u);
292 return true;
293 }
294
295requeue:
296 ret = td_io_queue(td, io_u);
297 if (ret < 0) {
298 td_verror(td, io_u->error, "td_io_queue");
299 put_io_u(td, io_u);
300 return true;
301 } else if (ret == FIO_Q_QUEUED) {
302 if (td_io_commit(td))
303 return true;
304 if (io_u_queued_complete(td, 1) < 0)
305 return true;
306 } else if (ret == FIO_Q_COMPLETED) {
307 if (io_u->error) {
308 td_verror(td, io_u->error, "td_io_queue");
309 return true;
310 }
311
312 if (io_u_sync_complete(td, io_u) < 0)
313 return true;
314 } else if (ret == FIO_Q_BUSY) {
315 if (td_io_commit(td))
316 return true;
317 goto requeue;
318 }
319
320 return false;
321}
322
323static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
324{
325 int ret;
326
327 if (fio_file_open(f))
328 return fio_io_sync(td, f);
329
330 if (td_io_open_file(td, f))
331 return 1;
332
333 ret = fio_io_sync(td, f);
334 td_io_close_file(td, f);
335 return ret;
336}
337
338static inline void __update_ts_cache(struct thread_data *td)
339{
340 fio_gettime(&td->ts_cache, NULL);
341}
342
343static inline void update_ts_cache(struct thread_data *td)
344{
345 if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
346 __update_ts_cache(td);
347}
348
349static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
350{
351 if (in_ramp_time(td))
352 return false;
353 if (!td->o.timeout)
354 return false;
355 if (utime_since(&td->epoch, t) >= td->o.timeout)
356 return true;
357
358 return false;
359}
360
361/*
362 * We need to update the runtime consistently in ms, but keep a running
363 * tally of the current elapsed time in microseconds for sub millisecond
364 * updates.
365 */
366static inline void update_runtime(struct thread_data *td,
367 unsigned long long *elapsed_us,
368 const enum fio_ddir ddir)
369{
370 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
371 return;
372
373 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
374 elapsed_us[ddir] += utime_since_now(&td->start);
375 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
376}
377
378static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
379 int *retptr)
380{
381 int ret = *retptr;
382
383 if (ret < 0 || td->error) {
384 int err = td->error;
385 enum error_type_bit eb;
386
387 if (ret < 0)
388 err = -ret;
389
390 eb = td_error_type(ddir, err);
391 if (!(td->o.continue_on_error & (1 << eb)))
392 return true;
393
394 if (td_non_fatal_error(td, eb, err)) {
395 /*
396 * Continue with the I/Os in case of
397 * a non fatal error.
398 */
399 update_error_count(td, err);
400 td_clear_error(td);
401 *retptr = 0;
402 return false;
403 } else if (td->o.fill_device && err == ENOSPC) {
404 /*
405 * We expect to hit this error if
406 * fill_device option is set.
407 */
408 td_clear_error(td);
409 fio_mark_td_terminate(td);
410 return true;
411 } else {
412 /*
413 * Stop the I/O in case of a fatal
414 * error.
415 */
416 update_error_count(td, err);
417 return true;
418 }
419 }
420
421 return false;
422}
423
424static void check_update_rusage(struct thread_data *td)
425{
426 if (td->update_rusage) {
427 td->update_rusage = 0;
428 update_rusage_stat(td);
429 fio_mutex_up(td->rusage_sem);
430 }
431}
432
433static int wait_for_completions(struct thread_data *td, struct timespec *time)
434{
435 const int full = queue_full(td);
436 int min_evts = 0;
437 int ret;
438
439 if (td->flags & TD_F_REGROW_LOGS)
440 return io_u_quiesce(td);
441
442 /*
443 * if the queue is full, we MUST reap at least 1 event
444 */
445 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
446 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
447 min_evts = 1;
448
449 if (time && (__should_check_rate(td, DDIR_READ) ||
450 __should_check_rate(td, DDIR_WRITE) ||
451 __should_check_rate(td, DDIR_TRIM)))
452 fio_gettime(time, NULL);
453
454 do {
455 ret = io_u_queued_complete(td, min_evts);
456 if (ret < 0)
457 break;
458 } while (full && (td->cur_depth > td->o.iodepth_low));
459
460 return ret;
461}
462
463int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
464 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
465 struct timespec *comp_time)
466{
467 int ret2;
468
469 switch (*ret) {
470 case FIO_Q_COMPLETED:
471 if (io_u->error) {
472 *ret = -io_u->error;
473 clear_io_u(td, io_u);
474 } else if (io_u->resid) {
475 int bytes = io_u->xfer_buflen - io_u->resid;
476 struct fio_file *f = io_u->file;
477
478 if (bytes_issued)
479 *bytes_issued += bytes;
480
481 if (!from_verify)
482 trim_io_piece(td, io_u);
483
484 /*
485 * zero read, fail
486 */
487 if (!bytes) {
488 if (!from_verify)
489 unlog_io_piece(td, io_u);
490 td_verror(td, EIO, "full resid");
491 put_io_u(td, io_u);
492 break;
493 }
494
495 io_u->xfer_buflen = io_u->resid;
496 io_u->xfer_buf += bytes;
497 io_u->offset += bytes;
498
499 if (ddir_rw(io_u->ddir))
500 td->ts.short_io_u[io_u->ddir]++;
501
502 if (io_u->offset == f->real_file_size)
503 goto sync_done;
504
505 requeue_io_u(td, &io_u);
506 } else {
507sync_done:
508 if (comp_time && (__should_check_rate(td, DDIR_READ) ||
509 __should_check_rate(td, DDIR_WRITE) ||
510 __should_check_rate(td, DDIR_TRIM)))
511 fio_gettime(comp_time, NULL);
512
513 *ret = io_u_sync_complete(td, io_u);
514 if (*ret < 0)
515 break;
516 }
517
518 if (td->flags & TD_F_REGROW_LOGS)
519 regrow_logs(td);
520
521 /*
522 * when doing I/O (not when verifying),
523 * check for any errors that are to be ignored
524 */
525 if (!from_verify)
526 break;
527
528 return 0;
529 case FIO_Q_QUEUED:
530 /*
531 * if the engine doesn't have a commit hook,
532 * the io_u is really queued. if it does have such
533 * a hook, it has to call io_u_queued() itself.
534 */
535 if (td->io_ops->commit == NULL)
536 io_u_queued(td, io_u);
537 if (bytes_issued)
538 *bytes_issued += io_u->xfer_buflen;
539 break;
540 case FIO_Q_BUSY:
541 if (!from_verify)
542 unlog_io_piece(td, io_u);
543 requeue_io_u(td, &io_u);
544 ret2 = td_io_commit(td);
545 if (ret2 < 0)
546 *ret = ret2;
547 break;
548 default:
549 assert(*ret < 0);
550 td_verror(td, -(*ret), "td_io_queue");
551 break;
552 }
553
554 if (break_on_this_error(td, ddir, ret))
555 return 1;
556
557 return 0;
558}
559
560static inline bool io_in_polling(struct thread_data *td)
561{
562 return !td->o.iodepth_batch_complete_min &&
563 !td->o.iodepth_batch_complete_max;
564}
565/*
566 * Unlinks files from thread data fio_file structure
567 */
568static int unlink_all_files(struct thread_data *td)
569{
570 struct fio_file *f;
571 unsigned int i;
572 int ret = 0;
573
574 for_each_file(td, f, i) {
575 if (f->filetype != FIO_TYPE_FILE)
576 continue;
577 ret = td_io_unlink_file(td, f);
578 if (ret)
579 break;
580 }
581
582 if (ret)
583 td_verror(td, ret, "unlink_all_files");
584
585 return ret;
586}
587
588/*
589 * Check if io_u will overlap an in-flight IO in the queue
590 */
591static bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
592{
593 bool overlap;
594 struct io_u *check_io_u;
595 unsigned long long x1, x2, y1, y2;
596 int i;
597
598 x1 = io_u->offset;
599 x2 = io_u->offset + io_u->buflen;
600 overlap = false;
601 io_u_qiter(q, check_io_u, i) {
602 if (check_io_u->flags & IO_U_F_FLIGHT) {
603 y1 = check_io_u->offset;
604 y2 = check_io_u->offset + check_io_u->buflen;
605
606 if (x1 < y2 && y1 < x2) {
607 overlap = true;
608 dprint(FD_IO, "in-flight overlap: %llu/%lu, %llu/%lu\n",
609 x1, io_u->buflen,
610 y1, check_io_u->buflen);
611 break;
612 }
613 }
614 }
615
616 return overlap;
617}
618
619static int io_u_submit(struct thread_data *td, struct io_u *io_u)
620{
621 /*
622 * Check for overlap if the user asked us to, and we have
623 * at least one IO in flight besides this one.
624 */
625 if (td->o.serialize_overlap && td->cur_depth > 1 &&
626 in_flight_overlap(&td->io_u_all, io_u))
627 return FIO_Q_BUSY;
628
629 return td_io_queue(td, io_u);
630}
631
632/*
633 * The main verify engine. Runs over the writes we previously submitted,
634 * reads the blocks back in, and checks the crc/md5 of the data.
635 */
636static void do_verify(struct thread_data *td, uint64_t verify_bytes)
637{
638 struct fio_file *f;
639 struct io_u *io_u;
640 int ret, min_events;
641 unsigned int i;
642
643 dprint(FD_VERIFY, "starting loop\n");
644
645 /*
646 * sync io first and invalidate cache, to make sure we really
647 * read from disk.
648 */
649 for_each_file(td, f, i) {
650 if (!fio_file_open(f))
651 continue;
652 if (fio_io_sync(td, f))
653 break;
654 if (file_invalidate_cache(td, f))
655 break;
656 }
657
658 check_update_rusage(td);
659
660 if (td->error)
661 return;
662
663 /*
664 * verify_state needs to be reset before verification
665 * proceeds so that expected random seeds match actual
666 * random seeds in headers. The main loop will reset
667 * all random number generators if randrepeat is set.
668 */
669 if (!td->o.rand_repeatable)
670 td_fill_verify_state_seed(td);
671
672 td_set_runstate(td, TD_VERIFYING);
673
674 io_u = NULL;
675 while (!td->terminate) {
676 enum fio_ddir ddir;
677 int full;
678
679 update_ts_cache(td);
680 check_update_rusage(td);
681
682 if (runtime_exceeded(td, &td->ts_cache)) {
683 __update_ts_cache(td);
684 if (runtime_exceeded(td, &td->ts_cache)) {
685 fio_mark_td_terminate(td);
686 break;
687 }
688 }
689
690 if (flow_threshold_exceeded(td))
691 continue;
692
693 if (!td->o.experimental_verify) {
694 io_u = __get_io_u(td);
695 if (!io_u)
696 break;
697
698 if (get_next_verify(td, io_u)) {
699 put_io_u(td, io_u);
700 break;
701 }
702
703 if (td_io_prep(td, io_u)) {
704 put_io_u(td, io_u);
705 break;
706 }
707 } else {
708 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
709 break;
710
711 while ((io_u = get_io_u(td)) != NULL) {
712 if (IS_ERR_OR_NULL(io_u)) {
713 io_u = NULL;
714 ret = FIO_Q_BUSY;
715 goto reap;
716 }
717
718 /*
719 * We are only interested in the places where
720 * we wrote or trimmed IOs. Turn those into
721 * reads for verification purposes.
722 */
723 if (io_u->ddir == DDIR_READ) {
724 /*
725 * Pretend we issued it for rwmix
726 * accounting
727 */
728 td->io_issues[DDIR_READ]++;
729 put_io_u(td, io_u);
730 continue;
731 } else if (io_u->ddir == DDIR_TRIM) {
732 io_u->ddir = DDIR_READ;
733 io_u_set(td, io_u, IO_U_F_TRIMMED);
734 break;
735 } else if (io_u->ddir == DDIR_WRITE) {
736 io_u->ddir = DDIR_READ;
737 break;
738 } else {
739 put_io_u(td, io_u);
740 continue;
741 }
742 }
743
744 if (!io_u)
745 break;
746 }
747
748 if (verify_state_should_stop(td, io_u)) {
749 put_io_u(td, io_u);
750 break;
751 }
752
753 if (td->o.verify_async)
754 io_u->end_io = verify_io_u_async;
755 else
756 io_u->end_io = verify_io_u;
757
758 ddir = io_u->ddir;
759 if (!td->o.disable_slat)
760 fio_gettime(&io_u->start_time, NULL);
761
762 ret = io_u_submit(td, io_u);
763
764 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
765 break;
766
767 /*
768 * if we can queue more, do so. but check if there are
769 * completed io_u's first. Note that we can get BUSY even
770 * without IO queued, if the system is resource starved.
771 */
772reap:
773 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
774 if (full || io_in_polling(td))
775 ret = wait_for_completions(td, NULL);
776
777 if (ret < 0)
778 break;
779 }
780
781 check_update_rusage(td);
782
783 if (!td->error) {
784 min_events = td->cur_depth;
785
786 if (min_events)
787 ret = io_u_queued_complete(td, min_events);
788 } else
789 cleanup_pending_aio(td);
790
791 td_set_runstate(td, TD_RUNNING);
792
793 dprint(FD_VERIFY, "exiting loop\n");
794}
795
796static bool exceeds_number_ios(struct thread_data *td)
797{
798 unsigned long long number_ios;
799
800 if (!td->o.number_ios)
801 return false;
802
803 number_ios = ddir_rw_sum(td->io_blocks);
804 number_ios += td->io_u_queued + td->io_u_in_flight;
805
806 return number_ios >= (td->o.number_ios * td->loops);
807}
808
809static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
810{
811 unsigned long long bytes, limit;
812
813 if (td_rw(td))
814 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
815 else if (td_write(td))
816 bytes = this_bytes[DDIR_WRITE];
817 else if (td_read(td))
818 bytes = this_bytes[DDIR_READ];
819 else
820 bytes = this_bytes[DDIR_TRIM];
821
822 if (td->o.io_size)
823 limit = td->o.io_size;
824 else
825 limit = td->o.size;
826
827 limit *= td->loops;
828 return bytes >= limit || exceeds_number_ios(td);
829}
830
831static bool io_issue_bytes_exceeded(struct thread_data *td)
832{
833 return io_bytes_exceeded(td, td->io_issue_bytes);
834}
835
836static bool io_complete_bytes_exceeded(struct thread_data *td)
837{
838 return io_bytes_exceeded(td, td->this_io_bytes);
839}
840
841/*
842 * used to calculate the next io time for rate control
843 *
844 */
845static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
846{
847 uint64_t bps = td->rate_bps[ddir];
848
849 assert(!(td->flags & TD_F_CHILD));
850
851 if (td->o.rate_process == RATE_PROCESS_POISSON) {
852 uint64_t val, iops;
853
854 iops = bps / td->o.bs[ddir];
855 val = (int64_t) (1000000 / iops) *
856 -logf(__rand_0_1(&td->poisson_state[ddir]));
857 if (val) {
858 dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
859 (unsigned long long) 1000000 / val,
860 ddir);
861 }
862 td->last_usec[ddir] += val;
863 return td->last_usec[ddir];
864 } else if (bps) {
865 uint64_t bytes = td->rate_io_issue_bytes[ddir];
866 uint64_t secs = bytes / bps;
867 uint64_t remainder = bytes % bps;
868
869 return remainder * 1000000 / bps + secs * 1000000;
870 }
871
872 return 0;
873}
874
875static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir)
876{
877 unsigned long long b;
878 uint64_t total;
879 int left;
880
881 b = ddir_rw_sum(td->io_blocks);
882 if (b % td->o.thinktime_blocks)
883 return;
884
885 io_u_quiesce(td);
886
887 total = 0;
888 if (td->o.thinktime_spin)
889 total = usec_spin(td->o.thinktime_spin);
890
891 left = td->o.thinktime - total;
892 if (left)
893 total += usec_sleep(td, left);
894
895 /*
896 * If we're ignoring thinktime for the rate, add the number of bytes
897 * we would have done while sleeping, minus one block to ensure we
898 * start issuing immediately after the sleep.
899 */
900 if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
901 uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL;
902 uint64_t over;
903
904 if (total >= 1000000)
905 over = td->o.min_bs[ddir];
906 else
907 over = (td->o.min_bs[ddir] * total) / 1000000ULL;
908
909 td->rate_io_issue_bytes[ddir] += (missed - over);
910 }
911}
912
913/*
914 * Main IO worker function. It retrieves io_u's to process and queues
915 * and reaps them, checking for rate and errors along the way.
916 *
917 * Returns number of bytes written and trimmed.
918 */
919static void do_io(struct thread_data *td, uint64_t *bytes_done)
920{
921 unsigned int i;
922 int ret = 0;
923 uint64_t total_bytes, bytes_issued = 0;
924
925 for (i = 0; i < DDIR_RWDIR_CNT; i++)
926 bytes_done[i] = td->bytes_done[i];
927
928 if (in_ramp_time(td))
929 td_set_runstate(td, TD_RAMP);
930 else
931 td_set_runstate(td, TD_RUNNING);
932
933 lat_target_init(td);
934
935 total_bytes = td->o.size;
936 /*
937 * Allow random overwrite workloads to write up to io_size
938 * before starting verification phase as 'size' doesn't apply.
939 */
940 if (td_write(td) && td_random(td) && td->o.norandommap)
941 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
942 /*
943 * If verify_backlog is enabled, we'll run the verify in this
944 * handler as well. For that case, we may need up to twice the
945 * amount of bytes.
946 */
947 if (td->o.verify != VERIFY_NONE &&
948 (td_write(td) && td->o.verify_backlog))
949 total_bytes += td->o.size;
950
951 /* In trimwrite mode, each byte is trimmed and then written, so
952 * allow total_bytes to be twice as big */
953 if (td_trimwrite(td))
954 total_bytes += td->total_io_size;
955
956 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
957 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
958 td->o.time_based) {
959 struct timespec comp_time;
960 struct io_u *io_u;
961 int full;
962 enum fio_ddir ddir;
963
964 check_update_rusage(td);
965
966 if (td->terminate || td->done)
967 break;
968
969 update_ts_cache(td);
970
971 if (runtime_exceeded(td, &td->ts_cache)) {
972 __update_ts_cache(td);
973 if (runtime_exceeded(td, &td->ts_cache)) {
974 fio_mark_td_terminate(td);
975 break;
976 }
977 }
978
979 if (flow_threshold_exceeded(td))
980 continue;
981
982 /*
983 * Break if we exceeded the bytes. The exception is time
984 * based runs, but we still need to break out of the loop
985 * for those to run verification, if enabled.
986 */
987 if (bytes_issued >= total_bytes &&
988 (!td->o.time_based ||
989 (td->o.time_based && td->o.verify != VERIFY_NONE)))
990 break;
991
992 io_u = get_io_u(td);
993 if (IS_ERR_OR_NULL(io_u)) {
994 int err = PTR_ERR(io_u);
995
996 io_u = NULL;
997 ddir = DDIR_INVAL;
998 if (err == -EBUSY) {
999 ret = FIO_Q_BUSY;
1000 goto reap;
1001 }
1002 if (td->o.latency_target)
1003 goto reap;
1004 break;
1005 }
1006
1007 ddir = io_u->ddir;
1008
1009 /*
1010 * Add verification end_io handler if:
1011 * - Asked to verify (!td_rw(td))
1012 * - Or the io_u is from our verify list (mixed write/ver)
1013 */
1014 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
1015 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
1016
1017 if (!td->o.verify_pattern_bytes) {
1018 io_u->rand_seed = __rand(&td->verify_state);
1019 if (sizeof(int) != sizeof(long *))
1020 io_u->rand_seed *= __rand(&td->verify_state);
1021 }
1022
1023 if (verify_state_should_stop(td, io_u)) {
1024 put_io_u(td, io_u);
1025 break;
1026 }
1027
1028 if (td->o.verify_async)
1029 io_u->end_io = verify_io_u_async;
1030 else
1031 io_u->end_io = verify_io_u;
1032 td_set_runstate(td, TD_VERIFYING);
1033 } else if (in_ramp_time(td))
1034 td_set_runstate(td, TD_RAMP);
1035 else
1036 td_set_runstate(td, TD_RUNNING);
1037
1038 /*
1039 * Always log IO before it's issued, so we know the specific
1040 * order of it. The logged unit will track when the IO has
1041 * completed.
1042 */
1043 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1044 td->o.do_verify &&
1045 td->o.verify != VERIFY_NONE &&
1046 !td->o.experimental_verify)
1047 log_io_piece(td, io_u);
1048
1049 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1050 const unsigned long blen = io_u->xfer_buflen;
1051 const enum fio_ddir ddir = acct_ddir(io_u);
1052
1053 if (td->error)
1054 break;
1055
1056 workqueue_enqueue(&td->io_wq, &io_u->work);
1057 ret = FIO_Q_QUEUED;
1058
1059 if (ddir_rw(ddir)) {
1060 td->io_issues[ddir]++;
1061 td->io_issue_bytes[ddir] += blen;
1062 td->rate_io_issue_bytes[ddir] += blen;
1063 }
1064
1065 if (should_check_rate(td))
1066 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1067
1068 } else {
1069 ret = io_u_submit(td, io_u);
1070
1071 if (should_check_rate(td))
1072 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1073
1074 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1075 break;
1076
1077 /*
1078 * See if we need to complete some commands. Note that
1079 * we can get BUSY even without IO queued, if the
1080 * system is resource starved.
1081 */
1082reap:
1083 full = queue_full(td) ||
1084 (ret == FIO_Q_BUSY && td->cur_depth);
1085 if (full || io_in_polling(td))
1086 ret = wait_for_completions(td, &comp_time);
1087 }
1088 if (ret < 0)
1089 break;
1090 if (!ddir_rw_sum(td->bytes_done) &&
1091 !td_ioengine_flagged(td, FIO_NOIO))
1092 continue;
1093
1094 if (!in_ramp_time(td) && should_check_rate(td)) {
1095 if (check_min_rate(td, &comp_time)) {
1096 if (exitall_on_terminate || td->o.exitall_error)
1097 fio_terminate_threads(td->groupid);
1098 td_verror(td, EIO, "check_min_rate");
1099 break;
1100 }
1101 }
1102 if (!in_ramp_time(td) && td->o.latency_target)
1103 lat_target_check(td);
1104
1105 if (ddir_rw(ddir) && td->o.thinktime)
1106 handle_thinktime(td, ddir);
1107 }
1108
1109 check_update_rusage(td);
1110
1111 if (td->trim_entries)
1112 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1113
1114 if (td->o.fill_device && td->error == ENOSPC) {
1115 td->error = 0;
1116 fio_mark_td_terminate(td);
1117 }
1118 if (!td->error) {
1119 struct fio_file *f;
1120
1121 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1122 workqueue_flush(&td->io_wq);
1123 i = 0;
1124 } else
1125 i = td->cur_depth;
1126
1127 if (i) {
1128 ret = io_u_queued_complete(td, i);
1129 if (td->o.fill_device && td->error == ENOSPC)
1130 td->error = 0;
1131 }
1132
1133 if (should_fsync(td) && td->o.end_fsync) {
1134 td_set_runstate(td, TD_FSYNCING);
1135
1136 for_each_file(td, f, i) {
1137 if (!fio_file_fsync(td, f))
1138 continue;
1139
1140 log_err("fio: end_fsync failed for file %s\n",
1141 f->file_name);
1142 }
1143 }
1144 } else
1145 cleanup_pending_aio(td);
1146
1147 /*
1148 * stop job if we failed doing any IO
1149 */
1150 if (!ddir_rw_sum(td->this_io_bytes))
1151 td->done = 1;
1152
1153 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1154 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1155}
1156
1157static void free_file_completion_logging(struct thread_data *td)
1158{
1159 struct fio_file *f;
1160 unsigned int i;
1161
1162 for_each_file(td, f, i) {
1163 if (!f->last_write_comp)
1164 break;
1165 sfree(f->last_write_comp);
1166 }
1167}
1168
1169static int init_file_completion_logging(struct thread_data *td,
1170 unsigned int depth)
1171{
1172 struct fio_file *f;
1173 unsigned int i;
1174
1175 if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1176 return 0;
1177
1178 for_each_file(td, f, i) {
1179 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1180 if (!f->last_write_comp)
1181 goto cleanup;
1182 }
1183
1184 return 0;
1185
1186cleanup:
1187 free_file_completion_logging(td);
1188 log_err("fio: failed to alloc write comp data\n");
1189 return 1;
1190}
1191
1192static void cleanup_io_u(struct thread_data *td)
1193{
1194 struct io_u *io_u;
1195
1196 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1197
1198 if (td->io_ops->io_u_free)
1199 td->io_ops->io_u_free(td, io_u);
1200
1201 fio_memfree(io_u, sizeof(*io_u));
1202 }
1203
1204 free_io_mem(td);
1205
1206 io_u_rexit(&td->io_u_requeues);
1207 io_u_qexit(&td->io_u_freelist);
1208 io_u_qexit(&td->io_u_all);
1209
1210 free_file_completion_logging(td);
1211}
1212
1213static int init_io_u(struct thread_data *td)
1214{
1215 struct io_u *io_u;
1216 unsigned int max_bs, min_write;
1217 int cl_align, i, max_units;
1218 int data_xfer = 1, err;
1219 char *p;
1220
1221 max_units = td->o.iodepth;
1222 max_bs = td_max_bs(td);
1223 min_write = td->o.min_bs[DDIR_WRITE];
1224 td->orig_buffer_size = (unsigned long long) max_bs
1225 * (unsigned long long) max_units;
1226
1227 if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1228 data_xfer = 0;
1229
1230 err = 0;
1231 err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1232 err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1233 err += !io_u_qinit(&td->io_u_all, td->o.iodepth);
1234
1235 if (err) {
1236 log_err("fio: failed setting up IO queues\n");
1237 return 1;
1238 }
1239
1240 /*
1241 * if we may later need to do address alignment, then add any
1242 * possible adjustment here so that we don't cause a buffer
1243 * overflow later. this adjustment may be too much if we get
1244 * lucky and the allocator gives us an aligned address.
1245 */
1246 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1247 td_ioengine_flagged(td, FIO_RAWIO))
1248 td->orig_buffer_size += page_mask + td->o.mem_align;
1249
1250 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1251 unsigned long bs;
1252
1253 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1254 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1255 }
1256
1257 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1258 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1259 return 1;
1260 }
1261
1262 if (data_xfer && allocate_io_mem(td))
1263 return 1;
1264
1265 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1266 td_ioengine_flagged(td, FIO_RAWIO))
1267 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1268 else
1269 p = td->orig_buffer;
1270
1271 cl_align = os_cache_line_size();
1272
1273 for (i = 0; i < max_units; i++) {
1274 void *ptr;
1275
1276 if (td->terminate)
1277 return 1;
1278
1279 ptr = fio_memalign(cl_align, sizeof(*io_u));
1280 if (!ptr) {
1281 log_err("fio: unable to allocate aligned memory\n");
1282 break;
1283 }
1284
1285 io_u = ptr;
1286 memset(io_u, 0, sizeof(*io_u));
1287 INIT_FLIST_HEAD(&io_u->verify_list);
1288 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1289
1290 if (data_xfer) {
1291 io_u->buf = p;
1292 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1293
1294 if (td_write(td))
1295 io_u_fill_buffer(td, io_u, min_write, max_bs);
1296 if (td_write(td) && td->o.verify_pattern_bytes) {
1297 /*
1298 * Fill the buffer with the pattern if we are
1299 * going to be doing writes.
1300 */
1301 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1302 }
1303 }
1304
1305 io_u->index = i;
1306 io_u->flags = IO_U_F_FREE;
1307 io_u_qpush(&td->io_u_freelist, io_u);
1308
1309 /*
1310 * io_u never leaves this stack, used for iteration of all
1311 * io_u buffers.
1312 */
1313 io_u_qpush(&td->io_u_all, io_u);
1314
1315 if (td->io_ops->io_u_init) {
1316 int ret = td->io_ops->io_u_init(td, io_u);
1317
1318 if (ret) {
1319 log_err("fio: failed to init engine data: %d\n", ret);
1320 return 1;
1321 }
1322 }
1323
1324 p += max_bs;
1325 }
1326
1327 if (init_file_completion_logging(td, max_units))
1328 return 1;
1329
1330 return 0;
1331}
1332
1333/*
1334 * This function is Linux specific.
1335 * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1336 */
1337static int switch_ioscheduler(struct thread_data *td)
1338{
1339#ifdef FIO_HAVE_IOSCHED_SWITCH
1340 char tmp[256], tmp2[128];
1341 FILE *f;
1342 int ret;
1343
1344 if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1345 return 0;
1346
1347 assert(td->files && td->files[0]);
1348 sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root);
1349
1350 f = fopen(tmp, "r+");
1351 if (!f) {
1352 if (errno == ENOENT) {
1353 log_err("fio: os or kernel doesn't support IO scheduler"
1354 " switching\n");
1355 return 0;
1356 }
1357 td_verror(td, errno, "fopen iosched");
1358 return 1;
1359 }
1360
1361 /*
1362 * Set io scheduler.
1363 */
1364 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1365 if (ferror(f) || ret != 1) {
1366 td_verror(td, errno, "fwrite");
1367 fclose(f);
1368 return 1;
1369 }
1370
1371 rewind(f);
1372
1373 /*
1374 * Read back and check that the selected scheduler is now the default.
1375 */
1376 memset(tmp, 0, sizeof(tmp));
1377 ret = fread(tmp, sizeof(tmp), 1, f);
1378 if (ferror(f) || ret < 0) {
1379 td_verror(td, errno, "fread");
1380 fclose(f);
1381 return 1;
1382 }
1383 /*
1384 * either a list of io schedulers or "none\n" is expected.
1385 */
1386 tmp[strlen(tmp) - 1] = '\0';
1387
1388 /*
1389 * Write to "none" entry doesn't fail, so check the result here.
1390 */
1391 if (!strcmp(tmp, "none")) {
1392 log_err("fio: io scheduler is not tunable\n");
1393 fclose(f);
1394 return 0;
1395 }
1396
1397 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1398 if (!strstr(tmp, tmp2)) {
1399 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1400 td_verror(td, EINVAL, "iosched_switch");
1401 fclose(f);
1402 return 1;
1403 }
1404
1405 fclose(f);
1406 return 0;
1407#else
1408 return 0;
1409#endif
1410}
1411
1412static bool keep_running(struct thread_data *td)
1413{
1414 unsigned long long limit;
1415
1416 if (td->done)
1417 return false;
1418 if (td->terminate)
1419 return false;
1420 if (td->o.time_based)
1421 return true;
1422 if (td->o.loops) {
1423 td->o.loops--;
1424 return true;
1425 }
1426 if (exceeds_number_ios(td))
1427 return false;
1428
1429 if (td->o.io_size)
1430 limit = td->o.io_size;
1431 else
1432 limit = td->o.size;
1433
1434 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1435 uint64_t diff;
1436
1437 /*
1438 * If the difference is less than the maximum IO size, we
1439 * are done.
1440 */
1441 diff = limit - ddir_rw_sum(td->io_bytes);
1442 if (diff < td_max_bs(td))
1443 return false;
1444
1445 if (fio_files_done(td) && !td->o.io_size)
1446 return false;
1447
1448 return true;
1449 }
1450
1451 return false;
1452}
1453
1454static int exec_string(struct thread_options *o, const char *string, const char *mode)
1455{
1456 size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1457 int ret;
1458 char *str;
1459
1460 str = malloc(newlen);
1461 sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1462
1463 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1464 ret = system(str);
1465 if (ret == -1)
1466 log_err("fio: exec of cmd <%s> failed\n", str);
1467
1468 free(str);
1469 return ret;
1470}
1471
1472/*
1473 * Dry run to compute correct state of numberio for verification.
1474 */
1475static uint64_t do_dry_run(struct thread_data *td)
1476{
1477 td_set_runstate(td, TD_RUNNING);
1478
1479 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1480 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1481 struct io_u *io_u;
1482 int ret;
1483
1484 if (td->terminate || td->done)
1485 break;
1486
1487 io_u = get_io_u(td);
1488 if (IS_ERR_OR_NULL(io_u))
1489 break;
1490
1491 io_u_set(td, io_u, IO_U_F_FLIGHT);
1492 io_u->error = 0;
1493 io_u->resid = 0;
1494 if (ddir_rw(acct_ddir(io_u)))
1495 td->io_issues[acct_ddir(io_u)]++;
1496 if (ddir_rw(io_u->ddir)) {
1497 io_u_mark_depth(td, 1);
1498 td->ts.total_io_u[io_u->ddir]++;
1499 }
1500
1501 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1502 td->o.do_verify &&
1503 td->o.verify != VERIFY_NONE &&
1504 !td->o.experimental_verify)
1505 log_io_piece(td, io_u);
1506
1507 ret = io_u_sync_complete(td, io_u);
1508 (void) ret;
1509 }
1510
1511 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1512}
1513
1514struct fork_data {
1515 struct thread_data *td;
1516 struct sk_out *sk_out;
1517};
1518
1519/*
1520 * Entry point for the thread based jobs. The process based jobs end up
1521 * here as well, after a little setup.
1522 */
1523static void *thread_main(void *data)
1524{
1525 struct fork_data *fd = data;
1526 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1527 struct thread_data *td = fd->td;
1528 struct thread_options *o = &td->o;
1529 struct sk_out *sk_out = fd->sk_out;
1530 uint64_t bytes_done[DDIR_RWDIR_CNT];
1531 int deadlock_loop_cnt;
1532 bool clear_state, did_some_io;
1533 int ret;
1534
1535 sk_out_assign(sk_out);
1536 free(fd);
1537
1538 if (!o->use_thread) {
1539 setsid();
1540 td->pid = getpid();
1541 } else
1542 td->pid = gettid();
1543
1544 fio_local_clock_init(o->use_thread);
1545
1546 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1547
1548 if (is_backend)
1549 fio_server_send_start(td);
1550
1551 INIT_FLIST_HEAD(&td->io_log_list);
1552 INIT_FLIST_HEAD(&td->io_hist_list);
1553 INIT_FLIST_HEAD(&td->verify_list);
1554 INIT_FLIST_HEAD(&td->trim_list);
1555 INIT_FLIST_HEAD(&td->next_rand_list);
1556 td->io_hist_tree = RB_ROOT;
1557
1558 ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1559 if (ret) {
1560 td_verror(td, ret, "mutex_cond_init_pshared");
1561 goto err;
1562 }
1563 ret = cond_init_pshared(&td->verify_cond);
1564 if (ret) {
1565 td_verror(td, ret, "mutex_cond_pshared");
1566 goto err;
1567 }
1568
1569 td_set_runstate(td, TD_INITIALIZED);
1570 dprint(FD_MUTEX, "up startup_mutex\n");
1571 fio_mutex_up(startup_mutex);
1572 dprint(FD_MUTEX, "wait on td->mutex\n");
1573 fio_mutex_down(td->mutex);
1574 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1575
1576 /*
1577 * A new gid requires privilege, so we need to do this before setting
1578 * the uid.
1579 */
1580 if (o->gid != -1U && setgid(o->gid)) {
1581 td_verror(td, errno, "setgid");
1582 goto err;
1583 }
1584 if (o->uid != -1U && setuid(o->uid)) {
1585 td_verror(td, errno, "setuid");
1586 goto err;
1587 }
1588
1589 /*
1590 * Do this early, we don't want the compress threads to be limited
1591 * to the same CPUs as the IO workers. So do this before we set
1592 * any potential CPU affinity
1593 */
1594 if (iolog_compress_init(td, sk_out))
1595 goto err;
1596
1597 /*
1598 * If we have a gettimeofday() thread, make sure we exclude that
1599 * thread from this job
1600 */
1601 if (o->gtod_cpu)
1602 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1603
1604 /*
1605 * Set affinity first, in case it has an impact on the memory
1606 * allocations.
1607 */
1608 if (fio_option_is_set(o, cpumask)) {
1609 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1610 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1611 if (!ret) {
1612 log_err("fio: no CPUs set\n");
1613 log_err("fio: Try increasing number of available CPUs\n");
1614 td_verror(td, EINVAL, "cpus_split");
1615 goto err;
1616 }
1617 }
1618 ret = fio_setaffinity(td->pid, o->cpumask);
1619 if (ret == -1) {
1620 td_verror(td, errno, "cpu_set_affinity");
1621 goto err;
1622 }
1623 }
1624
1625#ifdef CONFIG_LIBNUMA
1626 /* numa node setup */
1627 if (fio_option_is_set(o, numa_cpunodes) ||
1628 fio_option_is_set(o, numa_memnodes)) {
1629 struct bitmask *mask;
1630
1631 if (numa_available() < 0) {
1632 td_verror(td, errno, "Does not support NUMA API\n");
1633 goto err;
1634 }
1635
1636 if (fio_option_is_set(o, numa_cpunodes)) {
1637 mask = numa_parse_nodestring(o->numa_cpunodes);
1638 ret = numa_run_on_node_mask(mask);
1639 numa_free_nodemask(mask);
1640 if (ret == -1) {
1641 td_verror(td, errno, \
1642 "numa_run_on_node_mask failed\n");
1643 goto err;
1644 }
1645 }
1646
1647 if (fio_option_is_set(o, numa_memnodes)) {
1648 mask = NULL;
1649 if (o->numa_memnodes)
1650 mask = numa_parse_nodestring(o->numa_memnodes);
1651
1652 switch (o->numa_mem_mode) {
1653 case MPOL_INTERLEAVE:
1654 numa_set_interleave_mask(mask);
1655 break;
1656 case MPOL_BIND:
1657 numa_set_membind(mask);
1658 break;
1659 case MPOL_LOCAL:
1660 numa_set_localalloc();
1661 break;
1662 case MPOL_PREFERRED:
1663 numa_set_preferred(o->numa_mem_prefer_node);
1664 break;
1665 case MPOL_DEFAULT:
1666 default:
1667 break;
1668 }
1669
1670 if (mask)
1671 numa_free_nodemask(mask);
1672
1673 }
1674 }
1675#endif
1676
1677 if (fio_pin_memory(td))
1678 goto err;
1679
1680 /*
1681 * May alter parameters that init_io_u() will use, so we need to
1682 * do this first.
1683 */
1684 if (init_iolog(td))
1685 goto err;
1686
1687 if (init_io_u(td))
1688 goto err;
1689
1690 if (o->verify_async && verify_async_init(td))
1691 goto err;
1692
1693 if (fio_option_is_set(o, ioprio) ||
1694 fio_option_is_set(o, ioprio_class)) {
1695 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1696 if (ret == -1) {
1697 td_verror(td, errno, "ioprio_set");
1698 goto err;
1699 }
1700 }
1701
1702 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1703 goto err;
1704
1705 errno = 0;
1706 if (nice(o->nice) == -1 && errno != 0) {
1707 td_verror(td, errno, "nice");
1708 goto err;
1709 }
1710
1711 if (o->ioscheduler && switch_ioscheduler(td))
1712 goto err;
1713
1714 if (!o->create_serialize && setup_files(td))
1715 goto err;
1716
1717 if (td_io_init(td))
1718 goto err;
1719
1720 if (!init_random_map(td))
1721 goto err;
1722
1723 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1724 goto err;
1725
1726 if (o->pre_read && !pre_read_files(td))
1727 goto err;
1728
1729 fio_verify_init(td);
1730
1731 if (rate_submit_init(td, sk_out))
1732 goto err;
1733
1734 set_epoch_time(td, o->log_unix_epoch);
1735 fio_getrusage(&td->ru_start);
1736 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1737 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1738 memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1739
1740 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1741 o->ratemin[DDIR_TRIM]) {
1742 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1743 sizeof(td->bw_sample_time));
1744 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1745 sizeof(td->bw_sample_time));
1746 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1747 sizeof(td->bw_sample_time));
1748 }
1749
1750 memset(bytes_done, 0, sizeof(bytes_done));
1751 clear_state = false;
1752 did_some_io = false;
1753
1754 while (keep_running(td)) {
1755 uint64_t verify_bytes;
1756
1757 fio_gettime(&td->start, NULL);
1758 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1759
1760 if (clear_state) {
1761 clear_io_state(td, 0);
1762
1763 if (o->unlink_each_loop && unlink_all_files(td))
1764 break;
1765 }
1766
1767 prune_io_piece_log(td);
1768
1769 if (td->o.verify_only && td_write(td))
1770 verify_bytes = do_dry_run(td);
1771 else {
1772 do_io(td, bytes_done);
1773
1774 if (!ddir_rw_sum(bytes_done)) {
1775 fio_mark_td_terminate(td);
1776 verify_bytes = 0;
1777 } else {
1778 verify_bytes = bytes_done[DDIR_WRITE] +
1779 bytes_done[DDIR_TRIM];
1780 }
1781 }
1782
1783 /*
1784 * If we took too long to shut down, the main thread could
1785 * already consider us reaped/exited. If that happens, break
1786 * out and clean up.
1787 */
1788 if (td->runstate >= TD_EXITED)
1789 break;
1790
1791 clear_state = true;
1792
1793 /*
1794 * Make sure we've successfully updated the rusage stats
1795 * before waiting on the stat mutex. Otherwise we could have
1796 * the stat thread holding stat mutex and waiting for
1797 * the rusage_sem, which would never get upped because
1798 * this thread is waiting for the stat mutex.
1799 */
1800 deadlock_loop_cnt = 0;
1801 do {
1802 check_update_rusage(td);
1803 if (!fio_mutex_down_trylock(stat_mutex))
1804 break;
1805 usleep(1000);
1806 if (deadlock_loop_cnt++ > 5000) {
1807 log_err("fio seems to be stuck grabbing stat_mutex, forcibly exiting\n");
1808 td->error = EDEADLK;
1809 goto err;
1810 }
1811 } while (1);
1812
1813 if (td_read(td) && td->io_bytes[DDIR_READ])
1814 update_runtime(td, elapsed_us, DDIR_READ);
1815 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1816 update_runtime(td, elapsed_us, DDIR_WRITE);
1817 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1818 update_runtime(td, elapsed_us, DDIR_TRIM);
1819 fio_gettime(&td->start, NULL);
1820 fio_mutex_up(stat_mutex);
1821
1822 if (td->error || td->terminate)
1823 break;
1824
1825 if (!o->do_verify ||
1826 o->verify == VERIFY_NONE ||
1827 td_ioengine_flagged(td, FIO_UNIDIR))
1828 continue;
1829
1830 if (ddir_rw_sum(bytes_done))
1831 did_some_io = true;
1832
1833 clear_io_state(td, 0);
1834
1835 fio_gettime(&td->start, NULL);
1836
1837 do_verify(td, verify_bytes);
1838
1839 /*
1840 * See comment further up for why this is done here.
1841 */
1842 check_update_rusage(td);
1843
1844 fio_mutex_down(stat_mutex);
1845 update_runtime(td, elapsed_us, DDIR_READ);
1846 fio_gettime(&td->start, NULL);
1847 fio_mutex_up(stat_mutex);
1848
1849 if (td->error || td->terminate)
1850 break;
1851 }
1852
1853 /*
1854 * If td ended up with no I/O when it should have had,
1855 * then something went wrong unless FIO_NOIO or FIO_DISKLESSIO.
1856 * (Are we not missing other flags that can be ignored ?)
1857 */
1858 if ((td->o.size || td->o.io_size) && !ddir_rw_sum(bytes_done) &&
1859 !did_some_io && !td->o.create_only &&
1860 !(td_ioengine_flagged(td, FIO_NOIO) ||
1861 td_ioengine_flagged(td, FIO_DISKLESSIO)))
1862 log_err("%s: No I/O performed by %s, "
1863 "perhaps try --debug=io option for details?\n",
1864 td->o.name, td->io_ops->name);
1865
1866 td_set_runstate(td, TD_FINISHING);
1867
1868 update_rusage_stat(td);
1869 td->ts.total_run_time = mtime_since_now(&td->epoch);
1870 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1871 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1872 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1873
1874 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1875 (td->o.verify != VERIFY_NONE && td_write(td)))
1876 verify_save_state(td->thread_number);
1877
1878 fio_unpin_memory(td);
1879
1880 td_writeout_logs(td, true);
1881
1882 iolog_compress_exit(td);
1883 rate_submit_exit(td);
1884
1885 if (o->exec_postrun)
1886 exec_string(o, o->exec_postrun, (const char *)"postrun");
1887
1888 if (exitall_on_terminate || (o->exitall_error && td->error))
1889 fio_terminate_threads(td->groupid);
1890
1891err:
1892 if (td->error)
1893 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1894 td->verror);
1895
1896 if (o->verify_async)
1897 verify_async_exit(td);
1898
1899 close_and_free_files(td);
1900 cleanup_io_u(td);
1901 close_ioengine(td);
1902 cgroup_shutdown(td, &cgroup_mnt);
1903 verify_free_state(td);
1904
1905 if (td->zone_state_index) {
1906 int i;
1907
1908 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1909 free(td->zone_state_index[i]);
1910 free(td->zone_state_index);
1911 td->zone_state_index = NULL;
1912 }
1913
1914 if (fio_option_is_set(o, cpumask)) {
1915 ret = fio_cpuset_exit(&o->cpumask);
1916 if (ret)
1917 td_verror(td, ret, "fio_cpuset_exit");
1918 }
1919
1920 /*
1921 * do this very late, it will log file closing as well
1922 */
1923 if (o->write_iolog_file)
1924 write_iolog_close(td);
1925
1926 td_set_runstate(td, TD_EXITED);
1927
1928 /*
1929 * Do this last after setting our runstate to exited, so we
1930 * know that the stat thread is signaled.
1931 */
1932 check_update_rusage(td);
1933
1934 sk_out_drop();
1935 return (void *) (uintptr_t) td->error;
1936}
1937
1938/*
1939 * Run over the job map and reap the threads that have exited, if any.
1940 */
1941static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1942 uint64_t *m_rate)
1943{
1944 struct thread_data *td;
1945 unsigned int cputhreads, realthreads, pending;
1946 int i, status, ret;
1947
1948 /*
1949 * reap exited threads (TD_EXITED -> TD_REAPED)
1950 */
1951 realthreads = pending = cputhreads = 0;
1952 for_each_td(td, i) {
1953 int flags = 0;
1954
1955 if (!strcmp(td->o.ioengine, "cpuio"))
1956 cputhreads++;
1957 else
1958 realthreads++;
1959
1960 if (!td->pid) {
1961 pending++;
1962 continue;
1963 }
1964 if (td->runstate == TD_REAPED)
1965 continue;
1966 if (td->o.use_thread) {
1967 if (td->runstate == TD_EXITED) {
1968 td_set_runstate(td, TD_REAPED);
1969 goto reaped;
1970 }
1971 continue;
1972 }
1973
1974 flags = WNOHANG;
1975 if (td->runstate == TD_EXITED)
1976 flags = 0;
1977
1978 /*
1979 * check if someone quit or got killed in an unusual way
1980 */
1981 ret = waitpid(td->pid, &status, flags);
1982 if (ret < 0) {
1983 if (errno == ECHILD) {
1984 log_err("fio: pid=%d disappeared %d\n",
1985 (int) td->pid, td->runstate);
1986 td->sig = ECHILD;
1987 td_set_runstate(td, TD_REAPED);
1988 goto reaped;
1989 }
1990 perror("waitpid");
1991 } else if (ret == td->pid) {
1992 if (WIFSIGNALED(status)) {
1993 int sig = WTERMSIG(status);
1994
1995 if (sig != SIGTERM && sig != SIGUSR2)
1996 log_err("fio: pid=%d, got signal=%d\n",
1997 (int) td->pid, sig);
1998 td->sig = sig;
1999 td_set_runstate(td, TD_REAPED);
2000 goto reaped;
2001 }
2002 if (WIFEXITED(status)) {
2003 if (WEXITSTATUS(status) && !td->error)
2004 td->error = WEXITSTATUS(status);
2005
2006 td_set_runstate(td, TD_REAPED);
2007 goto reaped;
2008 }
2009 }
2010
2011 /*
2012 * If the job is stuck, do a forceful timeout of it and
2013 * move on.
2014 */
2015 if (td->terminate &&
2016 td->runstate < TD_FSYNCING &&
2017 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2018 log_err("fio: job '%s' (state=%d) hasn't exited in "
2019 "%lu seconds, it appears to be stuck. Doing "
2020 "forceful exit of this job.\n",
2021 td->o.name, td->runstate,
2022 (unsigned long) time_since_now(&td->terminate_time));
2023 td_set_runstate(td, TD_REAPED);
2024 goto reaped;
2025 }
2026
2027 /*
2028 * thread is not dead, continue
2029 */
2030 pending++;
2031 continue;
2032reaped:
2033 (*nr_running)--;
2034 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2035 (*t_rate) -= ddir_rw_sum(td->o.rate);
2036 if (!td->pid)
2037 pending--;
2038
2039 if (td->error)
2040 exit_value++;
2041
2042 done_secs += mtime_since_now(&td->epoch) / 1000;
2043 profile_td_exit(td);
2044 }
2045
2046 if (*nr_running == cputhreads && !pending && realthreads)
2047 fio_terminate_threads(TERMINATE_ALL);
2048}
2049
2050static bool __check_trigger_file(void)
2051{
2052 struct stat sb;
2053
2054 if (!trigger_file)
2055 return false;
2056
2057 if (stat(trigger_file, &sb))
2058 return false;
2059
2060 if (unlink(trigger_file) < 0)
2061 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2062 strerror(errno));
2063
2064 return true;
2065}
2066
2067static bool trigger_timedout(void)
2068{
2069 if (trigger_timeout)
2070 if (time_since_genesis() >= trigger_timeout) {
2071 trigger_timeout = 0;
2072 return true;
2073 }
2074
2075 return false;
2076}
2077
2078void exec_trigger(const char *cmd)
2079{
2080 int ret;
2081
2082 if (!cmd || cmd[0] == '\0')
2083 return;
2084
2085 ret = system(cmd);
2086 if (ret == -1)
2087 log_err("fio: failed executing %s trigger\n", cmd);
2088}
2089
2090void check_trigger_file(void)
2091{
2092 if (__check_trigger_file() || trigger_timedout()) {
2093 if (nr_clients)
2094 fio_clients_send_trigger(trigger_remote_cmd);
2095 else {
2096 verify_save_state(IO_LIST_ALL);
2097 fio_terminate_threads(TERMINATE_ALL);
2098 exec_trigger(trigger_cmd);
2099 }
2100 }
2101}
2102
2103static int fio_verify_load_state(struct thread_data *td)
2104{
2105 int ret;
2106
2107 if (!td->o.verify_state)
2108 return 0;
2109
2110 if (is_backend) {
2111 void *data;
2112
2113 ret = fio_server_get_verify_state(td->o.name,
2114 td->thread_number - 1, &data);
2115 if (!ret)
2116 verify_assign_state(td, data);
2117 } else
2118 ret = verify_load_state(td, "local");
2119
2120 return ret;
2121}
2122
2123static void do_usleep(unsigned int usecs)
2124{
2125 check_for_running_stats();
2126 check_trigger_file();
2127 usleep(usecs);
2128}
2129
2130static bool check_mount_writes(struct thread_data *td)
2131{
2132 struct fio_file *f;
2133 unsigned int i;
2134
2135 if (!td_write(td) || td->o.allow_mounted_write)
2136 return false;
2137
2138 /*
2139 * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2140 * are mkfs'd and mounted.
2141 */
2142 for_each_file(td, f, i) {
2143#ifdef FIO_HAVE_CHARDEV_SIZE
2144 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2145#else
2146 if (f->filetype != FIO_TYPE_BLOCK)
2147#endif
2148 continue;
2149 if (device_is_mounted(f->file_name))
2150 goto mounted;
2151 }
2152
2153 return false;
2154mounted:
2155 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2156 return true;
2157}
2158
2159static bool waitee_running(struct thread_data *me)
2160{
2161 const char *waitee = me->o.wait_for;
2162 const char *self = me->o.name;
2163 struct thread_data *td;
2164 int i;
2165
2166 if (!waitee)
2167 return false;
2168
2169 for_each_td(td, i) {
2170 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2171 continue;
2172
2173 if (td->runstate < TD_EXITED) {
2174 dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2175 self, td->o.name,
2176 runstate_to_name(td->runstate));
2177 return true;
2178 }
2179 }
2180
2181 dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2182 return false;
2183}
2184
2185/*
2186 * Main function for kicking off and reaping jobs, as needed.
2187 */
2188static void run_threads(struct sk_out *sk_out)
2189{
2190 struct thread_data *td;
2191 unsigned int i, todo, nr_running, nr_started;
2192 uint64_t m_rate, t_rate;
2193 uint64_t spent;
2194
2195 if (fio_gtod_offload && fio_start_gtod_thread())
2196 return;
2197
2198 fio_idle_prof_init();
2199
2200 set_sig_handlers();
2201
2202 nr_thread = nr_process = 0;
2203 for_each_td(td, i) {
2204 if (check_mount_writes(td))
2205 return;
2206 if (td->o.use_thread)
2207 nr_thread++;
2208 else
2209 nr_process++;
2210 }
2211
2212 if (output_format & FIO_OUTPUT_NORMAL) {
2213 log_info("Starting ");
2214 if (nr_thread)
2215 log_info("%d thread%s", nr_thread,
2216 nr_thread > 1 ? "s" : "");
2217 if (nr_process) {
2218 if (nr_thread)
2219 log_info(" and ");
2220 log_info("%d process%s", nr_process,
2221 nr_process > 1 ? "es" : "");
2222 }
2223 log_info("\n");
2224 log_info_flush();
2225 }
2226
2227 todo = thread_number;
2228 nr_running = 0;
2229 nr_started = 0;
2230 m_rate = t_rate = 0;
2231
2232 for_each_td(td, i) {
2233 print_status_init(td->thread_number - 1);
2234
2235 if (!td->o.create_serialize)
2236 continue;
2237
2238 if (fio_verify_load_state(td))
2239 goto reap;
2240
2241 /*
2242 * do file setup here so it happens sequentially,
2243 * we don't want X number of threads getting their
2244 * client data interspersed on disk
2245 */
2246 if (setup_files(td)) {
2247reap:
2248 exit_value++;
2249 if (td->error)
2250 log_err("fio: pid=%d, err=%d/%s\n",
2251 (int) td->pid, td->error, td->verror);
2252 td_set_runstate(td, TD_REAPED);
2253 todo--;
2254 } else {
2255 struct fio_file *f;
2256 unsigned int j;
2257
2258 /*
2259 * for sharing to work, each job must always open
2260 * its own files. so close them, if we opened them
2261 * for creation
2262 */
2263 for_each_file(td, f, j) {
2264 if (fio_file_open(f))
2265 td_io_close_file(td, f);
2266 }
2267 }
2268 }
2269
2270 /* start idle threads before io threads start to run */
2271 fio_idle_prof_start();
2272
2273 set_genesis_time();
2274
2275 while (todo) {
2276 struct thread_data *map[REAL_MAX_JOBS];
2277 struct timespec this_start;
2278 int this_jobs = 0, left;
2279 struct fork_data *fd;
2280
2281 /*
2282 * create threads (TD_NOT_CREATED -> TD_CREATED)
2283 */
2284 for_each_td(td, i) {
2285 if (td->runstate != TD_NOT_CREATED)
2286 continue;
2287
2288 /*
2289 * never got a chance to start, killed by other
2290 * thread for some reason
2291 */
2292 if (td->terminate) {
2293 todo--;
2294 continue;
2295 }
2296
2297 if (td->o.start_delay) {
2298 spent = utime_since_genesis();
2299
2300 if (td->o.start_delay > spent)
2301 continue;
2302 }
2303
2304 if (td->o.stonewall && (nr_started || nr_running)) {
2305 dprint(FD_PROCESS, "%s: stonewall wait\n",
2306 td->o.name);
2307 break;
2308 }
2309
2310 if (waitee_running(td)) {
2311 dprint(FD_PROCESS, "%s: waiting for %s\n",
2312 td->o.name, td->o.wait_for);
2313 continue;
2314 }
2315
2316 init_disk_util(td);
2317
2318 td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2319 td->update_rusage = 0;
2320
2321 /*
2322 * Set state to created. Thread will transition
2323 * to TD_INITIALIZED when it's done setting up.
2324 */
2325 td_set_runstate(td, TD_CREATED);
2326 map[this_jobs++] = td;
2327 nr_started++;
2328
2329 fd = calloc(1, sizeof(*fd));
2330 fd->td = td;
2331 fd->sk_out = sk_out;
2332
2333 if (td->o.use_thread) {
2334 int ret;
2335
2336 dprint(FD_PROCESS, "will pthread_create\n");
2337 ret = pthread_create(&td->thread, NULL,
2338 thread_main, fd);
2339 if (ret) {
2340 log_err("pthread_create: %s\n",
2341 strerror(ret));
2342 free(fd);
2343 nr_started--;
2344 break;
2345 }
2346 fd = NULL;
2347 ret = pthread_detach(td->thread);
2348 if (ret)
2349 log_err("pthread_detach: %s",
2350 strerror(ret));
2351 } else {
2352 pid_t pid;
2353 dprint(FD_PROCESS, "will fork\n");
2354 pid = fork();
2355 if (!pid) {
2356 int ret;
2357
2358 ret = (int)(uintptr_t)thread_main(fd);
2359 _exit(ret);
2360 } else if (i == fio_debug_jobno)
2361 *fio_debug_jobp = pid;
2362 }
2363 dprint(FD_MUTEX, "wait on startup_mutex\n");
2364 if (fio_mutex_down_timeout(startup_mutex, 10000)) {
2365 log_err("fio: job startup hung? exiting.\n");
2366 fio_terminate_threads(TERMINATE_ALL);
2367 fio_abort = 1;
2368 nr_started--;
2369 free(fd);
2370 break;
2371 }
2372 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2373 }
2374
2375 /*
2376 * Wait for the started threads to transition to
2377 * TD_INITIALIZED.
2378 */
2379 fio_gettime(&this_start, NULL);
2380 left = this_jobs;
2381 while (left && !fio_abort) {
2382 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2383 break;
2384
2385 do_usleep(100000);
2386
2387 for (i = 0; i < this_jobs; i++) {
2388 td = map[i];
2389 if (!td)
2390 continue;
2391 if (td->runstate == TD_INITIALIZED) {
2392 map[i] = NULL;
2393 left--;
2394 } else if (td->runstate >= TD_EXITED) {
2395 map[i] = NULL;
2396 left--;
2397 todo--;
2398 nr_running++; /* work-around... */
2399 }
2400 }
2401 }
2402
2403 if (left) {
2404 log_err("fio: %d job%s failed to start\n", left,
2405 left > 1 ? "s" : "");
2406 for (i = 0; i < this_jobs; i++) {
2407 td = map[i];
2408 if (!td)
2409 continue;
2410 kill(td->pid, SIGTERM);
2411 }
2412 break;
2413 }
2414
2415 /*
2416 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2417 */
2418 for_each_td(td, i) {
2419 if (td->runstate != TD_INITIALIZED)
2420 continue;
2421
2422 if (in_ramp_time(td))
2423 td_set_runstate(td, TD_RAMP);
2424 else
2425 td_set_runstate(td, TD_RUNNING);
2426 nr_running++;
2427 nr_started--;
2428 m_rate += ddir_rw_sum(td->o.ratemin);
2429 t_rate += ddir_rw_sum(td->o.rate);
2430 todo--;
2431 fio_mutex_up(td->mutex);
2432 }
2433
2434 reap_threads(&nr_running, &t_rate, &m_rate);
2435
2436 if (todo)
2437 do_usleep(100000);
2438 }
2439
2440 while (nr_running) {
2441 reap_threads(&nr_running, &t_rate, &m_rate);
2442 do_usleep(10000);
2443 }
2444
2445 fio_idle_prof_stop();
2446
2447 update_io_ticks();
2448}
2449
2450static void free_disk_util(void)
2451{
2452 disk_util_prune_entries();
2453 helper_thread_destroy();
2454}
2455
2456int fio_backend(struct sk_out *sk_out)
2457{
2458 struct thread_data *td;
2459 int i;
2460
2461 if (exec_profile) {
2462 if (load_profile(exec_profile))
2463 return 1;
2464 free(exec_profile);
2465 exec_profile = NULL;
2466 }
2467 if (!thread_number)
2468 return 0;
2469
2470 if (write_bw_log) {
2471 struct log_params p = {
2472 .log_type = IO_LOG_TYPE_BW,
2473 };
2474
2475 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2476 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2477 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2478 }
2479
2480 startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2481 if (startup_mutex == NULL)
2482 return 1;
2483
2484 set_genesis_time();
2485 stat_init();
2486 helper_thread_create(startup_mutex, sk_out);
2487
2488 cgroup_list = smalloc(sizeof(*cgroup_list));
2489 INIT_FLIST_HEAD(cgroup_list);
2490
2491 run_threads(sk_out);
2492
2493 helper_thread_exit();
2494
2495 if (!fio_abort) {
2496 __show_run_stats();
2497 if (write_bw_log) {
2498 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2499 struct io_log *log = agg_io_log[i];
2500
2501 flush_log(log, false);
2502 free_log(log);
2503 }
2504 }
2505 }
2506
2507 for_each_td(td, i) {
2508 steadystate_free(td);
2509 fio_options_free(td);
2510 if (td->rusage_sem) {
2511 fio_mutex_remove(td->rusage_sem);
2512 td->rusage_sem = NULL;
2513 }
2514 fio_mutex_remove(td->mutex);
2515 td->mutex = NULL;
2516 }
2517
2518 free_disk_util();
2519 cgroup_kill(cgroup_list);
2520 sfree(cgroup_list);
2521 sfree(cgroup_mnt);
2522
2523 fio_mutex_remove(startup_mutex);
2524 stat_exit();
2525 return exit_value;
2526}